Computerbewijzen in De Wiskundige Praktijk

Total Page:16

File Type:pdf, Size:1020Kb

Computerbewijzen in De Wiskundige Praktijk HOGER INSTITUUT VOOR WIJSBEGEERTE KATHOLIEKE UNIVERSITEIT LEUVEN COMPUTERBEWIJZEN IN DE WISKUNDIGE PRAKTIJK Promotor: prof. dr. Leon Horsten verhandeling aangeboden tot het verkrijgen van de graad van Licentiaat in de Wijsbegeerte door: Koen Vervloesem Leuven, 2007 HOGER INSTITUUT VOOR WIJSBEGEERTE KATHOLIEKE UNIVERSITEIT LEUVEN COMPUTERBEWIJZEN IN DE WISKUNDIGE PRAKTIJK Promotor: prof. dr. Leon Horsten verhandeling aangeboden tot het verkrijgen van de graad van Licentiaat in de Wijsbegeerte door: Koen Vervloesem Leuven, 2007 Dankwoord Deze eindverhandeling is niet alleen het resultaat van mijn eigen inspanningen, maar ook van heel wat hulp die ik gekregen heb. Ik wil dan ook graag enkele mensen bedanken die mij tijdens het schrijven van mijn eindverhandeling hebben gesteund. Ik bedank in het bijzonder mijn promotor Leon Horsten, die me voor het kiezen van dit onderwerp geïn- spireerd heeft door me de boeken New Directions in the Philosophy of Mathematics en Philosophy of Mathematics: an Anthology in mijn handen te drukken. Ik bedank hem ook voor de vruchtbare discussies en de waardevolle commentaar op mijn ideeën en kladver- sies. Hij spoorde me ook aan om mijn idee voor Hoofdstuk 9, Wiskundige concepten in computerbewijzen uit te werken voor een presentatie op de Perspectives on Mathematical Practices 2007 conferentie. Dank ook aan de organisatoren van de Perspectives on Mathematical Practices 2007 conferentie die mijn voorstel voor een presentatie aanvaardden. Dank ook aan verschil- lende deelnemers van de conferentie, waarmee ik interessante discussies had over mijn presentatie. Mijn bijzondere dank gaat uit naar Paolo Mancosu, die me aanraadde om mijn bevindingen meer te situeren binnen de bestaande filosofische literatuur van mathe- matical explanation en die me daarover een uitgebreide bibliografie bezorgde. De moge- lijkheid om een hoofdstuk uit mijn eindverhandeling te presenteren op deze conferentie heeft me verplicht om het duidelijker uit te werken en dat is de kwaliteit ervan zeker ten goede gekomen. Dank ook aan Stijn Janssens, Marijke Van Bogaert, Lorenz Demey en Jo Allemeersch voor onze boeiende en gezellige leesgroep. Tot slot wil ik mijn vriendin Liesbeth bedan- ken die me een jaar lang heel wat avonden heeft zien doorbrengen achter de computer, al zoekend, lezend en typend voor deze eindverhandeling, en ook op andere momenten vaak met mijn gedachten verkerend in een platonische wereld. Ik bedank haar ook voor het minutieus nalezen van mijn verhandeling en de hulp bij het opstellen van de bijlagen. i Inhoudsopgave 1. Inleiding ................................................................................................................ 1 1.1. Wat is een bewijs? ..................................................................................... 2 1.2. De status van bepaalde bewijsmethodes .................................................... 5 1.3. Wat is een computerbewijs? ...................................................................... 6 1.4. De mogelijkheid van computerbewijzen na Gödel en Turing ................... 6 1.5. Berekeningen versus redeneringen. ........................................................... 8 1.6. Computerbewijzen als een nieuwe ontwikkeling in wiskunde .................. 9 1.7. Methodologie ........................................................................................... 10 1.8. Het computerbewijs van de stelling van Pappus ...................................... 12 1.9. Inhoud ...................................................................................................... 16 I. Computerbewijzen en hun receptie ..................................................................... 17 2. De vierkleurenstelling ................................................................................. 18 2.1. Het probleem en de eerste pogingen tot bewijs ............................... 18 2.2. De basisideeën van het bewijs ......................................................... 21 2.3. Het bewijs van Appel en Haken ....................................................... 23 2.4. Het bewijs van Allaire ..................................................................... 24 2.5. Het bewijs van Robertson ................................................................ 25 2.6. Het formeel bewijs van Gonthier ..................................................... 26 2.7. Het intrinsieke belang van de vierkleurenstelling ............................ 27 2.8. De complexiteit van de vierkleurenstelling ..................................... 28 2.9. De receptie van de bewijzen bij filosofen en wiskundigen .............. 28 2.9.1. Een computerbewijs is geen bewijs ...................................... 29 2.9.2. Computerbewijzen veranderen het concept van bewijs ........ 30 2.9.3. Een computerbewijs is een bewijs ........................................ 33 2.9.4. Een computerbewijs is geen bevredigend bewijs ................. 38 2.9.5. A priori kennis door computerbewijzen ............................... 39 2.9.6. Locale versus globale inspecteerbaarheid ............................. 41 3. Er bestaat geen eindig projectief vlak van orde 10 ..................................... 43 3.1. Het probleem en zijn geschiedenis .................................................. 43 3.2. Het computerbewijs ......................................................................... 48 3.3. De receptie van het bewijs ............................................................... 50 4. Het Robbinsprobleem ................................................................................. 52 4.1. Het probleem en zijn geschiedenis .................................................. 52 4.2. Het computerbewijs van McCune .................................................... 53 4.3. Logisch redeneren ............................................................................ 55 4.4. De receptie van het bewijs ............................................................... 56 4.4.1. Vertalingen van het bewijs .................................................... 57 4.4.2. De waarde van het bewijs ..................................................... 59 ii 5. Het Keplervermoeden ................................................................................. 61 5.1. Het probleem en zijn geschiedenis .................................................. 61 5.2. Het computerbewijs van Hales ........................................................ 64 5.3. Naar een formeel bewijs van het Keplervermoeden ........................ 66 5.4. De receptie van het bewijs ............................................................... 68 6. Probabilistische computerbewijzen ............................................................ 72 6.1. Probabilistische priembewijzen ....................................................... 72 6.1.1. De bewijzen .......................................................................... 72 6.1.2. De receptie van de bewijzen ................................................. 73 6.2. DNA-berekeningen .......................................................................... 78 6.2.1. Het probleem en zijn DNA-bewijs ....................................... 78 6.2.2. De receptie van de methode .................................................. 81 7. Andere computerbewijzen .......................................................................... 83 7.1. Symbolische berekeningen .............................................................. 83 7.2. Combinatorische oplossingen .......................................................... 84 7.3. Numerieke benaderingen van ongelijkheden ................................... 87 7.4. Axiomatische bewijsproblemen ....................................................... 90 II. Inzicht in computerbewijzen .............................................................................. 93 8. Een classificatie van bewijstechnieken in computerbewijzen .................... 97 8.1. Symbolische berekeningen .............................................................. 98 8.2. Combinatorische oplossingen .......................................................... 98 8.3. Numerieke benaderingen van ongelijkheden ................................... 99 8.4. Logische bewijstechnieken ............................................................ 100 8.5. Probabilistische bewijstechnieken ................................................. 101 8.6. Conclusie ........................................................................................ 101 9. Wiskundige concepten in computerbewijzen ........................................... 104 9.1. Inleiding ......................................................................................... 104 9.2. Bewijzen en concepten .................................................................. 105 9.2.1. Cassini's identiteit bij Fibonaccigetallen ............................. 105 9.2.1.1. Bewijs door inductie ................................................ 106 9.2.1.2. Bewijs door Binets formule ..................................... 106 9.2.1.3. Bewijs door determinant .......................................... 107 9.2.1.4. De concepten in de bewijzen ................................... 107 9.2.2. Fermatpriemgetallen ........................................................... 108 9.2.2.1. Bewijs door berekening ........................................... 109 9.2.2.2. Bewijs door modulaire congruenties ....................... 109 9.2.2.3. Bewijs door eigenschappen van delers .................... 109 9.2.2.4. De concepten
Recommended publications
  • Nominations for President
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society September 2013 Volume 60, Number 8 The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics page 1018 DML-CZ: The Experience of a Medium- Sized Digital Mathematics Library page 1028 Fingerprint Databases for Theorems page 1034 A History of the Arf-Kervaire Invariant Problem page 1040 About the cover: 63 years since ENIAC broke the ice (see page 1113) Solve the differential equation. Solve the differential equation. t ln t dr + r = 7tet dt t ln t dr + r = 7tet dt 7et + C r = 7et + C ln t ✓r = ln t ✓ WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS. When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign. WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs. It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math. 800.955.8275 webassign.net/math WA Calculus Question ad Notices.indd 1 11/29/12 1:06 PM Notices 1051 of the American Mathematical Society September 2013 Communications 1048 WHAT IS…the p-adic Mandelbrot Set? Joseph H.
    [Show full text]
  • The Vile, Dopy, Evil and Odious Game Players
    The vile, dopy, evil and odious game players Aviezri S. Fraenkel¤ Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot 76100, Israel February 7, 2010 Wil: We have worked and published jointly, for example on graph focality. Now that one of us is already an octogenarian and the other is only a decade away, let's have some fun; let's play a game. Gert: I'm game. Wil: In the Fall 2009 issue of the MSRI gazette Emissary, Elwyn Berlekamp and Joe Buhler proposed the following puzzle: \Nathan and Peter are playing a game. Nathan always goes ¯rst. The players take turns changing a positive integer to a smaller one and then passing the smaller number back to their op- ponent. On each move, a player may either subtract one from the integer or halve it, rounding down if necessary. Thus, from 28 the legal moves are to 27 or to 14; from 27, the legal moves are to 26 or to 13. The game ends when the integer reaches 0. The player who makes the last move wins. For example, if the starting integer is 15, a legal sequence of moves might be to 7, then 6, then 3, then 2, then 1, and then to 0. (In this sample game one of the players could have played better!) Assuming both Nathan and Peter play according to the best possible strategy, who will win if the starting integer is 1000? 2000?" Let's dub it the Mark game, since it's due to Mark Krusemeyer according to Berlekamp and Buhler.
    [Show full text]
  • Interview with Martin Gardner Page 602
    ISSN 0002-9920 of the American Mathematical Society june/july 2005 Volume 52, Number 6 Interview with Martin Gardner page 602 On the Notices Publication of Krieger's Translation of Weil' s 1940 Letter page 612 Taichung, Taiwan Meeting page 699 ., ' Martin Gardner (see page 611) AMERICAN MATHEMATICAL SOCIETY A Mathematical Gift, I, II, Ill The interplay between topology, functions, geometry, and algebra Shigeyuki Morita, Tokyo Institute of Technology, Japan, Koji Shiga, Yokohama, Japan, Toshikazu Sunada, Tohoku University, Sendai, Japan and Kenji Ueno, Kyoto University, Japan This three-volume set succinctly addresses the interplay between topology, functions, geometry, and algebra. Bringing the beauty and fun of mathematics to the classroom, the authors offer serious mathematics in an engaging style. Included are exercises and many figures illustrating the main concepts. It is suitable for advanced high-school students, graduate students, and researchers. The three-volume set includes A Mathematical Gift, I, II, and III. For a complete description, go to www.ams.org/bookstore-getitem/item=mawrld-gset Mathematical World, Volume 19; 2005; 136 pages; Softcover; ISBN 0-8218-3282-4; List US$29;AII AMS members US$23; Order code MAWRLD/19 Mathematical World, Volume 20; 2005; 128 pages; Softcover; ISBN 0-8218-3283-2; List US$29;AII AMS members US$23; Order code MAWRLD/20 Mathematical World, Volume 23; 2005; approximately 128 pages; Softcover; ISBN 0-8218-3284-0; List US$29;AII AMS members US$23; Order code MAWRLD/23 Set: Mathematical World, Volumes 19, 20, and 23; 2005; Softcover; ISBN 0-8218-3859-8; List US$75;AII AMS members US$60; Order code MAWRLD-GSET Also available as individual volumes ..
    [Show full text]
  • Linking Together Members of the Mathematical Carlos ­Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P.
    [Show full text]
  • OF the AMERICAN MATHEMATICAL SOCIETY 157 Notices February 2019 of the American Mathematical Society
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society February 2019 Volume 66, Number 2 THE NEXT INTRODUCING GENERATION FUND Photo by Steve Schneider/JMM Steve Photo by The Next Generation Fund is a new endowment at the AMS that exclusively supports programs for doctoral and postdoctoral scholars. It will assist rising mathematicians each year at modest but impactful levels, with funding for travel grants, collaboration support, mentoring, and more. Want to learn more? Visit www.ams.org/nextgen THANK YOU AMS Development Offi ce 401.455.4111 [email protected] A WORD FROM... Robin Wilson, Notices Associate Editor In this issue of the Notices, we reflect on the sacrifices and accomplishments made by generations of African Americans to the mathematical sciences. This year marks the 100th birthday of David Blackwell, who was born in Illinois in 1919 and went on to become the first Black professor at the University of California at Berkeley and one of America’s greatest statisticians. Six years after Blackwell was born, in 1925, Frank Elbert Cox was to become the first Black mathematician when he earned his PhD from Cornell University, and eighteen years later, in 1943, Euphemia Lofton Haynes would become the first Black woman to earn a mathematics PhD. By the late 1960s, there were close to 70 Black men and women with PhDs in mathematics. However, this first generation of Black mathematicians was forced to overcome many obstacles. As a Black researcher in America, segregation in the South and de facto segregation elsewhere provided little access to research universities and made it difficult to even participate in professional societies.
    [Show full text]
  • Probability and Random Processes ECS 315
    Probability and Random Processes ECS 315 Asst. Prof. Dr. Prapun Suksompong [email protected] 4 Combinatorics Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 9:00-10:00 Wednesday 14:20-15:20 1 Thursday 9:00-10:00 Supplementary References Mathematics of Choice How to count without counting By Ivan Niven permutations, combinations, binomial coefficients, the inclusion-exclusion principle, combinatorial probability, partitions of numbers, generating polynomials, the pigeonhole principle, and much more A Course in Combinatorics By J. H. van Lint and R. M. Wilson 2 Cartesian product The Cartesian product A × B is the set of all ordered pairs where and . Named after René Descartes His best known philosophical statement is “Cogito ergo sum” (French: Je pense, donc je suis; I think, therefore I am) 3 [http://mathemagicalworld.weebly.com/rene-descartes.html] Heads, Bodies and Legs flip-book 4 Heads, Bodies and Legs flip-book (2) 5 Interactive flipbook: Miximal 6 [http://www.fastcodesign.com/3028287/miximal-is-the-new-worlds-cutest-ipad-app] One Hundred Thousand Billion Poems 7 [https://www.youtube.com/watch?v=2NhFoSFNQMQ] One Hundred Thousand Billion Poems Cent mille milliards de poèmes 8 Pokemon Go: Designing how your avatar looks 9 How many chess games are possible? 10 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 11 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 12 [https://www.youtube.com/watch?v=Km024eldY1A] An Estimate: The Shannon Number 13 [https://www.youtube.com/watch?v=Km024eldY1A] The Shannon Number: Just an Estimate 14 [https://www.youtube.com/watch?v=Km024eldY1A] Example: Sock It Two Me 15 [Greenes, 1977] Example: Sock It Two Me Jack is so busy that he's always throwing his socks into his top drawer without pairing them.
    [Show full text]
  • Humanizing Mathematics and Its Philosophy
    Bharath Sriraman Editor Humanizing Mathematics and its Philosophy Essays Celebrating the 90th Birthday of Reuben Hersh Bharath Sriraman Editor Humanizing Mathematics and its Philosophy Essays Celebrating the 90th Birthday of Reuben Hersh Editor Bharath Sriraman Department of Mathematical Sciences The University of Montana Missoula, MT, USA ISBN 978-3-319-61230-0 ISBN 978-3-319-61231-7 (eBook) DOI 10.1007/978-3-319-61231-7 Library of Congress Control Number: 2017958868 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
    [Show full text]
  • What Comes Next?
    NEWSFOCUS For PRESIDENT What Comes Next? arrangement of toothpicks, in which a new batch is added at each stage, centered on and One of mathematicians’ most beloved at right angles to the exposed tips of the pre- e e e e e ic c ic o i ic ic Web sites is getting ready for a makeover. vious batch (see figure). The picture that (Rank candidates o o o o h h h h in order of choice) h C C C C C The Online Encyclopedia of Integer emerges displays surprising fractal growth. t d d h h s n r t t 1 2 3 4 5 Sequences, established by Neil Sloane at “It’s got beautiful structure,” Sloane says. He Candidate A 1 2 3 4 5 AT&T Labs Research in 1996 and run and his AT&T colleague David Applegate largely as a one-man shop, is poised to go have written a paper on the sequence’s math- Candidate B 1 2 3 4 5 “wiki,” with 50 associate editors taking over ematical properties, and Applegate has con- Candidate C 1 2 3 4 5 much of the workload. tributed a movie of its geometric growth, The OEIS, or simply “Sloane” as it’s linked to its entry in the OEIS. Candidate D 1 2 3 4 5 known to sequence fanatics, is a database of Sloane set up the OEIS Foundation last Candidate E 1 2 3 4 5 nearly 200,000 lists of numbers—a mathe- year and transferred intellectual-property matical equivalent to the FBI’s voluminous rights to the nonprofit organization.
    [Show full text]
  • CABINET       48 the FAX NUMBERS of the BEAST, and OTHER MATHEMATICAL SPORTS: an INTERVIEW with NEIL SLOANE Margaret Wertheim
    CABINET c US $12 CANADA UK £7US $12 $12 ISSUE 57 A QUARTERLY OF ART AND CULTURE CATASTROPHE 48 THE FAX NUMBERS OF THE BEAST, AND OTHER MATHEMATICAL SPORTS: AN INTERVIEW WITH NEIL SLOANE Margaret Wertheim Everyone knows a few integer sequences: the even networks, which are like artificial brains with com- numbers, the odd numbers, the primes. And we’ve puter simulations of neurons. When these “neurons” all heard about the Fibonacci sequence (1, 1, 2, 3, 5, fire, they trigger other neurons, which in turn trig- 8, 13…), where each term is computed by adding ger others—you have to have a certain amount of together the two previous terms. In 1964, mathema- activity before a neuron gets triggered. And the tician Neil Sloane, then working on a PhD at Cornell question was, “If you have a network of these con- University, began to write down interesting sequences figured in a particular way, and you start by making of numbers on file cards. His research on neural net- one fire, will the activity continue to propagate works generated quite a few; he pressed his friends through the network? Will it die out, or will it satu- for examples and consulted mathematics textbooks. rate the network?” I was looking at models of this, As the horde of sequences grew, he transferred them and I could count the number of cells firing at any to punched cards, then magnetic tape, and eventu- given time, and I would come up with a sequence of ally to the web, where today, more than half a century numbers.
    [Show full text]
  • Commencement Program, 2019
    263 rd COMMENCEMENT MAY 20, 2019 20, MAY R D COMMENCEME 263 NT CLA S S O F 2 019 M A Y 20, 20 1 9 CLASS OF 2019 KEEPING FRANKLIN’S PROMISE In the words of one elegiac tribute, “Great men have two lives: one which occurs while they work on this earth; a second which begins at the day of their death and continues as long as their ideas and conceptions remain powerful.” These words befit the great Benjamin Franklin, whose inventions, innovations, ideas, writings, and public works continue to shape our thinking and renew the Republic he helped to create and the institutions he founded, including the University of Pennsylvania. Nowhere does Franklin feel more contemporary, more revolutionary, and more alive than at the University of Pennsylvania. His startling vision of a secular, nonsectarian Academy that would foster an “Inclination join’d with an Ability to serve Mankind, one’s Country, Friends and Family” has never ceased to challenge Penn to redefine the scope and mission of the modern American university. When pursued vigorously and simultaneously, the two missions – developing the inclination to do good and the ability to do well – merge to help form a more perfect university that educates more capable citizens for our democracy. Penn has embodied and advanced Franklin’s revolutionary vision for 279 years. Throughout its history, Penn has extended the frontiers of higher learning and research to produce graduates and scholars whose work has enriched the nation and all of humanity. The modern liberal arts curriculum as we know it can trace its roots to Franklin’s innovation to have Penn students study international commerce and foreign languages.
    [Show full text]
  • Proving Is Convincing and Explaining
    REUBEN HERSH PROVING IS CONVINCING AND EXPLAINING ABSTRACT. In mathematical research, the purpose of proof is to convince. The test of whether something is a proof is whether it convinces qualified judges. In the classroom, on the other hand, the purpose of proof is to explain. Enlightened use of proofs in the mathematics classroom aims to stimulate the students' understanding, not to meet abstract standards of "rigor" or "honesty." I. WHAT IS PROOF? This is one question we mathematics teachers and students would normally never think of asking. We've seen proofs, we've done proofs. Proof is what we've been watching and doing for 10 or 20 years! In the Mathematical Experience (Davis and Hersh, 1981, pp. 39-40) this almost unthinkable question is asked of the Ideal Mathematician (the I.M. - the most mathematician-like mathematician) by a student of philosophy: "What is a mathematical proof?" The I.M. responds with examples - the Fundamental Theorem of This, the Fundamental Theorem of That. But the philosophy student wants a general definition, not just some examples. The I.M. tells the philosophy student about proof as it's portrayed in formal logic: permutation of logical symbols according to certain formal rules. But the philosophy student has seen proofs in mathematics classes, and none of them fit this description. The Ideal Mathematician crumbles. He confides that formal logic is rarely employed in proving theorems, that the real truth of the matter is that a proof is just a convincing argument, as judged by competent judges. The philosophy student is appalled by this betrayal of logical standards.
    [Show full text]
  • 40 Years with Sloane's Integer Sequences
    40 Years with Sloane’s Integer Sequences Jeffrey Shallit School of Computer Science, University of Waterloo Waterloo, Ontario N2L 3G1, Canada [email protected] http://www.cs.uwaterloo.ca/~shallit 1/1 My Christmas Present in 1974 2/1 Sloane’s First Letter to Me 3/1 Modified Engel expansions Kalpazidou, Knopfmacher, and Knopfmacher (1990) studied expansions of the form 1 1 1 1 1 1 α = a0 + + a1 − a1 + 1 · a2 a1 + 1 · a2 + 1 · a3 −··· for real numbers α, where the ai are non-negative integers with ai positive for i 1. ≥ This expansion is essentially unique provided ai ai . +1 ≥ I tried expanding α = 2/5 and found doubly-exponential growth (a0, a1,...)=(0, 2, 3, 7, 13, 97, 193, 18817, 37633, 708158977,...). Although this particular sequence was not in the OEIS at the time, its even-indexed subsequence (2, 7, 97, 18817, 708158977,...) certainly was (as A002812) and led to the discovery that ... 4/1 Modified Engel expansions 1 2i 2i a i = (2 + √3) + (2 √3) 2 +1 2 − and 2i 2i a i = (2+ √3) + (2 √3) 1. 2 +2 − − From this it was easy to deduce the general form of the expansion for 2/(2r + 1). Compare Aho and Sloane’s 1973 paper, “Some Doubly Exponential Sequences”. Open Problem: find a simple closed form for the expansion of 3/7. 5/1 Some confusing quotients Suppose we set c = a, c = b, and for n 2 define cn to be the 0 1 ≥ smallest integer such that c c n > n−1 .
    [Show full text]