Kepler's Conjecture

Total Page:16

File Type:pdf, Size:1020Kb

Kepler's Conjecture KEPLER’S CONJECTURE How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World George G. Szpiro John Wiley & Sons, Inc. KEPLER’S CONJECTURE How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World George G. Szpiro John Wiley & Sons, Inc. This book is printed on acid-free paper.●∞ Copyright © 2003 by George G. Szpiro. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustrations on pp. 4, 5, 8, 9, 23, 25, 31, 32, 34, 45, 47, 50, 56, 60, 61, 62, 66, 68, 69, 73, 74, 75, 81, 85, 86, 109, 121, 122, 127, 130, 133, 135, 138, 143, 146, 147, 153, 160, 164, 165, 168, 171, 172, 173, 187, 188, 218, 220, 222, 225, 226, 228, 230, 235, 236, 238, 239, 244, 245, 246, 247, 249, 250, 251, 253, 258, 259, 261, 264, 266, 268, 269, 274, copyright © 2003 by Itay Almog. All rights reserved Photos pp. 12, 37, 54, 77, 100, 115 © Nidersächsische Staats- und Universitätsbib- liothek, Göttingen; p. 52 © Department of Mathematics, University of Oslo; p. 92 © AT&T Labs; p. 224 © Denis Weaire No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopying, record- ing, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, email: [email protected]. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or war- ranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the pub- lisher nor the author shall be liable for any loss of profit or any other commercial dam- ages, including but not limited to special, incidental, consequential, or other damages. For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Szpiro, George, date. Kepler’s conjecture : how some of the greatest minds in history helped solve one of the oldest math problems in the world / by George Szpiro. p. cm. Includes bibliographical references and index. ISBN 0-471-08601-0 (cloth : acid-free paper) 1. Mathematics—Popular works. I. Title. QA93 .S97 2002 510—dc21 2002014422 Printed in the United States of America 10987654321 Contents Preface v 1 Cannonballs and Melons 1 2 The Puzzle of the Dozen Spheres 10 3 Fire Hydrants and Soccer Players 33 4 Thue’s Two Attempts and Fejes-Tóth’s Achievement 49 5 Twelve’s Company, Thirteen’s a Crowd 72 6 Nets and Knots 82 7 Twisted Boxes 99 8 No Dancing at This Congress 112 9 The Race for the Upper Bound 124 10 Right Angles for Round Spaces 140 11 Wobbly Balls and Hybrid Stars 156 12 Simplex, Cplex, and Symbolic Mathematics 181 13 But Is It Really a Proof ? 201 14 Beehives Again 215 15 This Is Not an Epilogue 229 Mathematical Appendixes Chapter 1 234 Chapter 2 238 Chapter 3 239 Chapter 4 243 Chapter 5 247 Chapter 6 249 Chapter 7 254 Chapter 9 258 iii iv CONTENTS Chapter 11 263 Chapter 13 264 Chapter 15 279 Bibliography 281 Index 287 Preface This book describes a problem that has vexed mathematicians for nearly four hundred years. In 1611, the German astronomer Johannes Kepler con- jectured that the way to pack spheres as densely as possible is to pile them up in the same manner that greengrocers stack oranges or tomatoes. Until recently, a rigorous proof of that conjecture was missing. It was not for lack of trying. The best and the brightest attempted to solve the problem for four centuries. Only in 1998 did Tom Hales, a young mathematician from the University of Michigan, achieve success. And he had to resort to computers. The time and effort that scores of mathemati- cians expended on the problem is truly surprising. Mathematicians rou- tinely deal with four and higher dimensional spaces. Sometimes this is difficult; it often taxes the imagination. But at least in three-dimensional space we know our way around. Or so it seems. Well, this isn’t so, and the intellectual struggles that are related in this book attest to the immense dif- ficulties. After Simon Singh published his bestseller on Fermat’s problem, he wrote in New Scientist that “a worthy successor for Fermat’s Last Theo- rem must match its charm and allure. Kepler’s sphere-packing conjecture is just such a problem—it looks simple at first sight, but reveals its subtle hor- rors to those who try to solve it.” I first met Kepler’s conjecture in 1968, as a first-year mathematics stu- dent at the Swiss Federal Institute of Technology (ETH). A professor of geometry mentioned in an unrelated context that “one believes that the densest packing of spheres is achieved when each sphere is touched by twelve others in a certain manner.” He mentioned that Kepler had been the first person to state this conjecture and went on to say that together with Fermat’s famous theorem this was one of the oldest unproven mathemati- cal conjectures. I then forgot all about it for a few decades. Thirty years and a few career changes later, I attended a conference in Haifa, Israel. It dealt with the subject of symmetry in academic and artistic v vi PREFACE disciplines. I was working as a correspondent for a Swiss daily, the Neue Zürcher Zeitung (NZZ). The seven-day conference turned out to be one of the best weeks of my journalistic career. Among the people I met in Haifa was Tom Hales, the young professor from the University of Michigan, who had just a few weeks previously completed his proof of Kepler’s conjecture. His talk was one of the highlights of the conference. I subsequently wrote an article on the conference for the NZZ, featuring Tom’s proof as its cen- terpiece. Then I returned to being a political journalist. The following spring, while working up a sweat on my treadmill one afternoon, an idea suddenly hit. Maybe there are people, not necessarily mathematicians, who would be interested in reading about Kepler’s con- jecture. I got off the treadmill and started writing. I continued to write for two and a half years. During that time, the second Palestinian uprising broke out and the peace process was coming apart. It was a very sad and frustrating period. What kept my spirits up in these trying times was that during the night, after the newspaper’s deadline, I was able to work on the book. But then, just as I was putting the finishing touches to the last chap- ters, an Islamic Jihad suicide bomber took the life of one my closest friends. A few days later, disaster hit New York, Washington, and Pennsylvania. If only human endeavor could be channeled into furthering knowledge instead of seeking to visit destruction on one’s fellow men. Would it not be nice if newspapers could fill their pages solely with stories about arts, sports, and scientific achievements, and spice up the latter, at worst, with news on priority disputes and academic battles? This book is meant for the general reader interested in science, scientists, and the history of science, while trying to avoid short-changing mathe- maticians. No knowledge of mathematics is needed except for what one usually learns in high school. On the other hand, I have tried to give as much mathematical detail as possible so that people who would like to know more about what mathematicians do will also find the book of inter- est. (Readers interested in knowing more about the people who helped solve Kepler’s conjecture and the circumstances of their work will also be able to find additional material at www.GeorgeSzpiro.com.) Those readers more interested in the basic story may want to skip the more esoteric mathematical points; for that reason, some of the denser mathemati- cal passages are set in a different font. Even more esoteric material is banished to appendixes. I should point out that the mathematics is by no means rigor- ous. My aim was to give the general idea of what constitutes a mathematical proof, not to get lost in the details. Emphasis is placed on vividness and some- times only an example is given rather than a stringent argument.
Recommended publications
  • Kissing Numbers: Surprises in Dimension Four Günter M
    Kissing numbers: Surprises in Dimension Four Günter M. Ziegler, TU Berlin The “kissing number problem” is a basic geometric problem that got its name from billards: Two balls “kiss” if they touch. The kissing number problem asks how many other balls can touch one given ball at the same time. If you arrange the balls on a pool ta- ble, it is easy to see that the answer is exactly six: Six balls just perfectly surround a given ball. Graphic: Detlev Stalling, ZIB Berlin and at the same time Vladimir I. Levenstein˘ in Russia proved that the correct, exact maximal numbers for the kissing number prob- lem are 240 in dimension 8, and 196560 in dimension 24. This is amazing, because these are also the only two dimensions where one knows a precise answer. It depends on the fact that mathemati- cians know very remarkable configurations in dimensions 8 and 24, which they call the E8 lattice and the Leech lattice, respectively. If, however, you think about this as a three-dimensional problem, So the kissing number problem remained unsolved, in particular, the question “how many balls can touch a given ball at the same for the case of dimension four. The so-called 24-cell, a four- time” becomes much more interesting — and quite complicated. In dimensional “platonic solid” of remarkable beauty (next page), fact, The 17th century scientific genius Sir Isaac Newton and his yields a configuration of 24 balls that would touch a given one in colleague David Gregory had a controversy about this in 1694 — four-dimensional space.
    [Show full text]
  • Kepler and Hales: Conjectures and Proofs Dreams and Their
    KEPLER AND HALES: CONJECTURES AND PROOFS DREAMS AND THEIR REALIZATION Josef Urban Czech Technical University in Prague Pittsburgh, June 21, 2018 1 / 31 This talk is an experiment Normally I give “serious” talks – I am considered crazy enough But this is Tom’s Birthday Party, so we are allowed to have some fun: This could be in principle a talk about our work on automation and AI for reasoning and formalization, and Tom’s great role in these areas. But the motivations and allusions go back to alchemistic Prague of 1600s and the (un)scientific pursuits of then versions of "singularity", provoking comparisons with our today’s funny attempts at building AI and reasoning systems for solving the great questions of Math, the Universe and Everything. I wonder where this will all take us. Part 1 (Proofs?): Learning automated theorem proving on top of Flyspeck and other corpora Learning formalization (autoformalization) on top of them Part 2 (Conjectures?): How did we get here? What were Kepler & Co trying to do in 1600s? What are we trying to do today? 2 / 31 The Flyspeck project – A Large Proof Corpus Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid. V = p 74% 18 Proved by Hales & Ferguson in 1998, 300-page proof + computations Big: Annals of Mathematics gave up reviewing after 4 years Formal proof finished in 2014 20000 lemmas in geometry, analysis, graph theory All of it at https://code.google.com/p/flyspeck/ All of it computer-understandable and verified in HOL Light:
    [Show full text]
  • Gazette Des Mathématiciens
    JUILLET 2018 – No 157 la Gazette des Mathématiciens • Autour du Prix Fermat • Mathématiques – Processus ponctuels déterminantaux • Raconte-moi... le champ libre gaussien • Tribune libre – Quelle(s) application(s) pour le plan Torossian-Villani la GazetteComité de rédaction des Mathématiciens Rédacteur en chef Sébastien Gouëzel Boris Adamczewski Université de Nantes Institut Camille Jordan, Lyon [email protected] [email protected] Sophie Grivaux Rédacteurs Université de Lille [email protected] Thomas Alazard École Normale Supérieure de Paris-Saclay [email protected] Fanny Kassel IHÉS Maxime Bourrigan [email protected] Lycée Saint-Geneviève, Versailles [email protected] Pauline Lafitte Christophe Eckès École Centrale, Paris Archives Henri Poincaré, Nancy [email protected] [email protected] Damien Gayet Romain Tessera Institut Fourier, Grenoble Université Paris-Sud [email protected] [email protected] Secrétariat de rédaction : smf – Claire Ropartz Institut Henri Poincaré 11 rue Pierre et Marie Curie 75231 Paris cedex 05 Tél. : 01 44 27 67 96 – Fax : 01 40 46 90 96 [email protected] – http://smf.emath.fr Directeur de la publication : Stéphane Seuret issn : 0224-8999 À propos de la couverture. Cette image réalisée par Alejandro Rivera (Institut Fourier) est le graphe de la partie positive du champ libre gaussien sur le tore plat 2=(2á2) projeté sur la somme des espaces propres du laplacien de valeur propre plus petite que 500. Les textures et couleurs ajoutées sur le graphe sont pure- ment décoratives. La fonction a été calculée avec C++ comme une somme de polynômes trigonométriques avec des poids aléatoires bien choisis, le graphe a été réalisé sur Python et les textures et couleurs ont été réalisées avec gimp.
    [Show full text]
  • Local Covering Optimality of Lattices: Leech Lattice Versus Root Lattice E8
    Local Covering Optimality of Lattices: Leech Lattice versus Root Lattice E8 Achill Sch¨urmann, Frank Vallentin ∗ 10th November 2004 Abstract We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly ∗ best known given by the lattice A8. Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense. 1 Introduction The Leech lattice is the exceptional lattice in dimension 24. Soon after its discovery by Leech [Lee67] it was conjectured that it is extremal for several geometric problems in R24: the kissing number problem, the sphere packing problem and the sphere covering problem. In 1979, Odlyzko and Sloane and independently Levenshtein solved the kissing number problem in dimension 24 by showing that the Leech lattice gives an optimal solution. Two years later, Bannai and Sloane showed that it gives the unique solution up to isometries (see [CS88], Ch. 13, 14). Unlike the kissing number problem, the other two problems are still open. Recently, Cohn and Kumar [CK04] showed that the Leech lattice gives the unique densest lattice sphere packing in R24.
    [Show full text]
  • The BEST WRITING on MATHEMATICS
    The BEST WRITING on MATHEMATICS 2012 The BEST WRITING on MATHEMATICS 2012 Mircea Pitici, Editor FOREWORD BY DAVID MUMFORD P RI NC E TO N U N IVER S I T Y P RE SS P RI NC E TO N A N D OX FORD Copyright © 2013 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved ISBN 978- 0- 691-15655-2 This book has been composed in Perpetua Printed on acid- free paper. ∞ Printed in the United States of America 1 3 5 7 9 10 8 6 4 2 For my parents Contents Foreword: The Synergy of Pure and Applied Mathematics, of the Abstract and the Concrete DAVID MUMFORD ix Introduction MIRCEA PITICI xvii Why Math Works MARIO LIVIO 1 Is Mathematics Discovered or Invented? TIMOTHY GOWERS 8 The Unplanned Impact of Mathematics PETER ROWLETT 21 An Adventure in the Nth Dimension BRIAN HAYES 30 Structure and Randomness in the Prime Numbers TERENCE TAO 43 The Strangest Numbers in String Theory JOHN C. BAEZ AND JOHN HUERTA 50 Mathematics Meets Photography: The Viewable Sphere DAVID SWART AND BRUCE TORRENCE 61 Dancing Mathematics and the Mathematics of Dance SARAH- MARIE BELCASTRO AND KARL SCHAFFER 79 Can One Hear the Sound of a Theorem? ROB SCHNEIDERMAN 93 Flat- Unfoldability and Woven Origami Tessellations ROBERT J. LANG 113 A Continuous Path from High School Calculus to University Analysis TIMOTHY GOWERS 129 viii Contents Mathematics Teachers’ Subtle, Complex Disciplinary Knowledge BRENT DAVIS 135 How to Be a Good Teacher Is an Undecidable Problem ERICA FLAPAN 141 How Your Philosophy of Mathematics Impacts Your Teaching BONNIE GOLD 149 Variables in Mathematics Education SUSANNA S.
    [Show full text]
  • A Computer Verification of the Kepler Conjecture
    ICM 2002 Vol. III 1–3 · · A Computer Verification of the Kepler Conjecture Thomas C. Hales∗ Abstract The Kepler conjecture asserts that the density of a packing of congruent balls in three dimensions is never greater than π/√18. A computer assisted verification confirmed this conjecture in 1998. This article gives a historical introduction to the problem. It describes the procedure that converts this problem into an optimization problem in a finite number of variables and the strategies used to solve this optimization problem. 2000 Mathematics Subject Classification: 52C17. Keywords and Phrases: Sphere packings, Kepler conjecture, Discrete ge- ometry. 1. Historical introduction The Kepler conjecture asserts that the density of a packing of congruent balls in three dimensions is never greater than π/√18 0.74048 .... This is the oldest problem in discrete geometry and is an important≈ part of Hilbert’s 18th problem. An example of a packing achieving this density is the face-centered cubic packing (Figure 1). A packing of balls is an arrangement of nonoverlapping balls of radius 1 in Euclidean space. Each ball is determined by its center, so equivalently it is a arXiv:math/0305012v1 [math.MG] 1 May 2003 collection of points in Euclidean space separated by distances of at least 2. The density of a packing is defined as the lim sup of the densities of the partial packings formed by the balls inside a ball with fixed center of radius R. (By taking the lim sup, rather than lim inf as the density, we prove the Kepler conjecture in the strongest possible sense.) Defined as a limit, the density is insensitive to changes in the packing in any bounded region.
    [Show full text]
  • The Sphere Packing Problem in Dimension 8 Arxiv:1603.04246V2
    The sphere packing problem in dimension 8 Maryna S. Viazovska April 5, 2017 8 In this paper we prove that no packing of unit balls in Euclidean space R has density greater than that of the E8-lattice packing. Keywords: Sphere packing, Modular forms, Fourier analysis AMS subject classification: 52C17, 11F03, 11F30 1 Introduction The sphere packing constant measures which portion of d-dimensional Euclidean space d can be covered by non-overlapping unit balls. More precisely, let R be the Euclidean d vector space equipped with distance k · k and Lebesgue measure Vol(·). For x 2 R and d r 2 R>0 we denote by Bd(x; r) the open ball in R with center x and radius r. Let d X ⊂ R be a discrete set of points such that kx − yk ≥ 2 for any distinct x; y 2 X. Then the union [ P = Bd(x; 1) x2X d is a sphere packing. If X is a lattice in R then we say that P is a lattice sphere packing. The finite density of a packing P is defined as Vol(P\ Bd(0; r)) ∆P (r) := ; r > 0: Vol(Bd(0; r)) We define the density of a packing P as the limit superior ∆P := lim sup ∆P (r): r!1 arXiv:1603.04246v2 [math.NT] 4 Apr 2017 The number be want to know is the supremum over all possible packing densities ∆d := sup ∆P ; d P⊂R sphere packing 1 called the sphere packing constant. For which dimensions do we know the exact value of ∆d? Trivially, in dimension 1 we have ∆1 = 1.
    [Show full text]
  • An Overview of the Kepler Conjecture
    AN OVERVIEW OF THE KEPLER CONJECTURE Thomas C. Hales 1. Introduction and Review The series of papers in this volume gives a proof of the Kepler conjecture, which asserts that the density of a packing of congruent spheres in three dimensions is never greater than π/√18 0.74048 . This is the oldest problem in discrete geometry and is an important≈ part of Hilbert’s 18th problem. An example of a packing achieving this density is the face-centered cubic packing. A packing of spheres is an arrangement of nonoverlapping spheres of radius 1 in Euclidean space. Each sphere is determined by its center, so equivalently it is a collection of points in Euclidean space separated by distances of at least 2. The density of a packing is defined as the lim sup of the densities of the partial packings formed by spheres inside a ball with fixed center of radius R. (By taking the lim sup, rather than lim inf as the density, we prove the Kepler conjecture in the strongest possible sense.) Defined as a limit, the density is insensitive to changes in the packing in any bounded region. For example, a finite number of spheres can be removed from the face-centered cubic packing without affecting its density. Consequently, it is not possible to hope for any strong uniqueness results for packings of optimal density. The uniqueness established by this work is as strong arXiv:math/9811071v2 [math.MG] 20 May 2002 as can be hoped for. It shows that certain local structures (decomposition stars) attached to the face-centered cubic (fcc) and hexagonal-close packings (hcp) are the only structures that maximize a local density function.
    [Show full text]
  • Universität Regensburg Mathematik
    UniversitÄatRegensburg Mathematik Parametric Approximation of Surface Clusters driven by Isotropic and Anisotropic Surface Energies J.W. Barrett, H. Garcke, R. NÄurnberg Preprint Nr. 04/2009 Parametric Approximation of Surface Clusters driven by Isotropic and Anisotropic Surface Energies John W. Barrett† Harald Garcke‡ Robert N¨urnberg† Abstract We present a variational formulation for the evolution of surface clusters in R3 by mean curvature flow, surface diffusion and their anisotropic variants. We intro- duce the triple junction line conditions that are induced by the considered gradient flows, and present weak formulations of these flows. In addition, we consider the case where a subset of the boundaries of these clusters are constrained to lie on an external boundary. These formulations lead to unconditionally stable, fully dis- crete, parametric finite element approximations. The resulting schemes have very good properties with respect to the distribution of mesh points and, if applicable, volume conservation. This is demonstrated by several numerical experiments, in- cluding isotropic double, triple and quadruple bubbles, as well as clusters evolving under anisotropic mean curvature flow and anisotropic surface diffusion, including for regularized crystalline surface energy densities. Key words. surface clusters, mean curvature flow, surface diffusion, soap bubbles, triple junction lines, parametric finite elements, anisotropy, tangential movement AMS subject classifications. 65M60, 65M12, 35K55, 53C44, 74E10, 74E15 1 Introduction Equilibrium soap bubble clusters are stationary solutions of the variational problem in which one seeks a least area way to enclose and separate a number of regions with pre- scribed volumes. The relevant energy in this case is given as the sum of the total surface area.
    [Show full text]
  • Nonisotropic Self-Assembly of Nanoparticles: from Compact Packing to Functional Aggregates Xavier Bouju, Etienne Duguet, Fabienne Gauffre, Claude Henry, Myrtil L
    Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates Xavier Bouju, Etienne Duguet, Fabienne Gauffre, Claude Henry, Myrtil L. Kahn, Patrice Mélinon, Serge Ravaine To cite this version: Xavier Bouju, Etienne Duguet, Fabienne Gauffre, Claude Henry, Myrtil L. Kahn, et al.. Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Advanced Mate- rials, Wiley-VCH Verlag, 2018, 30 (27), pp.1706558. 10.1002/adma.201706558. hal-01795448 HAL Id: hal-01795448 https://hal.archives-ouvertes.fr/hal-01795448 Submitted on 18 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Non-isotropic self-assembly of nanoparticles: from compact packing to functional aggregates Xavier Bouju∗ CEMES-CNRS (UPR CNRS 8011), Bt F picoLab 29 Rue J. Marvig, BP 94347 31055 Toulouse Cedex 4, France Etienne´ Duguet∗ CNRS, Univ. Bordeaux, ICMCB, UPR 9048, 33600 Pessac, France Fabienne Gauffre∗ Institut des sciences chimiques de Rennes (ISCR), UMR CNRS 6226, 263 avenue du G´en´eral Leclerc, CS 74205, F-35000 Rennes, France Claude Henry∗ Centre interdisciplinaire de nanoscience de Marseille (CINAM), UMR CNRS 7325, Aix-Marseille Universit´e,Campus de Luminy, Case 913, F-13000 Marseille, France Myrtil Kahn∗ Laboratoire de chimie de coordination (LCC), UPR CNRS 8241, 205 route de Narbonne, F-31000 Toulouse, France Patrice M´elinon∗ Universit´ede Lyon, Universit´eClaude Bernard Lyon 1, UMR CNRS 5306, Institut Lumi`ere Mati`ere, F-69622, Villeurbanne, Francey Serge Ravaine CNRS, Univ.
    [Show full text]
  • Professor I Hemmelig Tjeneste
    Professor i hemmelig tjeneste Matematikeren, datapioneren og kryptologen Ernst Sejersted Selmer Øystein Rygg Haanæs 1 Forord Denne populærvitenskapelige biografien er skrevet på oppdrag fra Universitetet i Bergen og Nasjonal sikkerhetsmyndighet for å markere at det er 100 år siden Ernst Sejersted Selmer ble født. La meg være helt ærlig. For ni måneder siden ante jeg ikke hvem Selmer var. Det gjorde nesten ingen av mine venner og bekjente heller. Jeg har faktisk mistanke om at svært få i Norge utenfor det matematiske miljøet kjenner til navnet. Det er en skam. Fra midten av forrige århundre ble høyere utdanning i Norge reformert og åpnet for massene. Universitetet i Bergen vokste ut av kortbuksene og begynte å begå virkelig seriøs vitenskap. De første digitale computerne ble bygd og tatt i bruk i forskning og forvaltning. Norge fikk en «EDB-politikk». Alle nordmenn fikk et permanent fødselsnummer. Forsvaret etablerte en kryptologitjeneste på høyt nivå, og norsk kryptoindustri ble kapabel til å levere utstyr til NATO-alliansen. Ernst Sejersted Selmer hadde minst én finger med i spillet i alle disse prosessene. Selmer hadde lange armer og stor rekkevidde. Han satte overveldende mange spor etter seg, og denne boken er et forsøk på å gå opp disse sporene og gi Selmer den oppmerksomheten han fortjener. Enda en innrømmelse når vi først er i gang. Jeg er ikke matematiker. Det har selvsagt sine sider når oppdraget er å skrive en biografi om nettopp en matematiker. Da jeg startet arbeidet, hadde jeg ikke det minste begrep om hva en diofantisk ligning eller et skiftregister var. Heldigvis har jeg fått uvurderlig hjelp av de tidligere Selmer-studentene Christoph Kirfel og Tor Helleseth.
    [Show full text]
  • Cannonballs and Honeycombs, Volume 47, Number 4
    fea-hales.qxp 2/11/00 11:35 AM Page 440 Cannonballs and Honeycombs Thomas C. Hales hen Hilbert intro- market. “We need you down here right duced his famous list of away. We can stack the oranges, but 23 problems, he said we’re having trouble with the arti- a test of the perfec- chokes.” Wtion of a mathe- To me as a discrete geometer Figure 1. An matical problem is whether it there is a serious question be- optimal can be explained to the first hind the flippancy. Why is arrangement person in the street. Even the gulf so large between of equal balls after a full century, intuition and proof? is the face- Hilbert’s problems have Geometry taunts and de- centered never been thoroughly fies us. For example, what cubic tested. Who has ever chatted with about stacking tin cans? Can packing. a telemarketer about the Riemann hy- anyone doubt that parallel rows pothesis or discussed general reciprocity of upright cans give the best arrange- laws with the family physician? ment? Could some disordered heap of cans Last year a journalist from Plymouth, New waste less space? We say certainly not, but the Zealand, decided to put Hilbert’s 18th problem to proof escapes us. What is the shape of the cluster the test and took it to the street. Part of that prob- of three, four, or five soap bubbles of equal vol- lem can be phrased: Is there a better stacking of ume that minimizes total surface area? We blow oranges than the pyramids found at the fruit stand? bubbles and soon discover the answer but cannot In pyramids the oranges fill just over 74% of space prove it.
    [Show full text]