The Princeton Companion to Applied Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

The Princeton Companion to Applied Mathematics © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Contributors David Acheson, Emeritus Fellow, Jesus College, Thomas J. Brennan, Professor of Law, Harvard Law School University of Oxford portfolio theory [V.10] inverted pendulums [VI.4], teaching applied mathematics [VIII.7] David S. Broomhead, Professor of Applied Mathematics, The University of Manchester (deceased) Miguel A. Alonso, Associate Professor, applications of max-plus algebra [VII.4] The Institute of Optics at the University of Rochester modern optics [V.14] Kurt Bryan, Professor of Mathematics, Rose–Hulam Institute of Technology Douglas N. Arnold, McKnight Presidential Professor of cloaking [VI.1] Mathematics, University of Minnesota the flight of a golf ball [VI.6] Dorothy Buck, Reader in BioMathematics, Imperial College London Karl Johan Åström, Emeritus Professor, knotting and linking of macromolecules [VI.8] Department of Automatic Control, Lund Institute of Technology/University of Lund Chris Budd, Professor of Applied Mathematics, control theory [IV.34] University of Bath; Professor of Mathematics, Royal Institution of Great Britain David H. Bailey, Lawrence Berkeley National Laboratory slipping, sliding, rattling, and impact: (retired); Research Fellow, University of California, Davis nonsmooth dynamics and its applications [VI.15] experimental applied mathematics [VIII.6] John A. Burns, Hatcher Professor of Mathematics and June Barrow-Green, Senior Lecturer in the History of Technical Director for the Interdisciplinary Center for Mathematics, The Open University Applied Mathematics, Virginia Tech the history of applied mathematics [I.6] optimal sensor location in the control of energy-efficient buildings [VI.13] Peter Benner, Director, Max Planck Institute for Dynamics of Complex Technical Systems model reduction Daniela Calvetti, The James Wood Williamson Professor, [II.26] Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University Andrew J. Bernoff, Kenneth and Diana Jonsson Professor of dimensional analysis and scaling Mathematics, Harvey Mudd College [II.9] the thin-film equation [III.29] Eric Cancès, Professor of Analysis, Ecole des Ponts and INRIA electronic structure calculations (solid state physics) Michael V. Berry, Melville Wills Professor of Physics (Emeritus), University of Bristol [VII.14] divergent series: taming the tails [V.8] René Carmona, Paul M. Wythes ’55 Professor of Michael W. Berry, Professor, Department of Electrical Engineering and Finance, Bendheim Center for Finance, Engineering and Computer Science, University of Tennessee ORFE, Princeton University financial mathematics text mining [VII.24] [V.9] Brett Borden, Professor of Physics, C. J. Chapman, Professor of Applied Mathematics, The Naval Postgraduate School, Monterey, California University of Keele radar imaging [VII.17] shock waves [V.20], aircraft noise [VII.1] Jeffrey T. Borggaard, Professor of Mathematics, Virginia Tech S. Jonathan Chapman, Professor of Mathematics and Its optimal sensor location in the control of Applications, University of Oxford energy-efficient buildings [VI.13] the ginzburg–landau equation [III.14] Jonathan M. Borwein, Laureate Professor, Gui-Qiang G. Chen, Statutory Professor in the Analysis of Partial School of Mathematical and Physical Sciences, Differential Equations and Professorial Fellow of Keble College, University of Newcastle, Australia University of Oxford experimental applied mathematics [VIII.6] the tricomi equation [III.30] Fred Brauer, Professor Emeritus of Mathematics, Margaret Cheney, Professor of Mathematics and Albert C. Yates University of Wisconsin–Madison Endowment Chair, Colorado State University the spread of infectious diseases [V.16] radar imaging [VII.17] For general queries, contact [email protected] © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. xiv Contributors Peter A. Clarkson, Professor of Mathematics, University of Kent Charles L. Epstein, Thomas A. Scott Professor of Mathematics, the painlevé equations [III.24] University of Pennsylvania medical imaging [VII.9] Eugene M. Cliff, Professor Emeritus, Interdisciplinary Center for Applied Mathematics, Virginia Tech Bard Ermentrout, Distinguished University Professor of optimal sensor location in the control of Computational Biology and Professor of Mathematics, energy-efficient buildings [VI.13] University of Pittsburgh mathematical neuroscience [VII.21] Paul G. Constantine, Ben L. Fryrear Assistant Professor of Applied Mathematics and Statistics, Colorado School of Mines Maria Esteban, Director of Research, CNRS ranking web pages [VI.9] mathematics and policy [VIII.9] William Cook, Professor of Combinatorics and Optimization, Lawrence C. Evans, Professor, Department of Mathematics, University of Waterloo University of California, Berkeley the traveling salesman problem [VI.18] partial differential equations [IV.3] Robert M. Corless, Distinguished University Professor, Hans G. Feichtinger, Faculty of Mathematics, Department of Applied Mathematics, University of Vienna The University of Western Ontario function spaces [II.15] the lambert W function [III.17] Martin Feinberg, Morrow Professor of Chemical & Biomolecular Darren Crowdy, Professor of Applied Mathematics, Engineering and Professor of Mathematics, Imperial College London The Ohio State University conformal mapping [II.5] chemical reactions [V.7] James M. Crowley, Executive Director, Alistair D. Fitt, Vice-Chancellor, Oxford Brookes University Society for Industrial and Applied Mathematics mathematics and policy [VIII.9] mathematics and policy [VIII.9] Irene Fonseca, Mellon College of Science University Professor of Annie Cuyt, Professor, Department of Mathematics & Mathematics and Director of Center for Nonlinear Analysis, Computer Science, University of Antwerp Carnegie Mellon University approximation theory [IV.9] calculus of variations [IV.6] E. Brian Davies, Emeritus Professor of Mathematics, L. B. Freund, Adjunct Professor, Department of Materials Science King’s College London and Engineering, University of Illinois at Urbana-Champaign spectral theory [IV.8] mechanics of solids [IV.32] Timothy A. Davis, Professor, Department of Computer Science and Engineering, Texas A&M University David F. Gleich, Assistant Professor of Computer Science, Purdue University graph theory [II.16], searching a graph [VI.10] ranking web pages [VI.9] Florent de Dinechin, Professor of Applied Sciences, INSA—Lyon Paul Glendinning, Professor of Applied Mathematics, evaluating elementary functions [VI.11] The University of Manchester chaos and ergodicity [II.3], complex systems [II.4], Mark R. Dennis, Professor of Theoretical Physics, hybrid systems [II.18], the euler–lagrange equations University of Bristol [III.12], the logistic equation [III.19], the lorenz equations bifurcation theory invariants and conservation laws [II.21], [III.20], [IV.21] tensors and manifolds [II.33], the dirac equation [III.9], maxwell’s equations [III.22], Joe D. Goddard, Professor of Applied Mechanics and schrödinger’s equation [III.26] Engineering Science, University of California, San Diego granular flows [V.13] Jack Dongarra, Professor, University of Tennessee; Professor, Oak Ridge National Laboratory; Kenneth M. Golden, Professor of Mathematics/Adjunct Professor Professor, The University of Manchester of Bioengineering, University of Utah high-performance computing [VII.12] the mathematics of sea ice [V.17] David L. Donoho, Anne T. and Robert M. Bass Professor in the Timothy Gowers, Royal Society Research Professor, Humanities and Sciences, Stanford University Department of Pure Mathematics and Mathematical Statistics, reproducible research in the mathematical sciences University of Cambridge [VIII.5] mathematical writing [VIII.1] Ivar Ekeland, Professor Emeritus, CEREMADE and Thomas A. Grandine, Senior Technical Fellow, Institut de Finance, Université Paris-Dauphine The Boeing Company mathematical economics [VII.20] a hybrid symbolic–numeric approach to geometry processing and modeling [VII.2] Yonina C. Eldar, Professor of Electrical Engineering, Technion—Israel Institute of Technology, Haifa Andreas Griewank, Professor of Mathematics, compressed sensing [VII.10] Humboldt University of Berlin automatic differentiation [VI.7] George F. R. Ellis, Professor Emeritus, Mathematics Department, University of Cape Town David Griffiths, Emeritus Professor of Physics, Reed College general relativity and cosmology [IV.40] quantum mechanics [IV.23] For general queries, contact [email protected] © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Contributors xv Peter Grindrod, Professor of Mathematics, University of Oxford Julian C. R. Hunt, Emeritus Professor of Climate Modelling and evolving social networks, attitudes, and Honorary Professor of Mathematics, University College London beliefs—and counterterrorism [VII.5] turbulence [V.21] Julio C. Gutiérrez-Vega, Director of the Optics Center, Stefan Hutzler, Associate Professor, School of Physics, Technológico de Monterrey Trinity College Dublin mathieu functions [III.21] foams [VI.3] Ernst Hairer, Honorary Professor
Recommended publications
  • Vita Walter Gautschi
    VITA WALTER GAUTSCHI April 1, 2021 EDUCATION Ph.D. University of Basel, Switzerland 1953 (Thesis advisor: A. M. Ostrowski) PROFESSIONAL EXPERIENCE Research Fellow Istituto Nazionale per le Applicazioni del Calcolo, Rome 1954–55 Research Fellow Harvard Computation Lab. 1955–56 Research Mathematician Natl. Bureau of Standards 1956–59 Professor. Lecturer American U., Washington, D.C. Mathematician Oak Ridge National Lab. 1959–63 Professor of Math. & Computer Science Purdue University 1963–2000 Professor Emeritus Purdue University 2000– Visiting Professor Technical Univ. of Munich, Germany 1970–71 Visiting Professor Mathematics Res. Center, Univ. of WI 1976–77 Visiting Professor ETH Zurich 1996–2001 Visiting Professor University of Padova 1997 Visiting Professor University of Basel 2000 1 PROFESSIONAL SOCIETIES AND HONORS Schweizerische Mathematische Gesellschaft American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics Corresponding Member, Bavarian Academy of Sciences, Munich, 2001– Foreign Member, Academy of Sciences, Turin, 2001– SIAM Fellow, Class 2012 Member, Council of the American Mathematical Society, 1975–80, 1984–95 Fulbright Research Scholar, Munich, 1970–71 Listed in Who is Who in the World Listed in the International Biographical Centre’s Top 100 Educators 2009 and in 2000 Outstanding Intellectuals of the 21st Century Listed in S. Gottwald, H.-J. Ilgauds, and K.-H. Schlote, Lexikon bedeutender Mathematiker, 2d ed., Verlag Programm Mathematik, Leipzig, in preparation. RESEARCH INTERESTS Numerical Analysis Constructive Approximation Theory Special Functions Orthogonal Polynomials GENERAL INFORMATION Birthdate: December 11, 1927 Birthplace: Basel, Switzerland Marital Status: Married – Erika Children: 4 Citizenship: USA PUBLICATIONS Books B1. (with H. Bavinck and G. M. Willems) Colloquium approximatietheorie, MC Syllabus 14, Mathematisch Centrum Amsterdam, 1971.
    [Show full text]
  • C L a S S I F I E D L I S T I N
    C LASSIFIEDL ISTINGS POSITIONS AVAILABLE ACADEMIC OPENINGS BP, CHEMICAL RESEARCH ENGINEER UNIVERSITY OF KANSAS, ASSOCIATE/FULL/DISTINGUISHED Located in Warrenville, IL, this position is responsible for conducting PROFESSOR, DEPARTMENT OF CHEMICAL AND PETROLEUM research on the development, implementation & improvement of anaerobic ENGINEERING Tenure track position beginning August 18,2003: The and related effluent control technologies for current /proposed Purified Department of Chemical and Petroleum Engineering at the University of Terephthalic Acid (PTA) plants. Other duties include formulating innovative Kansas invites nominations and applications for a senior faculty position, options to reduce the cost of environmental compliance and direct project including at the Distinguished Professor level. Rank and salary will be com- start-up of PTA wastewater treatment plants worldwide. A master’s degree mensurate with qualifications. The potential candidate is expected to work in Chemical Engineering is required. closely with the Tertiary Oil Recovery Project (TORP) and eventually assume To apply, send resume & salary history to: a leadership position in sustaining and developing TORP activities. BP Chemical, Polyester Int. Business Unit, Attn: Stephen Taylor, Senior HR Required qualifications: earned PhD degree in chemical or petroleum engi- Advisor, MC G-2, 150 W. Warrenville Rd., Naperville, IL 60563. Fax: 630- neering or a closely related field, eligible for a tenured faculty appointment at 961-6223. Email: [email protected]. No phone calls please. EOE. the associate or full professor level, ability to teach petroleum engineering www.bp.com courses and chemical engineering core courses at the undergraduate and graduate levels, and an outstanding record of research and scholarship. CAREER OPPORTUNITIES-NATIONWIDE Applicants for distinguished professorship must met additional criteria avail- EXPERIENCED CANDIDATE’S PHARMACEUTICAL/ BIOMEDICAL ONLY- able in the Faculty Senate Handbook on the KU website (www.ku.edu).
    [Show full text]
  • Iterated Importance Sampling in Missing Data Problems
    Iterated importance sampling in missing data problems Gilles Celeux INRIA, FUTURS, Orsay, France Jean-Michel Marin ∗ INRIA, FUTURS, Orsay, France and CEREMADE, University Paris Dauphine, Paris, France Christian P. Robert CEREMADE, University Paris Dauphine and CREST, INSEE, Paris, France Abstract Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance sampling schemes. A population Monte Carlo scheme taking advantage of the latent structure of the problem is proposed. The potential of this approach and its specifics in missing data problems are illustrated in settings of increasing difficulty, in comparison with existing approaches. The improvement brought by a general Rao–Blackwellisation technique is also discussed. Key words: Adaptive algorithms, Bayesian inference, latent variable models, population Monte Carlo, Rao–Blackwellisation, stochastic volatility model ∗ Corresponding author: CEREMADE, Place du Mar´echal De Lattre de Tassigny, 75775 Paris Cedex 16, France, [email protected] Preprint submitted to Computational Statistics and Data Analysis 25 July 2005 1 Introduction 1.1 Missing data models Missing data models, that is, structures such that the distribution of the data y can be represented via a marginal density Z f(y|θ) = g(y, z|θ)dz , Z where z ∈ Z denotes the so-called ”missing data”, have often been at the forefront of computational Statistics, both as a challenge to existing techniques and as a benchmark for incoming techniques. This is for instance the case with the EM algorithm (Dempster et al., 1977), which was purposely designed for missing data problems although it has since then been applied in a much wider setting.
    [Show full text]
  • University of Roci Iesi'er
    UNIVERSITY OF ROCI IESI'ER ONE HUNDR E D FORTY- FOURTH COMMENCEMENT SUNDAY, MAY TWENTY-SECOND NINETEEN HUNDRED NINETY-FOUR A RICH TRADITION AT ROCHESTER 2 Table of COMMENCEMENT CEREMONIES 4 CANDIDATES' SEATING 6 Contents DIPLOMA CEREMONIES 7 HONOR SOCIETIES AND AWARDS 8 DEGREE CANDIDATES 10 College of Arts and Science 10 Bachelor of Arts 10 Bachelor of Science 18 Master of Arts 20 Master of Science 21 William E. Simon Graduate School of Business Administration 22 Margaret Warner Graduate School of Education and Human Development 22 Master of Science 22 Master of Arts in Teaching 23 Doctor of Education 23 College of Engineering and Applied Science 23 Bachelor of Arts 23 Bachelor of Science 23 Master of Science 25 University College of Liberal and Applied Studies 27 Bachelor of Science 27 Eastman School of Music 27 Bachelor of Music 27 Master of Arts 28 Master of Music 29 Doctor of Musical Arts 30 School of Medicine and Dentistry 30 Master of Science 30 Master of Public Health 31 Doctor of Medicine 31 School of Nursing 32 Bachelor of Science 32 Master of Science 33 University Council on Graduate Studies 33 Doctor of Philosophy 33 HONORARY DEGREE AND AWARD RECIPIENTS 41 EASTMAN WIND ENSEMBLE 45 CARILLO N AND CARILLONNEUR 45 SENIOR C LASS COUNCILS 46 MARSHALS 46 COMMENCEMENT COMMITTEE 46 2 Commencement season has always stood out as the "supreme festival" A rich on Rochester's academic calendar, Arthur May notes in his history of the University: From earliest years, "Oratory flowed in full spate, the tradition at literary societies put on their finest performances, trustees convened for annual decision-making, and prizes and diplomas were handed out Rochester amidst a panoply of pomp and circumstance." Though the size of the graduating class h as grown from 10 men in 1851 to mo re than 2,000 men and women today, and though many other developments have reshaped the ceremonies, today's program, like 1851's, marks t he happy celebration of each graduate's academic preparation, and the hopeful prospect of new ventures.
    [Show full text]
  • HA-LU 2019 International Conference in Honor of Ernst Hairer and Christian Lubich
    HA-LU 2019 International conference in honor of Ernst Hairer and Christian Lubich Gran Sasso Science Institute, L'Aquila 17{21 June 2019 ii Program at a glance June 17 June 18 June 19 June 20 June 21 9.15 Opening Sanz-Serna Overton Hochbruck Zennaro 10.00 Wanner Gander Yserentant Chartier Vilmart 10.45 Coffee break Coffee break Coffee break Coffee break Coffee break 11.15 Ascher Quarteroni Vandereycken Jahnke Cohen 12.00 Deuflhard Banjai Palencia Li Lasser 12.45 Lunch Lunch Lunch Lunch Lunch 14.30 Ostermann Akrivis Group photo Hairer 15.15 Gonzalez-Pinto Calvo 16.00 Coffee break Coffee break 16.30 Photo exhibition iii iv List of abstracts Monday, 17 June 2019 1 Zigzags with B¨urgi,Bernoulli, Euler and the Seidel-Entringer-Arnol'd tri- angle (Gerhard Wanner)......................... 1 Different faces of stiffness (Uri Ascher).................... 1 Convergence results for collocation methods different from the Bible (Peter Deuflhard)................................. 2 Low-rank splitting integrators for stiff differential equations (Alexander Ostermann)................................ 2 On the convergence in `p norms of a MoL approach based on AMF-W- methods for m-dimensional linear parabolic problems of diffusion- reaction type (Severiano Gonzalez-Pinto)................ 3 Tuesday, 18 June 2019 5 Numerical integrators for the Hamiltonian Monte Carlo method (Jesus Maria Sanz Serna)............................ 5 The Method of Reflections (Martin Gander)................. 5 Modeling the heart function (Alfio Quarteroni) ............... 6 Fast and oblivious quadrature for the Schr¨odingerequation (Lehel Banjai) 6 Energy-decaying Runge-Kutta methods for phase field equations (Georgios Akrivis) .................................. 6 High-order stroboscopic averaging methods for highly oscillatory delay problems (Mari Paz Calvo) ......................
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Fifth International Congress of Chinese Mathematicians Part 1
    AMS/IP Studies in Advanced Mathematics S.-T. Yau, Series Editor Fifth International Congress of Chinese Mathematicians Part 1 Lizhen Ji Yat Sun Poon Lo Yang Shing-Tung Yau Editors American Mathematical Society • International Press Fifth International Congress of Chinese Mathematicians https://doi.org/10.1090/amsip/051.1 AMS/IP Studies in Advanced Mathematics Volume 51, Part 1 Fifth International Congress of Chinese Mathematicians Lizhen Ji Yat Sun Poon Lo Yang Shing-Tung Yau Editors American Mathematical Society • International Press Shing-Tung Yau, General Editor 2000 Mathematics Subject Classification. Primary 05–XX, 08–XX, 11–XX, 14–XX, 22–XX, 35–XX, 37–XX, 53–XX, 58–XX, 62–XX, 65–XX, 20–XX, 30–XX, 80–XX, 83–XX, 90–XX. All photographs courtesy of International Press. Library of Congress Cataloging-in-Publication Data International Congress of Chinese Mathematicians (5th : 2010 : Beijing, China) p. cm. (AMS/IP studies in advanced mathematics ; v. 51) Includes bibliographical references. ISBN 978-0-8218-7555-1 (set : alk. paper)—ISBN 978-0-8218-7586-5 (pt. 1 : alk. paper)— ISBN 978-0-8218-7587-2 (pt. 2 : alk. paper) 1. Mathematics—Congresses. I. Ji, Lizhen, 1964– II. Title. III. Title: 5th International Congress of Chinese Mathematicians. QA1.I746 2010 510—dc23 2011048032 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale.
    [Show full text]
  • Sir JJ Thomson
    Cambridge University Press 978-1-107-67095-2 - James Clerk Maxwell: A Commemoration Volume 1831-1931 Sir J. J. Thomson, Max Planck, Albert Einstein, Sir Joseph Larmor, Sir James Jeans, William Garnett, Sir Ambrose Fleming, Sir Oliver Lodge, Sir R. T. Glazebrook and Sir Horace Lamb Excerpt More information JAMES CLERK MAXWELL BY Sir J. J. Thomson WEare met to celebrate ihe centenary of one whose work has had a profound influence on the progress and conceptions of Physical Science; it has moreover been instrumental in harnessing the ether for the service of man and has thereby ad­ vanced civilization and increased the safety and happiness of mankind. Maxwell came of a race, the Clerks of Penycuik in Midlothian, who for two centuries had been promi­ nent in the social life of Scotland; each generation had been remarkable for the talents and accom­ plishments of some of its members; one of these, Will Clerk, was the intimate friend of Sir Walter Scott and the original of the Darsie Lattimer of Redgauntlet. As a race they were remarkable, like Maxwell himself, for strong individuality. John Clerk Maxwell, Maxwell's father, had added the name of Maxwell to that of Clerk on inheriting the small estate of Middlebie in Dumfriesshire. His main characteristic according to Lewis Campbell eM © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-67095-2 - James Clerk Maxwell: A Commemoration Volume 1831-1931 Sir J. J. Thomson, Max Planck, Albert Einstein, Sir Joseph Larmor, Sir James Jeans, William Garnett, Sir Ambrose Fleming, Sir Oliver Lodge, Sir R.
    [Show full text]
  • December 4, 1954 NATURE 1037
    No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow­ 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G.
    [Show full text]
  • Testing Adverse Selection and Moral Hazard on French Car Insurance Data
    TESTING ADVERSE SELECTION AND MORAL HAZARD ON FRENCH CAR INSURANCE DATA Guillaume CARLIER1 Université Paris Dauphine Michel GRUN-REHOMME2 Université Paris Panthéon Olga VASYECHKO3 Université Nationale d'Economie de Kyiv This paper is a modest contribution to the stream of research devoted to find empirical evidence of asymmetric information. Building upon Chiappori and Salanié's (2000) work, we propose two specific tests, one for adverse selection and one for moral hazard. We implement these tests on French car insurance data, circumventing the lack of dynamic data in our data base by a proxy of claim history. The first test suggests presence of adverse selection whereas the second one seems to contradict presence of pure moral hazard. Keywords: empirical evidence of moral hazard, adverse selection, car insurance. JEL Classification: C35, D82. 1 Université Paris Dauphine, CEREMADE, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE, [email protected] 2 Université Paris Panthéon, ERMES, 12 Pl. du Panthéon, 75005 Paris, FRANCE, [email protected] 3 Université Nationale d'Economie de Kyiv, UKRAINE, [email protected] BULLETIN FRANÇAIS D’ACTUARIAT, Vol. 13, n° 25, janvier – juin 2013, pp. 117- 130 118 G. CARLIER – M. GRUN-REHOMME – O. VASYECHKO 1. INTRODUCTION There has been an intensive line of research in the last decades devoted to find empirical evidence of asymmetric information on insurance data. Under adverse selection, the insured has some private information about his type of risk, which the insurer cannot observe before the subscription of an insurance contract. The adverse selection assumption stipulates that the high-risks tend to choose more coverage than the low-risks (Rothschild and Stiglitz (1976), Wilson (1977), Spence (1978)).
    [Show full text]
  • Who Was Who in Transport Phenomena
    l!j9$i---1111-1111-.- __microbiographies.....::..._____:__ __ _ ) WHO WAS WHO IN TRANSPORT PHENOMENA R. B YRON BIRD University of Wisconsin-Madison• Madison, WI 53706-1691 hen lecturing on the subject of transport phenom­ provide the "glue" that binds the various topics together into ena, I have often enlivened the presentation by a coherent subject. It is also the subject to which we ulti­ W giving some biographical information about the mately have to tum when controversies arise that cannot be people after whom the famous equations, dimensionless settled by continuum arguments alone. groups, and theories were named. When I started doing this, It would be very easy to enlarge the list by including the I found that it was relatively easy to get information about authors of exceptional treatises (such as H. Lamb, H.S. the well-known physicists who established the fundamentals Carslaw, M. Jakob, H. Schlichting, and W. Jost). Attention of the subject, but that it was relatively difficult to find could also be paid to those many people who have, through accurate biographical data about the engineers and applied painstaking experiments, provided the basic data on trans­ scientists who have developed much of the subject. The port properties and transfer coefficients. documentation on fluid dynamicists seems to be rather plen­ tiful, that on workers in the field of heat transfer somewhat Doing accurate and responsible investigations into the history of science is demanding and time-consuming work, less so, and that on persons involved in diffusion quite and it requires individuals with excellent knowledge of his­ sparse.
    [Show full text]
  • Dirk Hundertmark Department of Mathematics, MC-382 University of Illinois at Urbana-Champaign Altgeld Hall 1409 W
    Dirk Hundertmark Department of Mathematics, MC-382 University of Illinois at Urbana-Champaign Altgeld Hall 1409 W. Green Street Urbana, IL 61801 +1 (217) 333-3350 (217) 333-9516 (fax) [email protected] 1401 W. Charles, Champaign, IL 61821 +1 (217) 419-1088 (home) http://www.math.uiuc.edu/∼dirk Personal Data German and American citizen, married, one daughter. Research interests Partial differential equations, analysis, variational methods, functional analysis, spectral theory, motivated by problems from Physics, especially quantum mechanics, and Engineering. Spectral theory of random operators and and its connection to statistical mechanics and some probabilistic problems from solid state physics. More recently, mathematical problems in non-linear fiber-optics, especially properties of dispersion managed solitons. Education 5/2003 Habilitation in Mathematics, Ludwig{Maximilians-Universit¨atM¨unchen. 7/1992 { 11/1996 Ph.D. (Dr. rer. nat., summa cum laude) in Mathematics, Ruhr- Universit¨atBochum, Germany. Thesis: \ On the theory of the magnetic Schr¨odingersemigroup." Advisor: Werner Kirsch 11/1985 { 2/1992 Study of Physics, Friedrich-Alexander-Universit¨atErlangen, Germany. Graduated with Diplom. Advisor: Hajo Leschke. Employment Since 9/2007 Member of the Institute of Condensed Matter Theory at UIUC. Since 8/2006 Associate Professor (tenured), Department of Mathematics, University of Illinois at Urbana-Champaign (on leave 8/2006 { 8/2007). 8/2006 {8/2007 Senior Lecturer, School of Mathematics, University of Birmingham, England. 1/2003 { 7/2006 Assistant Professor, Department of Mathematics, University of Illinois at Urbana-Champaign. 9 { 12/2002 Research fellow at the Institut Mittag-Leffler during the special program \Partial Differential Equations and Spectral Theory." 9/1999{8/2002 Olga Taussky-John Todd Instructor of Mathematics, Caltech.
    [Show full text]