Life on Earth

Total Page:16

File Type:pdf, Size:1020Kb

Life on Earth books & arts Life on Earth A History of Life in with inorganic minerals. The study of early A History of Life in 100 Fossils is 100 Fossils life is not easy. historical in placing interesting fossils An indisputable signature of early where they belong in time, but it also By Paul D. Taylor and life occurs in the form of fossilized describes the interactions between these Aaron O’Dea stromatolites. Still found today, animals and their place in the environment: stromatolites are formed by microbial introducing arms-race escalation, NATURAL HISTORY communities that now include continental drift, dwarfing, extinction, MUSEUM, LONDON: microbes capable of oxygen-producing flight, geographic refuges, life habits, 2014. 224 PP. £20.00 photosynthesis. Similar communities are living fossils, mass mortality, parasitism, recognizable on an early Earth, possibly parental care, predation, preservation, as far back as 3.5 billion years. More punctuated equilibria, return to the sea, ife is a miracle relived when every child advanced organisms appeared much later, sexual selection, stratigraphic correlation, is born. We take life for granted. It is at 600 million years or so, in the Ediacaran survivorship, swimming, symbiosis, Leasy to imagine life now to be what biota. These soft-bodied impressions — symmetry, vision, and other intriguing it was in the beginning and what it ever found not only in Australia, but also in a subjects along the way. Small mistakes are shall be, world without end. But our Earth few select locations including England, inevitable when authors cover so much tells a different story, a story of unceasing Namibia and Canada — are generally material, and I saw a few in the subjects I evolutionary change. Life appeared very regarded as multicellular animals but there know best. These are minor, and I found long ago, and was very simple — so simple are competing interpretations, too. myself wondering if they were cleverly that we have difficulty recognizing life in Moving into the Phanerozoic eon — deliberate to engage the attention of experts its earliest forms. How did we get from the the ‘time of abundant life’ — signs of life (for example, on page 116, is ‘survival of the beginning to where we are now? That is the become clearer, but the history reflected fittest’ really Darwin’s phrase?). story of this book. by these signs becomes more complicated. Each illustration of a fossil is A History of Life in 100 Fossils looks like The Phanerozoic started with the Cambrian accompanied by an engaging essay a coffee-table picture book — which it is, explosion, when animals with mineralized explaining what is interesting about the with wonderful illustrations — but the book skeletons appeared more or less everywhere. fossil or how the fossil sheds light on a is also much more: one hundred stepping This early burst of diversification resulted in bigger question. The book could easily stones from the Earth’s deep-time past to its the emergence of representatives of most of serve as a self-guided overview of the fossil shallow present, each artfully illustrated by the animal phyla living today. record, or as a valuable source of visual an iconic fossil. There were in fact billions Eighteenth- and nineteenth-century material and text for a formal course in of steps in an uncountable number of study of the fossil record led to recognition palaeontology. The fossil record is more evolutionary lines, many still unknown. But of successive Palaeozoic, Mesozoic, and complicated and even more interesting than one hundred steps in a few of these lines are Cenozoic eras within the Phanerozoic, can be represented by 100 fossils, but this is enough to engage us as readers and give us filled with ancient, middle, and recent a great place to start. a sense of how life has changed through the animals, respectively. And thus the Human lives are short. The scale course of time. geological timescale was born. Radiometric of geological time and the ubiquity of The book starts in Australia with calibration in the twentieth century told us evolutionary change are thus sometimes fossilized filaments described from the the Palaeozoic ‘era of trilobites’ began about hard for people to grasp, but the evidence 3.5-billion-year old Apex Chert. These 540 million years ago, the Mesozoic ‘era of is preserved in the rock and fossil record filaments are so small they cannot be dinosaurs’ started about 250 million years on every continent. The history of life is seen with the naked eye. They were ago, and the Cenozoic ‘era of mammals’ one of unceasing change, slow or fast, and first interpreted as photosynthetic blue about 65 million years ago. Further, we now the change will undoubtedly continue. bacteria — known as cyanophytes — but know these eras were discrete, separated Keep in mind as you read and enjoy the not surprisingly subsequent authors have by catastrophic extinction events that were photographs that it is a miracle we know argued that they are hairline fractures filled followed in turn by bursts of new diversity. anything at all about the history of life. It is a blessing that we have fossils like the ones illustrated here. These are the classics, but also remember that beautiful and informative fossils are being found all the time. ❐ REVIEWED BY PHILIP D. GINGERICH Philip D. Gingerich is in the Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109, USA. © TRUSTEES OF THE NATURAL HISTORY HISTORY OF THE NATURAL © TRUSTEES LONDON MUSEUM, e-mail: [email protected] 2 NATURE GEOSCIENCE | VOL 8 | JANUARY 2015 | www.nature.com/naturegeoscience © 2014 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Darwin's “Tree of Life”
    Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education DARWIN’S “TREE OF LIFE” mon descent. Finally, he demands that text- books treat universal common ancestry as PHYLOGENETIC TREES unproven and refrain from illustrating that n biology, a phylogenetic tree, or phyloge- “theory” with misleading phylogenies. ny, is used to show the genealogic relation- Therefore, according to Wells, textbooks Iships of living things. A phylogeny is not should state that there is no evidence for com- so much evidence for evolution as much as it mon descent and that the most recent research is a codification of data about evolutionary his- refutes the concept entirely. Wells is complete- tory. According to biological evolution, organ- ly wrong on all counts, and his argument is isms share common ancestors; a phylogeny entirely based on misdirection and confusion. shows how organisms are related. The tree of He mixes up these various topics in order to life shows the path evolution took to get to the confuse the reader into thinking that when current diversity of life. It also shows that we combined, they show an endemic failure of can ascertain the genealogy of disparate living evolutionary theory. In effect, Wells plays the organisms. This is evidence for evolution only equivalent of an intellectual shell game, put- in that we can construct such trees at all. If ting so many topics into play that the “ball” of evolution had not happened or common ances- evolution gets lost. try were false, we would not be able to discov- THE CAMBRIAN EXPLOSION er hierarchical branching genealogies for ells claims that the Cambrian organisms (although textbooks do not general- Explosion “presents a serious chal- ly explain this well).
    [Show full text]
  • Ediacaran Algal Cysts from the Doushantuo Formation, South China
    Geological Magazine Ediacaran algal cysts from the Doushantuo www.cambridge.org/geo Formation, South China Małgorzata Moczydłowska1 and Pengju Liu2 1 Original Article Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden and 2Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China Cite this article: Moczydłowska M and Liu P. Ediacaran algal cysts from the Doushantuo Abstract Formation, South China. Geological Magazine https://doi.org/10.1017/S0016756820001405 Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles Received: 24 February 2020 of very high diversity. These microfossils are diagenetically permineralized and observed in pet- Revised: 1 December 2020 rographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven Accepted: 2 December 2020 species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain Keywords: either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate organic-walled microfossils; zygotic cysts; reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late Chloroplastida; microalgae; animal embryos; ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the eukaryotic evolution studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holo- Author for correspondence: Małgorzata zoan. The first record of a late developmental stage of a completely preserved specimen of Moczydłowska, Email: [email protected] T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of iden- tical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts.
    [Show full text]
  • Species Change Over Time
    KEY CONCEPT Species change over time. BEFORE, you learned NOW, you will learn • Fossils are evidence of earlier • About early ideas and observa- life tions on evolution • More complex organisms have • How Darwin developed his developed over time theory of natural selection • Mass extinctions contributed to • How new species arise from the development of Earth’s older species history VOCABULARY THINK ABOUT evolution p. 797 How have telephones changed over time? natural selection p. 801 adaptation p. 802 Today people across the world can speciation p. 804 communicate in many different ways. One of the most common ways is over the telephone. Looking at the two pictures, can you describe how this form of communication has changed over time? Scientists explore the concept of evolution. MAIN IDEA AND DETAILS In a general sense, evolution involves a change over time. You could Make a chart for the main say that the way humans communicate has evolved. Certainly idea scientists explore the concept of evolution. telephones have changed over time. The first telephones were the size Include details about scien- of a shoebox. Today a telephone can fit in the palm of your hand and tists’ observations. can send images as well as sound. In biology,evolution refers to the process though which species change over time. The change results from a change in the genetic material of an organism and is passed from one generation to the next. Check Your Reading What is evolution? Chapter 23: History of Life 797 Early Ideas reading tip In the early 1800s, a French scientist named Jean Baptiste de Lamarck The word acquire comes was the first scientist to propose a model of how life evolves.
    [Show full text]
  • The Evolution of Life
    Study Guide # 2 - Spring, 2000 Geology 230 - Evolution of the Earth THE EVOLUTION OF LIFE Lynn S. Fichter James Madison University Topics to be covered and general objectives: During this period, we will cover the following topics in lecture: ( The record of life on earth. Are there recognizable patterns, or is it all just random and unpredictable? " An introduction to non-equilibrium thermodynamics (chaos/complexity theories). " Evolution of Moneran biochemical pathways. " Symbiosis and the origin of the Protist kingdom. " The Origin of multicellularity. " The Phanerozoic record of multicellular life. ( A sampling of the significant scientific problems in the history of life on earth. Just how much do we know and understand after more than a century of study? " The principles of non-equilibrium thermodynamics [Prigogine's Dissipative Structures and Bronowski's Stratified Stabilities]. How can life get more complex when the second law of thermodynamics says everything in the universe should be running down? " Evolutionary Theory. Many problems exist in science which are very difficult to solve, and which do not have simple solutions. Evolutionary theory is much more than Darwin's theory of natural selection. " The Gaia hypothesis for the coevolution of life and the earth. To what degree are the Earth and life related? PROCESS #1 "Any phenomenon which shows continuous change in time"; #2 "A series of actions or operations definitely conducing to an end." GEOLOGY 230 STUDY GUIDE: THE EVOLUTION OF LIFE SPRING SEMESTER, 2000 - 2 Theory-free science makes about as much sense as value-free politics. Both terms are oxymoronic. All thinking about the natural world must be informed by theory, whether or not we articulate our preferred structure of explanation to ourselves.
    [Show full text]
  • Natural Reward Drives the Advancement of Life
    Rethinking Ecology 5: 1–35 (2020) doi: 10.3897/rethinkingecology.5.58518 PERSPECTIVES http://rethinkingecology.pensoft.net Natural reward drives the advancement of life Owen M. Gilbert1 1 University of Texas at Austin, Austin, USA Corresponding author: Owen Gilbert ([email protected]) Academic editor: S. Boyer | Received 10 September 2020 | Accepted 10 November 2020 | Published 27 November 2020 Citation: Gilbert OM (2020) Natural reward drives the advancement of life. Rethinking Ecology 5: 1–35. https://doi. org/10.3897/rethinkingecology.5.58518 Abstract Throughout the history of life on earth, rare and complex innovations have periodically increased the efficiency with which abiotic free energy and biotic resources are converted to biomass and organismal diversity. Such macroevolutionary expansions have increased the total amount of abiotic free energy uti- lized by life and shaped the earth’s ecosystems. Meanwhile, Darwin’s theory of natural selection assumes a historical, worldwide state of effective resource limitation, which could not possibly be true if life evolved from one or a few original ancestors. In this paper, I analyze the self-contradiction in Darwin’s theory that comes from viewing the world and universe as effectively resource limited. I then extend evolutionary theory to include a second deterministic evolutionary force, natural reward. Natural reward operates on complex inventions produced by natural selection and is analogous to the reward for innovation in human economic systems. I hypothesize that natural reward, when combined with climate change and extinction, leads to the increased innovativeness, or what I call the advancement, of life with time. I then discuss ap- plications of the theory of natural reward to the evolution of evolvability, the apparent sudden appearance of new forms in the fossil record, and human economic evolution.
    [Show full text]
  • 9Th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 Minutes Per Day
    9th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 minutes per day Student Name: ________________________________ Period: ______ Teacher Name: Ms. Carstens 9th Biology – History of Life and the Theory of Evolution April 14 – April 17 Packet Overview Date Objective(s) Page # Monday, April 6 NO CLASS Tuesday, April 7 1. Describe Charles Darwin’s contributions to scientific thinking 2 about evolution. 2. Analyze the reasoning in Darwin’s theory of evolution by natural selection. Wednesday, April 8 1. Identify inferences on the history of life that are supported by 5 fossils and strata. 2. Explain how biogeography provides evidence that species evolve adaptations to their environments. Thursday, April 9 1. Explain how the anatoMy and developMent of organisMs provide 8 evidence of shared ancestry. Friday, April 10 1. Describe how convergent evolution and divergent evolution affect 13 species diversity. 2. CoMpare and contrast natural selection and artificial selection. Additional Notes: Greetings! As a reminder, in addition to email, you may attend my Zoom office hours to seek support for your weekly work. These sessions are intended for the purpose of answering questions, clarifying instructions, and seeking more information on the content topics for the week. If you need to attend, please join the session that corresponds with your class schedule. The times are listed below: • 1st Period – Mondays, Wednesdays from 10:00-10:50 am • 3rd Period – Mondays, Wednesdays from 1:00-1:50 pm • 4th Period – Tuesdays, Thursdays from 10:00-10:50 am • 6th Period – Tuesdays, Thursdays from 1:00-1:50 pm A minor assessment is found on pgs.
    [Show full text]