Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China

Total Page:16

File Type:pdf, Size:1020Kb

Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China Liping Dong1*, Zbyneˇk Rocˇek2, Yuan Wang1, Marc E. H. Jones3 1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China, 2 Institute of Geology, Department of Palaeobiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 3 Research Department of Cell and Developmental Biology, University College London, London, United Kingdom Abstract Background: To date, the Lower Cretaceous Jehol Group of western Liaoning, China has yielded five monotypic genera of anurans, including Liaobatrachus grabaui, Callobatrachus sanyanensis, Mesophryne beipiaoensis, Dalianbatrachus mengi, and Yizhoubatrachus macilentus. However, the validity and distinctness of these taxa have been questioned. Methodology/Principal Finding: We provide a comprehensive analysis of the Jehol frogs that includes a re-examination of the published taxa as well as an examination of a number of new specimens that have been collected over the past 10 years. The results show that the five previously named taxa can be referred to three species of one genus–Liaobatrachus grabaui, L. beipiaoensis comb. nov. and L. macilentus comb. nov.. The diagnosis of Liaobatrachus is revised, and a new diagnosis is provided for each species of this genus. We also establish Liaobatrachus zhaoi sp. nov., on the basis of a dozen well-preserved specimens from a new locality. This taxon is distinguished by a unique combination of characteristics, including relatively long hind limbs, a rounded rather than triangular acetabulum, and a gradually-tapering cultriform process of the parasphenoid. In addition, an unnamed frog from a higher horizon, which has narrow sacral diapophyses and particularly long legs, is different from Liaobatrachus and represents another form of anuran in the Jehol Biota. Conclusion/Significance: Comparisons with other Mesozoic and extant anurans and the primary phylogenetic analysis both suggest that Liaobatrachus is a member of the anuran crown-group and forms a polytomy with leiopelmatids (Ascaphus and Leiopelma) and the remaining crown-group anurans (Lalagobatrachia). Citation: Dong L, Rocˇek Z, Wang Y, Jones MEH (2013) Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China. PLoS ONE 8(7): e69723. doi:10.1371/journal.pone.0069723 Editor: Andrew A. Farke, Raymond M. Alf Museum of Paleontology, United States of America Received January 7, 2013; Accepted June 6, 2013; Published July 26, 2013 Copyright: ß 2013 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by grants from the National Natural Science Foundation of China (KA211102, to YW) and the Ministry of Science and Technology of China (KZ129739 and KQ207420, to YW). It was also supported by the Sino-Czech academic exchange program. ZR was a visiting professor at the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, Beijing, while completing this research; he was also partly supported by the Institute of Geology, Academy of Sciences of the Czech Republic, Prague (Institutional Project AV0Z30130516). MEHJ thanks the British Council for travel funds associated with Darwin Now that facilitated a visit to the IVPP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction Mesophryne beipiaoensis Gao and Wang 2001 [10], Dalianbatrachus mengi Gao and Liu 2004 [11], and Yizhoubatrachus macilentus Gao The Jehol Biota represents an Early Cretaceous lacustrine and Chen 2004 [12]. Because each taxon was based on a single terrestrial ecosystem with a high degree of diversity and endemism specimen, some anatomical characters were ambiguous or even [1,2]. It contains a variety of Mesozoic taxa including the early incorrectly interpreted. For example, Liaobatrachus grabaui was bird Confuciusornis and its relatives [3], the feathered tyrannosaur- reported to have no ribs [8], the centra of Mesophryne beipiaoensis oid Yutyrannus huali [4], and the early eutherian Acristatherium were reported to be procoelous [10], and Dalianbatrachus mengi was yanensis [5]. The Jehol Biota is best known from the Jehol Group, considered to have fused frontoparietals [11]. Some revisions have which is exposed in western Liaoning, northern Hebei and been made [13], but many problems and uncertainties remain southeastern Inner Mongolia. The Jehol Group consists of, in unresolved. Based on new fossil discoveries and a re-examination ascending order, the Dabeigou Formation, the Yixian Formation of all reported taxa, this paper provides the first comprehensive and the Jiufotang Formation. Its age has been estimated as study of the Jehol anurans, including revisions of established taxa 129.760.5–122.160.3 Ma [6] or 131–120 Ma [2] by different and erection of a new taxon. recent studies, indicating that the biota lasted about 7–9 Ma (early Barremian to early Aptian). Materials and Methods Amphibians are an important component of the Jehol Biota, with 4 urodele [7] and 5 anuran taxa having been formally Institutional Abbreviations reported [8–12]. The anurans include Liaobatrachus grabaui Ji and Ji CYH, Chaoyang Bird Fossil National Geopark, Chaoyang, 1998 [8], Callobatrachus sanyanensis Wang and Gao 1999 [9], Liaoning; DNM D, Dalian Natural History Museum, Dalian, PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69723 Jehol Anurans Liaoning; GMV, Geological Museum of China, Beijing; IVPP V, appendicular skeleton and nearly all of the vertebral column Institute of Vertebrate Paleontology and Paleoanthropology, preserved), IVPP V13238 (a partial skeleton with part of the Chinese Academy of Sciences, Beijing; LPM, Liaoning Paleontol- vertebral column, the pelvis and the hind limbs preserved), ogy Museum, Shenyang, Liaoning; MV, Nanjing Institute of IVPP V13379 (a partial skeleton with most of the cranial bones Geology and Palaeontology, Chinese Academy of Sciences, missing), and IVPP V14608 (a partial skeleton consisting of the Nanjing, Jiangsu; ZMNH M, Zhejiang Museum of Natural posterior portion of the vertebral column, the pelvis and the History, Hangzhou, Zhejiang. hind limbs). Specimen IVPP V14979, which represents several frogs preserved on two associated slabs, was also recovered Localities and Materials from this locality. Some of the skeletons are nearly complete, We examined 25 specimens from eight fossil localities in the with only a few bones disarticulated and displaced. The first area around Yixian, Beipiao and Chaoyang in western Liaoning slab bears two adult skeletons (IVPP V14979.1 and IVPP (Fig. 1). The anuran-bearing horizons are the Lujiatun, Jian- V14979.2) and two juvenile skeletons (IVPP V14979.3 and shangou and Dawangzhangzi Beds of the Yixian Formation, and IVPP V14979.4), whereas the second slab (not considered in the Jiufotang Formation (Fig. 2) [14]. There are not anurans the paper as they are the young individuals of IVPP V14979.1) currently known from the Dabeigou Formation. The localities and bears two frogs: IVPP V14979.5 and IVPP V14979.6 [15]. their anuran fossil content are as follows (also see Table 1): 3. Sihetun Locality: 1.5 km southwest of Sihetun Cunminzu (a ‘‘Cunminzu’’ is a subdivision of a village), Chaomidianzi 1. Lujiatun Locality: near Lujiatun Village, 25 km northwest of Village, Shangyuan Town, Beipiao City, Liaoning Province; Beipiao City, Liaoning Province; Lujiatun Bed, Yixian Jianshangou Bed, Yixian Formation; Barremian/Aptian. Formation; Barremian. Specimen IVPP V13245 (a three- Specimens found here include GMV2126 (see Ji and Ji, 1998 dimensionally preserved incomplete skeleton) was excavated [8]), IVPP V11525 (see Wang and Gao, 1999 [9]), MV 77 (a here. nearly complete skeleton with a slightly displaced pelvis), IVPP 2. Qianyangou Locality: about 1.5 km west of Qianyangou V12717 (a nearly complete skeleton with part of the vertebral Village, Shangyuan Town, Beipiao City, Liaoning Province; column displaced and the limbs not preserved), and CYH 004 Lujiatun Bed, Yixian Formation; Barremian. All of the (a nearly complete skeleton). specimens from this locality are three-dimensionally preserved. 4. Heitizigou Locality: 0.5 km east of Libalanggou Village, They include IVPP V13236 (a partial skeleton with part of the Zhangjiying Township, Beipiao City, Liaoning Province; skull and most of the postcranial bones preserved), IVPP Jianshangou Bed, Yixian Formation; Barremian/Aptian. V13239 (a partial skeleton lacking the urostyle, ilia, and hind Specimen LPM 0030 (see Gao and Wang, 2001 [10]) was legs), IVPP V13380 (a partial skeleton with the skull and found here. pectoral girdle preserved), IVPP V14203 (a nearly complete 5. Huangbanjigou Locality: near Huangbanjigou Village, Shang- skeleton missing only some limb bones), IVPP V14269 (the yuan Town, Beipiao City, Liaoning Province, 3 km northeast smaller of two frogs preserved on one slab, with the upper and of the Sihetun Locality; Jianshangou Bed, Yixian Formation; lower jaws and most of the postcranial bones preserved), IVPP Barremian/Aptian.
Recommended publications
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • Rampant Tooth Loss Across 200 Million Years of Frog Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Terra Nostra 2018, 1; Mte13
    IMPRINT TERRA NOSTRA – Schriften der GeoUnion Alfred-Wegener-Stiftung Publisher Verlag GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Editorial office Dr. Christof Ellger Schriftleitung GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Vol. 2018/1 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota (MTE13) Heft 2018/1 Abstracts Editors Thomas Martin, Rico Schellhorn & Julia A. Schultz Herausgeber Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Editorial staff Rico Schellhorn & Julia A. Schultz Redaktion Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Printed by www.viaprinto.de Druck Copyright and responsibility for the scientific content of the contributions lie with the authors. Copyright und Verantwortung für den wissenschaftlichen Inhalt der Beiträge liegen bei den Autoren. ISSN 0946-8978 GeoUnion Alfred-Wegener-Stiftung – Potsdam, Juni 2018 MTE13 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota Rheinische Friedrich-Wilhelms-Universität Bonn,
    [Show full text]
  • Kinematics and Hydrodynamics Analysis of Swimming Anurans Reveals Striking Inter- Specific Differences in the Mechanism for Producing Thrust
    621 The Journal of Experimental Biology 213, 621-634 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jeb.032631 Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter- specific differences in the mechanism for producing thrust Christopher T. Richards The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA [email protected] Accepted 9 November 2009 SUMMARY This study aimed to compare the swimming kinematics and hydrodynamics within and among aquatic and semi-aquatic/terrestrial frogs. High-speed video was used to obtain kinematics of the leg joints and feet as animals swam freely across their natural range of speeds. Blade element analysis was then used to model the hydrodynamic thrust as a function of foot kinematics. Two purely aquatic frogs, Xenopus laevis and Hymenochirus boettgeri, were compared with two semi-aquatic/terrestrial frogs, Rana pipiens and Bufo americanus. The four species performed similarly. Among swimming strokes, peak stroke velocity ranged from 3.3±1.1 to 20.9±2.5, from 6.8±2.1 to 28.6±3.7 and from 4.9±0.5 to 20.9±4.1body lengths per second (BLs–1) in X. laevis, H. boettgeri and R. pipiens, respectively (means ± s.d.; N4 frogs for each). B. americanus swam much more slowly at 3.1±0.3 to 7.0±2.0BLs–1 (N3 frogs). Time-varying joint kinematics patterns were superficially similar among species. Because foot kinematics result from the cumulative motion of joints proximal to the feet, small differences in time-varying joint kinematics among species resulted in species-specific foot kinematics (therefore hydrodynamics) patterns.
    [Show full text]
  • PUBLISHED VERSION Liping Dong, Zbyněk Roček, Yuan Wang, Marc E H
    PUBLISHED VERSION Liping Dong, Zbyněk Roček, Yuan Wang, Marc E H. Jones Anurans from the Lower Cretaceous Jehol Group of western Liaoning, China PLoS One, 2013; 8(7):e69723-1-e69723-17 Copyright: © 2013 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PERMISSIONS http://www.plosone.org/static/license http://creativecommons.org/licenses/by/3.0/ 17 November, 2014 http://hdl.handle.net/2440/87016 Anurans from the Lower Cretaceous Jehol Group of Western Liaoning, China Liping Dong1*, Zbyneˇk Rocˇek2, Yuan Wang1, Marc E. H. Jones3 1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China, 2 Institute of Geology, Department of Palaeobiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 3 Research Department of Cell and Developmental Biology, University College London, London, United Kingdom Abstract Background: To date, the Lower Cretaceous Jehol Group of western Liaoning, China has yielded five monotypic genera of anurans, including Liaobatrachus grabaui, Callobatrachus sanyanensis, Mesophryne beipiaoensis, Dalianbatrachus mengi, and Yizhoubatrachus macilentus. However, the validity and distinctness of these taxa have been questioned. Methodology/Principal Finding: We provide a comprehensive analysis of the Jehol frogs that includes a re-examination of the published taxa as well as an examination of a number of new specimens that have been collected over the past 10 years. The results show that the five previously named taxa can be referred to three species of one genus–Liaobatrachus grabaui, L.
    [Show full text]
  • The Late Cretaceous Frog Gobiates from Central Asia: Its Evolutionary Status and Possible Phylogenetic Relationships
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Cretaceous Research 29 (2008) 577e591 www.elsevier.com/locate/CretRes The Late Cretaceous frog Gobiates from Central Asia: its evolutionary status and possible phylogenetic relationships ZbyneˇkRocek a,b,* a Laboratory of Palaeobiology, Institute of Geology, Czech Academy of Sciences, Rozvojova´ 135, CZ-165 00 Prague 6, Czech Republic b Department of Zoology, Faculty of Natural Sciences, Charles University, Vinicna´ 7, CZ-128 44 Prague 2, Czech Republic Received 27 January 2008; accepted in revised form 27 January 2008 Available online 6 February 2008 Abstract The fossil record of the Late Cretaceous anuran Gobiates is reviewed, and an articulated postcranial skeleton is described for the first time. A separate family status for the genera Gobiates Sˇpinar et Tatarinov, 1986, Cretasalia Gubin, 1999, and Gobiatoides Rocek et Nessov, 1993 is re- assessed. In principle, the Gobiatidae are characterized by a combination of primitive and derived characters, of which the most important for inferring phylogenetic relationships are: (1) amphicoelous (ectochordal) vertebral centra; (2) eight presacral vertebrae; (3) palatines fused to maxillae (postchoanal process of the vomer absent); and (4) pterygoid process of the maxilla absent.
    [Show full text]
  • The Rediscovered Hula Painted Frog Is a Living Fossil
    ARTICLE Received 30 Oct 2012 | Accepted 30 Apr 2013 | Published 4 Jun 2013 DOI: 10.1038/ncomms2959 The rediscovered Hula painted frog is a living fossil Rebecca Biton1, Eli Geffen2, Miguel Vences3, Orly Cohen2, Salvador Bailon4, Rivka Rabinovich1,5, Yoram Malka6, Talya Oron6, Renaud Boistel7, Vlad Brumfeld8 & Sarig Gafny9 Amphibian declines are seen as an indicator of the onset of a sixth mass extinction of life on earth. Because of a combination of factors such as habitat destruction, emerging pathogens and pollutants, over 156 amphibian species have not been seen for several decades, and 34 of these were listed as extinct by 2004. Here we report the rediscovery of the Hula painted frog, the first amphibian to have been declared extinct. We provide evidence that not only has this species survived undetected in its type locality for almost 60 years but also that it is a surviving member of an otherwise extinct genus of alytid frogs, Latonia, known only as fossils from Oligocene to Pleistocene in Europe. The survival of this living fossil is a striking example of resilience to severe habitat degradation during the past century by an amphibian. 1 National Natural History Collections, Institute of Archaeology, Hebrew University of Jerusalem, Jerusalem 91904, Israel. 2 Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel. 3 Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, 38106 Braunschweig, Germany. 4 De´partement Ecologie et Gestion de la Biodiversite´, Muse´um National d’Histoire Naturelle, UMR 7209–7194 du CNRS,55 rue Buffon, CP 55, Paris 75005, France. 5 Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
    [Show full text]
  • (Temnospondyli), and the Evolution of Modern
    THE LOWER PERMIAN DISSOROPHOID DOLESERPETON (TEMNOSPONDYLI), AND THE EVOLUTION OF MODERN AMPHIBIANS Trond Sigurdsen Department of Biology McGill University, Montreal November 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Trond Sigurdsen 2009 1 ACKNOWLEDGMENTS I am deeply grateful to my supervisors Robert L. Carroll and David M. Green for their support, and for revising and correcting the drafts of the individual chapters. Without their guidance, encouragement, and enthusiasm this project would not have been possible. Hans Larsson has also provided invaluable help, comments, and suggestions. Special thanks go to John R. Bolt, who provided specimens and contributed to Chapters 1 and 3. I thank Farish Jenkins, Jason Anderson, and Eric Lombard for making additional specimens available. Robert Holmes, Jean-Claude Rage, and Zbyněk Roček have all provided helpful comments and observations. Finally, I would like to thank present and past members of the Paleolab at the Redpath Museum, Montreal, for helping out in various ways. Specifically, Thomas Alexander Dececchi, Nadia Fröbisch, Luke Harrison, Audrey Heppleston and Erin Maxwell have contributed helpful comments and technical insight. Funding was provided by NSERC, the Max Stern Recruitment Fellowship (McGill), the Delise Allison and Alma Mater student travel grants (McGill), and the Society of Vertebrate Paleontology Student Travel Grant. 2 CONTRIBUTIONS OF AUTHORS Chapters 1 and 3 were written in collaboration with Dr. John R. Bolt from the Field Museum of Chicago. The present author decided the general direction of these chapters, studied specimens, conducted the analyses, and wrote the final drafts.
    [Show full text]
  • ESCAPA, I.H., J. STERLI, D. POL, & L. NICOLI. 2008. Jurassic
    Revista de la Asociación Geológica Argentina 63 (4): 613 - 624 (2008) 613 JURASSIC TETRAPODS AND FLORA OF CAÑADÓN ASFALTO FORMATION IN CERRO CÓNDOR AREA, CHUBUT PROVINCE Ignacio H. ESCAPA1, Juliana STERLI2, Diego POL1 and Laura NICOLI3 1 CONICET. Museo Paleontológico Egidio Feruglio. Trelew, Chubut. Email: [email protected], [email protected] 2 CONICET. Museo de Historia Natural de San Rafael, San Rafael, Mendoza. Email: [email protected] 3 CONICET. Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires. Email: [email protected] ABSTRACT The plant and tetrapod fossil record of the Cañadón Asfalto Formation (Middle to Late Jurassic) found in Cerro Cóndor area (Chubut Province) is summarized here. The flora is dominated by conifers (Araucariaceae, Cupressaceae sensu lato) but also includes ferns and equisetaleans. The tetrapod fauna is composed of dinosaur taxa described in the 70's as well as other remains recently described and other vertebrate groups such as amphibians, turtles, and mammals. The amphibian remains have been interpreted as representatives of a new species of Notobatrachus, considered one of the most basal members of the anuran lineage. Similarly, turtle remains have been recently recognized as a new species of basal turtle, bringing valuable infor- mation about the early evolution of this group. The dinosaur remains are largely dominated by saurischian taxa, represented by basal forms of Eusauropoda and Tetanurae. In addition, three different mammalian species have been identified and con- sidered as early representatives of an endemic Gondwanan mammalian fauna. The fossil record of this formation represents the most completely known biota from the continental Middle to Late Jurassic of the Southern Hemisphere and one of the most complete of the entire world.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 02:28:07AM Via Free Access 202 Ascarrunz Et Al
    Contributions to Zoology, 85 (2) 201-234 (2016) Triadobatrachus massinoti, the earliest known lissamphibian (Vertebrata: Tetrapoda) re-examined by µCT scan, and the evolution of trunk length in batrachians Eduardo Ascarrunz1, 2, Jean-Claude Rage2, Pierre Legreneur3, Michel Laurin2 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland 2 Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier, 75005 Paris, France 3 Inter-University Laboratory of Human Movement Biology, University of Lyon, 27-29 Bd du 11 Novembre 1918, 69622 Villeurbanne Cédex, France 4 E-mail: [email protected] Key words: Anura, caudopelvic apparatus, CT scan, Salientia, Triassic, trunk evolution Abstract Systematic palaeontology ........................................................... 206 Geological context and age ................................................. 206 Triadobatrachus massinoti is a batrachian known from a single Description .............................................................................. 207 fossil from the Early Triassic of Madagascar that presents a com- General appearance of the reassembled nodule ............ 207 bination of apomorphic salientian and plesiomorphic batrachian Skull ........................................................................................... 208 characters. Herein we offer a revised description of the specimen Axial skeleton .........................................................................
    [Show full text]
  • The Earliest Equatorial Record of Frogs from the Late Triassic of Arizona
    Palaeontology The earliest equatorial record of frogs royalsocietypublishing.org/journal/rsbl from the Late Triassic of Arizona Michelle R. Stocker1, Sterling J. Nesbitt1, Ben T. Kligman1,2, Daniel J. Paluh3, Adam D. Marsh2, David C. Blackburn3 and William G. Parker2 Research 1Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA 2 Cite this article: Stocker MR, Nesbitt SJ, Petrified Forest National Park, 1 Park Road, Petrified Forest, AZ 86028, USA 3Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Kligman BT, Paluh DJ, Marsh AD, Blackburn DC, Parker WG. 2019 The earliest equatorial record MRS, 0000-0002-6473-8691; SJN, 0000-0002-7017-1652; BTK, 0000-0003-4400-8963; DJP, 0000-0003-3506-2669; ADM, 0000-0002-3223-8940; DCB, 0000-0002-1810-9886; of frogs from the Late Triassic of Arizona. Biol. WGP, 0000-0002-6005-7098 Lett. 15: 20180922. http://dx.doi.org/10.1098/rsbl.2018.0922 Crown-group frogs (Anura) originated over 200 Ma according to molecular phylogenetic analyses, though only a few fossils from high latitudes chronicle the first approximately 60 Myr of frog evolution and distribution. We report fos- sils that represent both the first Late Triassic and the earliest equatorial record of Received: 29 December 2018 Salientia, the group that includes stem and crown-frogs. These small fossils con- Accepted: 1 February 2019 sist of complete and partial ilia with anteriorly directed, elongate and distally hollow iliac blades. These features of these ilia, including the lack of a prominent dorsal protuberance and a shaft that is much longer than the acetabular region, suggest a closer affinity to crown-group Anura than to Early Triassic stem anur- ans Triadobatrachus from Madagascar and Czatkobatrachus from Poland, both Subject Areas: high-latitude records.
    [Show full text]