Lightweight Aggregate Concrete Using Expanded Polystyrene Beads-A Review

Total Page:16

File Type:pdf, Size:1020Kb

Lightweight Aggregate Concrete Using Expanded Polystyrene Beads-A Review International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072 LIGHTWEIGHT AGGREGATE CONCRETE USING EXPANDED POLYSTYRENE BEADS-A REVIEW Vishakh T M1, Dr Vasudev R2 1M.Tech student, Dept. of Civil Engineering, Toc H Institute of Science & Technology, Arakkunnam, Kerala, India 2 Asso. Professor, Dept. of Civil Engineering, Toc H Institute of Science & Technology, Arakkunnam, Kerala, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - With the increase in demand for construction was not exceeded for almost two millenniums. The structure materials, there is a strong need to utilize alternative is in excellent condition and is still being used to this day for materials for sustainable development. Several studies are spiritual purposes. The excellent cast surfaces that are done for replacing coarse aggregates in concrete. Expanded visible to the observer slow clearly that these early builders Polystyrene (EPS) beads are used as partial replacement to had successfully mastered the art of casting concrete made coarse aggregates. There are many advantages to be gained with light weight aggregates. from the use of EPS in lightweight concrete. These include lighter loads during construction, reduced self-weight in Since World War I, the application of light weight concrete structures, and increased thermal resistance. Lightweight for structural applications in rapidly spread. Besides the concrete is generally accepted as concrete having a density of weight savings, LWC has substantially better fire resistance about 1800 kg/m3 or less. This review paper is concentrated qualities than normal weight concrete, and significantly on studies done in the field of lightweight concrete containing lower heat transmission. It has become a greater Expanded Polystyrene (EPS) beads. requirement and need to reduce the weight of structural element than increasing the strength of LWC, particularly in Key Words: Lightweight aggregate, Expanded Polystyrene cases of heavy structures such as tall buildings and bridges (EPS) beads, Thermal resistance, Compressive strength, where the own weight of the structure is one of the main Density problems that faces the designers.. Monolithic concrete structures are also particularly durable and the fact that no 1. INTRODUCTION plastering or cladding is required leads to cost saving and makes the structures more sustainable. Today LWC are Increase in the developmental activities world over, the available in wide range of densities and strength LWC demand for construction materials is increasing provides many advantages for design, construction and for exponentially. This trend will have certainly greater impact comfort for living in addition to cost economy, easy to on the economic system of any country. India also is aiming transport and construct. However, inspite of increasing use at a high developmental rate compared to other nations in and demand for LWC, there is still a lack of inadequate Asia. There is heavy demand for the building materials in the explanations to identify durability related parameters. domestic market, which is becoming scarce day by day. At this point researchers and engineers who have the foresight 1.1 LIGHTWEIGHT CONCRETE to keep the developmental activities abreast and curtail the cost factor should look out for other alternative building Concretes having low density about 1800 to 2000 kg/m3 are materials. In this work, an attempt is made to address the termed as lightweight concrete which can be apparently possibility of utilizing Expanded Polystyrene (EPS), a achieved either by using low density aggregates or with the packing material in the form of beads in concrete, which complete elimination of coarser aggregates. Concrete is the otherwise is posing a threat to waste disposal as well as for most widely used construction material in the world. Normal waste management. This material is a cause of concern to weight concrete (NWC) is generally used for building environmentalists. In this study, it is attempted to partially construction despite its relatively high unit weight and replace coarse aggregates by means of EPS beads. A general limited thermal performance with a thermal conductivity discussion on EPS, its production and its application along ranging between1.4 and 3.6 W/m. K. A reduction in the unit with environmental concerns are being discussed. weight of concrete and yet providing adequate strength will create a significant economic positive impact to the The first light weight concrete (LWC) has been used for construction industry. In this regard, lightweight concrete construction of the Port of Cosa built around 273 BC and (LWC) offers considerable advantage in terms of its unit natural volcanic materials were used to produce light weight weight over NWC.LWC is a conglomerate of cement and concrete. There are several LEC structures in the lightweight aggregates. It has a bulk density ranging Mediterranean region, but most notable structures were between 300 and 2000 kg/m3comparedto 2200–2600 built during the early Roman Empire and include Pantheon kg/m3 of NWC. LWC is broadly divided into the following Dome and the Coliseum. The Pantheon, finished in 27 BC, categories based on its bulk density and compressive incorporated concrete varying in densities from the bottom strength. to the top of the dome. Roman engineers had sufficient confidence in LWC to build a dome whose span of 43.3 m © 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 924 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072 a. Thermo insulating lightweight concrete: This type of LWC Arpit Sharma, et al. (2017), says The conventional aggregates is used as filling material or as an insulating coating. Its bulk are replaced by light weight aggregates which makes the density is in the range of 300–800 kg/m3 while the concrete lighter than the conventional concrete. Comparison compressive strength is in the range of 0.5–7 MPa. has been made between plain cement concrete and lightweight concrete having different proportions of b. Low strength lightweight concrete: This type of LWC is aggregates, pumice stone and aluminium content by the used in structures where the strength of concrete is not weight of cement. Using different proportions of pumice important; at the same time, it guarantees an acceptable stone and light weight aggregates three different light weight mixtures were produced with a satisfied strength. Aggregates level of thermal comfort. The bulk density is in the range of size and proportion affects the unit weight and compressive 800–1400 kg/m3 while the compressive strength is in the strength of concrete. The results showed that it is possible to range of 7–18 MPa. produce a floating and a satisfied strength concrete by using pumice stone as aggregate. It was also seen that light weight c. Structural lightweight concrete: This type of concrete is aggregates in concrete mixture can reduce the dead load but normally prepared with synthetic aggregates. The reduced decreases the concrete strength. These light weight concrete bulk density of this type of LWC is due to the addition of a does not satisfies the strength requirements for load bearing void structural elements so can be used as separation walls. 1.2 EXPANDED POLYSTYRENE Bagon.C, et al.(2016), The performance of concrete containing expanded polystyrene beads was studied in the context of marine floating structures. It was found that, for an equal Polystyrene (PS) is a synthetic aromatic hydrocarbon density of about 80 % that of sea water, polystyrene concrete polymer made from the monomer styrene .Polystyrene can has a compressive strength that is 50 % higher, a modulus of be solid or foamed. General-purpose polystyrene is clear, elasticity 100 % higher, and a modulus of rupture 25 % hard, and rather brittle. It is an inexpensive resin per unit higher than those of perlite concrete. Furthermore, weight. It is a rather poor barrier to oxygen and water polystyrene concrete is much more resistant to sulphate vapour and has a relatively low melting point. Polystyrene is solutions than perlite concrete even though it is less resistant one of the most widely used plastics, the scale of its than normal-weight concrete. production being several million tonnes per year. Pascal Collet, et al. (2014),describes the way a large pre- Polystyrene can be naturally transparent, but can be stressed concrete Floating Production Unit (FPU) located coloured with colourants. As a thermoplastic polymer, offshore Congo on N’KOSSA field has been inspected and polystyrene is in a solid (glassy) state at room temperature assessed in order to meet both Bureau Veritas Class and but flows if heated above about 100 °C, its glass transition Floating Units Integrity Management System (FUIMS) temperature. It becomes rigid again when cooled. This requirements. This FPU is the largest existing pre-stressed temperature behaviour is exploited for extrusion (as in concrete barge.. A significant part of the methodology is Styrofoam) and also for molding and vacuum forming, since based on close inspection for the concrete structure, a it can be cast into molds with fine detail. graphic assessment of the defects and an implementation of monitoring. This
Recommended publications
  • Guide to Concrete Floor
    GUIDE TO CONCRETE FLOOR Our know-how for your applications Guide to Concrete Floor Applications 2 Guide to Concrete Floor Applications Contents Concrete ........................................................ 4 Concrete Vibration ....................................... 6 Floors of Concrete ........................................ 9 Preliminary Planning ................................. 11 Laying Floors ............................................... 12 Sideforms and Screed Guides ............................................ 13 Track Rail System ....................................... 23 Fixed Rail Supports .................................... 24 Floors on Floors Structures Cast in Situ .................................................. 25 Cleaning, pre-moistening, etc. ................. 27 Conversion Tables ...................................... 41 Glossary ....................................................... 42 3 Guide to Concrete Floor Applications Concrete Concrete is a mixture of water, cement, sand and stone. The cement content affects concrete properties. A high Water content divided with cement gives w/c-ratio. The cement content gives a high strength whereas shrinkage water/cement-ratio is a theoretical average value and it unfortunately also will increase. may change during transport or vibration. What does concrete consist of? Cement W/C ratio Concrete is a mixture of water, cement, Cement and water are two important com- Water/cement-ratio means the ratio relation sand and stone. These four components ponents. water (kg) per cubic meter of concrete can be varied to a great extent and the Cement content means the amount of divided by cement content. It can be any- characteristics of the mix and the hard, cement by weight per cubic meter concrete thing from 0.80 to 0.30 at the mixing plant hydrated product itself can thereby be and can vary from 500 down to 250 kg per or in truck mixer. changed to a great extent. cubic meter. Many architects and engineers think that it is the only factor you have to worry about when you want quality concrete.
    [Show full text]
  • Slab on Grade Reinforcing Design
    PDHonline Course S132 (1 PDH) Slab on Grade Reinforcing Design Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com www.PDHonline.org Materials: The most common reinforcement associated with slabs-on-grade is welded wire fabric. However, this is not the only means of reinforcing slabs. In some cases deformed bars are used in order to assure that the reinforcement is placed at the correct depth within the slab and not damaged during placement. In either case when using deformed bars or welded wire fabric, it is essential that adequate support of the steel is provided. Source: eHow.com Welded Wire Fabric: When using welded wire fabric, prefabricated sheets should be used in lieu of rolled fabric in order to help assure proper location of the steel within the concrete. In either case a minimum of one chair per 25 square feet of mesh should be used to adequately support the reinforcement above the sub-grade. The table provided in this slide lists common styles of welded wire fabric, including the “old” and "new" designations. Although the "new" designations are more than 20 years old, many engineers find this cross-reference helpful. Common Styles of Welded Wire Fabric Steel Area Style Designation Sq. in. per ft. Weight Lbs. per New Designation Old Designation Longitudinal Transverse 100 SF (by W-number) (by steel wire gauge) ROLLS 6x6-W1.4xW1.4 6x6-10x10 .028 .028 21 6x6-W2.0xW2.0 6x6-8x8* .040 .040 29 6x6-W2.9xW2.9 6x6-6x6 .058 .058 42 6x6-W4.0xW4.0 6x6-4x4 .080 .080 58 4x4-W1.4xW1.4 4x4-10x10 .042 .042 31 4x4-W2.0xW2.0 4x4-8x8* .060 .060 43 4x4-W2.9xW2.9 4x4-6x6 .087 .087 62 4x4-W4.0xW4.0 4x4-4x4 .120 .120 85 SHEETS 6x6-W2.9xW2.9 6x6-6x6 .058 .058 42 6x6-W4.0xW4.0 6x6-4x4 .080 .080 58 6x6-W5.5xW5.5 6x6-2x2** .110 .110 80 4x4-W4.0xW4.0 4x4-4x4 .120 .120 85 * Exact W-Number size for 8 gauge is W2.1.
    [Show full text]
  • SLAB FORMWORK DESIGN USING GENETIC ALGORITHM Formwork Design Using GA
    SLAB FORMWORK DESIGN USING GENETIC ALGORITHM Formwork design using GA H AL-TABTABAI, A.P. ALEX and R JAMES Department of Civil Engineering, College of Engineering and Petroleum, University of Kuwait, Safat, Kuwait Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6, Canada, pp. 2407-2418. Ó National Research Council Canada 1999 Abstract A method to design cost-optimum slab formwork components is proposed in this paper. Genetic Algorithms (GAs), a technique based on the principles of natural selection and evolution, is applied to solve the optimisation problem. GAs search from a population of possible solutions limited by a set of constraints. The cost of form components and labor involved, were considered for the formulation of the objective function of the optimisation problem. The bending moment, shear, maximum deflection, imposed ACI code provisions, etc., were used as constraints for the optimisation problem. Application of GA to the formwork design problem provides optimum design parameters such as the optimum cross section for form members, optimum spacing of form members, etc., while minimising the total cost. Formwork made either from wood, wood-metal composite or metal alone can be designed using the proposed technique. The paper presents the case of general formwork design, however, the method as a whole readily applies to the design of formwok for elevated slabs and high rise concrete elements. Keywords: Formwork design, genetic algorithm, optimisation, construction cost 1 Introduction Slab formwork holds and provides support for freshly placed concrete through a framework of sheathing, joists, stringers and shores (Fig.
    [Show full text]
  • CEMENT for BUILDING with AMBITION Aalborg Portland A/S Portland Aalborg Cover Photo: the Great Belt Bridge, Denmark
    CEMENT FOR BUILDING WITH AMBITION Aalborg Portland A/S Cover photo: The Great Belt Bridge, Denmark. AALBORG Aalborg Portland Holding is owned by the Cementir Group, an inter- national supplier of cement and concrete. The Cementir Group’s PORTLAND head office is placed in Rome and the Group is listed on the Italian ONE OF THE LARGEST Stock Exchange in Milan. CEMENT PRODUCERS IN Cementir's global organization is THE NORDIC REGION divided into geographical regions, and Aalborg Portland A/S is included in the Nordic & Baltic region covering Aalborg Portland A/S has been a central pillar of the Northern Europe. business community in Denmark – and particularly North Jutland – for more than 125 years, with www.cementirholding.it major importance for employment, exports and development of industrial knowhow. Aalborg Portland is one of the largest producers of grey cement in the Nordic region and the world’s leading manufacturer of white cement. The company is at the forefront of energy-efficient production of high-quality cement at the plant in Aalborg. In addition to the factory in Aalborg, Aalborg Portland includes five sales subsidiaries in Iceland, Poland, France, Belgium and Russia. Aalborg Portland is part of Aalborg Portland Holding, which is the parent company of a number of cement and concrete companies in i.a. the Nordic countries, Belgium, USA, Turkey, Egypt, Malaysia and China. Additionally, the Group has acti vities within extraction and sales of aggregates (granite and gravel) and recycling of waste products. Read more on www.aalborgportlandholding.com, www.aalborgportland.dk and www.aalborgwhite.com. Data in this brochure is based on figures from 2017, unless otherwise stated.
    [Show full text]
  • The Mechanical Properties of Brick Containing Recycled Concrete Aggregate and Polyethylene Terephthalate Waste As Sand Replacement
    E3S Web of Conferences 34, 01001 (2018) https://doi.org/10.1051/e3sconf/20183401001 CENVIRON 2017 The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement Faisal Sheikh Khalid1*, Nurul Bazilah Azmi1, Puteri Natasya Mazenan1, Shahiron Shahidan1, and Noorwirdawati Ali1 1Jamilus Research Centre for Sustainable Construction (JRC), Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia Abstract. This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET. 1 Introduction Cement and sand bricks are a type of bricks that is commonly used in low and medium cost housing development and other commercial constructions in Malaysia since it is easy to produce and cheap [1]. However, there is an issue in producing these materials especially in developing areas where manufactures find it difficult to locate adequate sources of natural cement and aggregate supply [2-3].
    [Show full text]
  • Partial Replacement of Aggregate with Ceramic Tile in Concrete
    A PROJECT REPORT ON “PARTIAL REPLACEMENT OF AGGREGATE WITH CERAMIC TILE IN CONCRETE” SUBMITTED TO JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE MASTER OF TECHNOLOGY IN STRUCTURAL ENGINEERING BY G.SAI CHAND (15KQ1D8705) Under The Esteemed Guidance Of Mr. P.RAVI KUMAR, M.Tech ASST.PROFESSOR, DEPT OF CE. DEPARTMENT OF CIVIL ENGINEERING PACE INSTITUTE OF TECHNOLOGY AND SCIENCES (AFFLIATED TO JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA & ACCRIDATED BY NAAC ‘A’ GRADE & AN ISO 9001-2008 CERTIFIED INSTITUTION) VALLUR,PRAKASAM(Dt). 2015-2017 PACE INSTITUTE OF TECHNOLOGY AND SCIENCES, VALLUR DEPARTMENT OF CIVIL ENGINEERING CERTIFICATE This is to certify that the project work “PARTIAL REPLACEMENT OF AGGREGATE WITH CERAMIC TILE IN CONCRETE” Submitted by G.SAI CHAND , is examined and adjusted as sufficient as a partial requirement for the MASTER DEGREE IN STRUCTURAL ENGINEERING at Jawaharlal Nehru Technological university, Kakinada is a bonafide record of the work done by student under my guidance and supervision. Project Guide Head of the Department P.RAVI KUMAR , M.Tech, G.GANESH NAIDU,M.Tech,(P.hd) Asst. Professor Asst. Professor & HOD, DEPARTMENT OF CE DEPARTMENT OF CE Principal Dr. C.V.SUBBA RAO, M.Tech , Phd. PROJECT EXTERNAL EXAMINER ACKNOWLEDGEMENT I would like to take this opportunity to express my heartiest concern of words to all those people who have helped me in various ways to complete my project. I express my profound gratitude to my Project guide Mr.P.RAVI KUMAR, M.Tech, Asst.Professor, Department of CE for his valuable and inspiring guidance, comments, and encouragements throughout the course of this project.
    [Show full text]
  • Direct Design Method for Prestressed Concrete Slabs
    DIRECT DESIGN METHOD FOR PRESTRESSED CONCRETE SLABS Chen-Hwa Wang Associate Professor of Civil Engineering and Mechanics The Catholic University of America Washington, D.C. Although several methods such as with maximum bending moment moment-balancing( 1 , load-balanc- may be considered as the control ing( 2 ) and structural membrane section. However, a continuous slab theory (31 can be applied to design has several maximum moment peaks of slabs, none of these is a direct in the middle portion of spans and design method. At present, the load- over supports. Therefore, selection balancing method is widely applied of a control section which has the because it is simpler than the others. largest maximum moment may not It is a trial and analysis approach necessarily provide the optimum de- for obtaining the expected stresses sign. Conventional reinforcing steel and behavior in a slab by the proper or discontinuous tendons for resist- determination of slab thickness, bal- ing partial moment stress at several anced load, eccentricity, and applied sections with moments higher than prestressing. Since this approach is at the control section becomes more time consuming and difficult to a practical and economical. Hence, new design engineer in practice, the selection of the control section this paper presents a straightfor- really depends on the type of struc- ward method and procedures for de- ture and engineering judgment sign of slabs with consideration of whether or not to use mild steel re- the selection of control sections and inforcement or local prestressing in distribution of prestressing. Illustra- the design. In any case, the selection tive examples are also included for of a control section in each direction practical application.
    [Show full text]
  • Reuse of Ceramic Waste As Aggregate in Concrete
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072 Reuse of Ceramic Waste as Aggregate in Concrete Prof. Shruthi. H. G1, Prof. Gowtham Prasad. M. E2 Samreen Taj3, Syed Ruman Pasha4 Assistant professor, Department of Civil Engineering, ATME College of Engineering, Mysuru, INDIA Assistant professor & head, Department of Civil Engineering, Don Bosco Institute of Technology, Bengaluru, INDIA UG – Scholars, Department of Civil Engineering, ATME College of Engineering, Mysuru, Karnataka, INDIA Abstract - The reuse of ceramic waste as a substitute for Chemical and Physical degradation forces. Ceramic tile coarse aggregate in concrete has been investigated. The aggregate are hard having considered value of specific ceramic wastes are of three types, namely Tiles, Clay bricks gravity, rough surface on one side and smooth on other and flowerpot were used. This study intends to use of ceramic side, are lighter in weight than normal stone tile aggregate in concrete production. Ceramic tiles were aggregates. Using ceramic tiles as aggregate in concrete obtained from manufacturing industries, from construction not only will be cost effective but also will be good from and demolition sites, this cause’s environmental pollution. The environmental point of view. utilization of crushed tile as a coarse aggregate in concrete would also have a positive effect on the economy. Therefore, The following section gives a brief background reuse of these ceramic wastes in concrete production could be and some of the important pertinent studies that were an effective measure in maintaining the environment and improving the properties of concrete.
    [Show full text]
  • Two-Way Joist (Waffle Slab) Concrete Floor System Analysis and Design
    Two-Way Joist Concrete Slab Floor (Waffle Slab) System Analysis and Design Version: May-18-2017 Two-Way Joist Concrete Slab Floor (Waffle Slab) System Analysis and Design Design the concrete floor slab system shown below for an intermediate floor with partition weight of 50 psf, and unfactored live load of 100 psf. The lateral loads are independently resisted by shear walls. A flat plate system will be considered first to illustrate the impact longer spans and heavier applied loads. A waffle slab system will be investigated since it is economical for longer spans with heavy loads. The dome voids reduce the dead load and electrical fixtures can be fixed in the voids. Waffle system provides an attractive ceiling that can be left exposed when possible producing savings in architectural finishes. The Equivalent Frame Method (EFM) shown in ACI 318 is used in this example. The hand solution from EFM is also used for a detailed comparison with the model results of spSlab engineering software program from StructurePoint. Figure 1 - Two-Way Flat Concrete Floor System Version: May-18-2017 Contents 1. Preliminary Member Sizing ..................................................................................................................................... 1 2. Flexural Analysis and Design................................................................................................................................. 13 2.1. Equivalent Frame Method (EFM) ..................................................................................................................
    [Show full text]
  • Chapter 1 Overview and History of the Expanded Shale, Clay and Slate
    Chapter 1 Overview and History of the Expanded Shale, Clay and Slate Industry April 2007 Expanded Shale, Clay & Slate Institute (ESCSI) 2225 E. Murray Holladay Rd, Suite 102 Salt Lake City, Utah 84117 (801) 272-7070 Fax: (801) 272-3377 [email protected] www.escsi.org CHAPTER 1 1.1 Introduction 1.2 How it started 1.3 Beginnings of the Expanded Shale, Clay and Slate (ESCS) Industry 1.4 What is Rotary Kiln Produced ESCS Lightweight Aggregate? 1.5 What is Lightweight Concrete? 1.6 Marine Structures The Story of the Selma Powell River Concrete Ships Concrete Ships of World War II (1940-1947) Braddock Gated Dam Off Shore Platforms 1.7 First Building Using Structural Lightweight Concrete 1.8 Growth of the ESCS Industry 1.9 Lightweight Concrete Masonry Units Advantages of Lightweight Concrete Masonry Units 1.10 High Rise Building Parking Structures 1.11 Precast-Prestressed Lightweight Concrete 1.12 Thin Shell Construction 1.13 Resistance to Nuclear Blast 1.14 Design Flexibility 1.15 Floor and Roof Fill 1.16 Bridges 1.17 Horticulture Applications 1.18 Asphalt Surface Treatment and Hotmix Applications 1.19 A World of Uses – Detailed List of Applications SmartWall® High Performance Concrete Masonry Asphalt Pavement (Rural, City and Freeway) Structural Concrete (Including high performance) Geotechnical Horticulture Applications Specialty Concrete Miscellaneous Appendix 1A ESCSI Information Sheet #7600 “Expanded Shale, Clay and Slate- A World of Applications…Worldwide 1-1 1.1 Introduction The purpose of this reference manual (RM) is to provide information on the practical application of expanded shale, clay and slate (ESCS) lightweight aggregates.
    [Show full text]
  • Recovery of Waste Expanded Polystyrene in Lightweight Concrete Production
    73 The Mining-Geology-Petroleum Engineering Bulletin Recovery of waste expanded polystyrene UDC: 624.01 in lightweight concrete production DOI: 10.17794/rgn.2019.3.8 Original scientifi c paper Gordan Bedeković1; Ivana Grčić2; Aleksandra Anić Vučinić2; Vitomir Premur2 1University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia 2University of Zagreb, Faculty of Geotechnical Engineering, Hallerova 7, 42000 Varaždin, Croatia Abstract Polystyrene concrete, as a type of lightweight aggregate concrete, has been used in civil construction for years. The use of waste expanded polystyrene (EPS) as a fi ll material in lightweight concrete production is highly recommended from the point of view of the circular economy. Published data shows that an increase in the proportion of lightweight aggre- gates, i.e. EPS, results in a decrease in strength, bulk density and thermal conductivity of the concrete. Utilizing large quantities of waste EPS in non-structural polystyrene concrete production is particularly important. Unlike structural polystyrene concrete, according to the published papers, non-structural polystyrene concrete has not been investigated suffi ciently. The purpose of this paper is to determine the infl uence of the ratios of the basic components in a concrete mixture on the bulk density and compressive strength of non-structural polystyrene concrete produced by utilizing waste EPS as a fi ll material. The test specimens, i.e. cubes with an edge length of 100 mm each, were prepared in labora- tory conditions by varying the proportions of EPS, sand up to 600 g and cement ranging from 300 g to 450 g per speci- men.
    [Show full text]
  • Armorhab: Design Reference Architecture (DRA) for Human
    Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission ArmorHab: Design Reference Architecture (DRA) for human habitation in deep space Peter Vorobieff Professor and Assistant Chair, Assistant Chair of Facilities, Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: (505) 277-8347 email: [email protected] Affiliation: University of New Mexico Craig Davidson Administrator 4808 Downey NE Albuquerque, NM 87109 Phone: 505-720-2321 email: [email protected] Affiliation: Dark Sea Industries LLC Dr. Mahmoud Reda Taha, Peng Professor and Chair, Department of Civil Engineering University of New Mexico, Albuquerque, NM 87131-0001 Office: (505) 277-1258, Cell: (505) 385-8930, Fax (505) 277-1988 http://civil.unm.edu/faculty-staff/faculty-profiles/mahmoud-taha.html www.unm.edu/~mrtaha/index.htm Affiliation: University of New Mexico Christos Christodoulou Associate Dean for Research Distinguished Professor, Electrical & Computer Engineering University of New Mexico Albuquerque, NM 87131 Tel: (505) 277-6580 www.ece.unm.edu/faculty/cgc www.cosmiac.org Affiliation: University of New Mexico Anil K. Prinja Professor and Chair Department of Nuclear Engineering University of New Mexico Albuquerque, NM 87131-1070 -1- Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission Phone: (505)-277-4600, Fax: (505)-277-5433 [email protected] Affiliation: University of New Mexico Svetlana V. Poroseva Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: poroseva at unm.edu Affiliation: University of New Mexico Mehran Tehrani Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: [email protected] Affiliation: University of New Mexico David T.
    [Show full text]