Wave Function Collapses in a Single Spin Magnetic Resonance Force Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Wave Function Collapses in a Single Spin Magnetic Resonance Force Microscopy Physics Letters A 331 (2004) 187–192 www.elsevier.com/locate/pla Wave function collapses in a single spin magnetic resonance force microscopy G.P. Berman a, F. Borgonovi b,c,∗,V.I.Tsifrinovichd a Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545, USA b Dipartimento di Matematica e Fisica, Università Cattolica, via Musei 41, 25121 Brescia, Italy c INFM, Unità di Brescia and INFN, Sezione di Pavia, Italy d IDS Department, Polytechnic University, Six Metrotech Center, Brooklyn, NY 11201, USA Received 19 July 2004; received in revised form 1 September 2004; accepted 2 September 2004 Available online 11 September 2004 Communicated by P.R. Holland Abstract We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function. 2004 Elsevier B.V. All rights reserved. Recently invented [1,2], the oscillating cantilever in [4–7]. The quantum theory of a single-spin mea- driven adiabatic reversals (OSCAR) technique has surement in OSCAR MRFM was presented in [8,9]. been successfully used for a single spin detection [3]. It was shown in [8,9] that the CT frequency can In this technique the cantilever tip (CT) vibrations take two values corresponding to two possible direc- in combination with a radio-frequency (rf) resonance tions of the spin relative to the direction of the ef- field causes adiabatic reversals of the effective mag- fective magnetic field, Beff. If the spin points initially netic field. Spins of the sample follow the effective in (or opposite to) the direction of Beff, then the CT magnetic field causing a small shift of the CT fre- has a definite trajectory with the corresponding pos- quency, which is to be measured. The quasiclassical itive (negative) frequency shift. In the general case, theory of the OSCAR technique has been developed the Schrödinger dynamics describes a superposition of two possible trajectories—the Schrödinger cat state. It * Corresponding author. was also shown in [8,9] that the interaction between E-mail address: [email protected] (F. Borgonovi). the CT and the environment causes two effects. The 0375-9601/$ – see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.physleta.2004.09.003 188 G.P. Berman et al. / Physics Letters A 331 (2004) 187–192 first one is a rapid decoherence: the Schrödinger cat wave function? This Letter discusses the second prob- state transforms into a statistical mixture of two possi- lem. ble trajectories with the definite directions of the spin The CT position and momentum have finite quan- relative to the effective field. Physically this means tum uncertainties. Thus, when the spin direction devi- that the CT quickly selects one of two possible trajec- ates from the direction of Beff, the collapse does not tories, even if initially the spin does not have a definite occur instantly. During a finite time interval, the spin direction relative to the direction of Beff. The second and the CT are entangled. The spin does not have a effect is an ordinary thermal diffusion of the CT tra- definite direction, and the CT does not have a definite jectory. trajectory. The dynamics of the CT–spin system on the What was not taken into account in [8,9] was the time scale less than the time interval between two con- effect of the direct interaction between the spin and secutive collapses can be described by the Schrödinger the environment. In general, for an MRFM system one equation. During this time, the average CT frequency should consider two environments: one for the CT and shift is expected to be smaller (in absolute value) than the other for the spin. If the initial spin wave function the frequency shift corresponding to the definite di- describes a superposition of two spin directions rela- rection of the spin relative to Beff. We show that the tive to Beff, then the spin generates two trajectories for experimental study of this effect can reveal the answer the CT. The cantilever is a quasiclassical device which to a fundamental problem of quantum dynamics: at measures the spin projection relative to the direction what time does the collapse of the wave function occur of Beff. The CT environment collapses the CT–spin if the quasiclassical trajectories are not well separated? wave function selecting only one CT trajectory and a Indeed, if the quasiclassical trajectories are initially definite direction of the spin relative to Beff. This sit- well separated (the Schrödinger cat state) then the uation is similar to the Stern–Gerlach effect, but for a characteristic time of the collapse is the decoherence time-dependent Beff. The direct interaction of the spin time, i.e., the time of vanishing of the non-diagonal with its environment is extremely weak in comparison peaks of the density matrix (the non-diagonal peaks to the interaction between the CT and its environment. describe the quantum correlation between two trajec- However, this weak interaction causes a deviation of tories when these trajectories coexist during the same the spin from the direction of Beff after a collapse of time interval [11,12]). However, the Schrödinger cat the wave function. In turn, this deviation generates two state is a specific bizarre phenomenon in the macro- CT trajectories. This scenario occurs again and again scopic world. Namely, in a typical situation the col- in the OSCAR MRFM. Normally, a collapse “forces” lapse of the wave function occurs long before a well the spin back to its initial (after the previous collapse) defined separation develops between the two quasi- direction relative to Beff. But sometimes this collapse classical trajectories. There are a few simple cases, pushes the spin to the opposite direction, revealing the for which the exact solutions of the master equation quantum jump—a sharp change of the spin direction have been obtained (see, for example, [12]). The ex- and CT trajectory. It was shown in [5–7] that the main act solution describes a generation of the two qua- source of the magnetic noise on the spin was asso- siclassical trajectories, their decoherence, and a ther- ciated with the cantilever modes whose frequencies mal diffusion. Before the two quasiclassical trajecto- were close to the Rabi frequency. ries are well separated, the exact solution describes There are two basic problems associated with the the complicated dynamics of the density matrix ele- single spin OSCAR MRFM. The first problem is ments. It is not clear if the master equation is capable the theoretical description of the statistical properties to describe the wave function collapse when the two of quantum jumps. Unfortunately, the direct simula- trajectories are not well separated. Even if the col- tion of quantum jumps consumes too much computer lapse time for this case is “hidden” in the solution of time to be implemented. Recently, we have consid- the master equation, we still do not know how to ex- ered a simplified model which describes the statistical tract it analytically and numerically. Only experiments properties of quantum jumps [10]. The second prob- could resolve this fundamental problem. We show that lem is more sophisticated: what is the characteristic OSCAR MRFM could become one of these experi- time interval between two consecutive collapses of the ments. G.P. Berman et al. / Physics Letters A 331 (2004) 187–192 189 the wave function can be represented by a product of the CT and spin wave functions. In this case the aver- age spin S has a magnitude 1/2. In the general case, the spin is entangled with the CT, and the average spin is smaller than 1/2. In our estimates we will use the following parameters from experiment [1]: ωc µN = 6.6kHz,kc = 600 ,B= 300 µT, 2π m 1 5 T G = 4.3 × 10 ,Xm = 10 nm,T= 200 mK, m (3) Fig. 1. Cantilever set-up. Bext is the external static magnetic field, where Xm is the amplitude of the CT. Using these val- B1 the rotating magnetic field, m the magnetic moment of the fer- ues, we obtain the following values of parameters for romagnetic particle glued on the cantilever tip, S the spin to be our model measured. −21 X0 = 85 fm,P0 = 1.2 × 10 Ns,η= 0.078, The OSCAR MRFM setup considered here is Xm 5 shown in Fig. 1. xm = = 1.2 × 10 . (4) X The dimensionless Hamiltonian for the OSCAR 0 =| | MRFM in the rotating system of coordinates is taken The relative frequency shift ξ0 ωc/ωc of the can- as tilever vibrations can be estimated to be [7,8]: 2 p2 + x2 2Sη − H = x + + ξ = = 4.7 × 10 7. (5) εSx 2ηxSz, (1) 0 2 2 + 2 1/2 2 (2η xm ε ) where we use the quantum units of√ the momentum (We insert the factor 2S for future discussion.) P0 = h/X¯ 0 and the coordinate X0 = hω¯ c/kc.Here Suppose that initially the spin points opposite to ωc is the cantilever frequency, kc is the cantilever ef- the direction of Beff. The frequency shift of the CT = fective spring constant, ε γB1/ωc, γ is the mag- vibrations is then −ξ0.
Recommended publications
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • The Critical Casimir Effect in Model Physical Systems
    University of California Los Angeles The Critical Casimir Effect in Model Physical Systems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Jonathan Ariel Bergknoff 2012 ⃝c Copyright by Jonathan Ariel Bergknoff 2012 Abstract of the Dissertation The Critical Casimir Effect in Model Physical Systems by Jonathan Ariel Bergknoff Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Joseph Rudnick, Chair The Casimir effect is an interaction between the boundaries of a finite system when fluctua- tions in that system correlate on length scales comparable to the system size. In particular, the critical Casimir effect is that which arises from the long-ranged thermal fluctuation of the order parameter in a system near criticality. Recent experiments on the Casimir force in binary liquids near critical points and 4He near the superfluid transition have redoubled theoretical interest in the topic. It is an unfortunate fact that exact models of the experi- mental systems are mathematically intractable in general. However, there is often insight to be gained by studying approximations and toy models, or doing numerical computations. In this work, we present a brief motivation and overview of the field, followed by explications of the O(2) model with twisted boundary conditions and the O(n ! 1) model with free boundary conditions. New results, both analytical and numerical, are presented. ii The dissertation of Jonathan Ariel Bergknoff is approved. Giovanni Zocchi Alex Levine Lincoln Chayes Joseph Rudnick, Committee Chair University of California, Los Angeles 2012 iii To my parents, Hugh and Esther Bergknoff iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 1.1 The Casimir Effect .
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • A Peek Into Spin Physics
    A Peek into Spin Physics Dustin Keller University of Virginia Colloquium at Kent State Physics Outline ● What is Spin Physics ● How Do we Use It ● An Example Physics ● Instrumentation What is Spin Physics The Physics of exploiting spin - Spin in nuclear reactions - Nucleon helicity structure - 3D Structure of nucleons - Fundamental symmetries - Spin probes in beyond SM - Polarized Beams and Targets,... What is Spin Physics What is Spin Physics ● The Physics of exploiting spin : By using Polarized Observables Spin: The intrinsic form of angular momentum carried by elementary particles, composite particles, and atomic nuclei. The Spin quantum number is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. What is Spin Physics What Quantum Numbers? What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize These numbers describe values of conserved quantities in the dynamics of a quantum system What is Spin Physics But a particle is not a sphere and spin is solely a quantum-mechanical phenomena What is Spin Physics Stern-Gerlach: If spin had continuous values like the classical picture we would see it What is Spin Physics Stern-Gerlach: Instead we see spin has only two values in the field with opposite directions: or spin-up and spin-down What is Spin Physics W. Pauli (1925)
    [Show full text]
  • 1. Dirac Equation for Spin ½ Particles 2
    Advanced Particle Physics: III. QED III. QED for “pedestrians” 1. Dirac equation for spin ½ particles 2. Quantum-Electrodynamics and Feynman rules 3. Fermion-fermion scattering 4. Higher orders Literature: F. Halzen, A.D. Martin, “Quarks and Leptons” O. Nachtmann, “Elementarteilchenphysik” 1. Dirac Equation for spin ½ particles ∂ Idea: Linear ansatz to obtain E → i a relativistic wave equation w/ “ E = p + m ” ∂t r linear time derivatives (remove pr = −i ∇ negative energy solutions). Eψ = (αr ⋅ pr + β ⋅ m)ψ ∂ ⎛ ∂ ∂ ∂ ⎞ ⎜ ⎟ i ψ = −i⎜α1 ψ +α2 ψ +α3 ψ ⎟ + β mψ ∂t ⎝ ∂x1 ∂x2 ∂x3 ⎠ Solutions should also satisfy the relativistic energy momentum relation: E 2ψ = (pr 2 + m2 )ψ (Klein-Gordon Eq.) U. Uwer 1 Advanced Particle Physics: III. QED This is only the case if coefficients fulfill the relations: αiα j + α jαi = 2δij αi β + βα j = 0 β 2 = 1 Cannot be satisfied by scalar coefficients: Dirac proposed αi and β being 4×4 matrices working on 4 dim. vectors: ⎛ 0 σ ⎞ ⎛ 1 0 ⎞ σ are Pauli α = ⎜ i ⎟ and β = ⎜ ⎟ i 4×4 martices: i ⎜ ⎟ ⎜ ⎟ matrices ⎝σ i 0 ⎠ ⎝0 − 1⎠ ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ ⎟ ψ = 2 ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ ⎛ ∂ r ⎞ i⎜ β ψ + βαr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ ⎛ 0 ∂ r ⎞ i⎜γ ψ + γr ⋅ ∇ψ ⎟ − m ⋅1⋅ψ = 0 ⎝ ∂t ⎠ 0 i where γ = β and γ = βα i , i = 1,2,3 Dirac Equation: µ i γ ∂µψ − mψ = 0 ⎛ψ ⎞ ⎜ 1 ⎟ ⎜ψ 2 ⎟ Solutions ψ describe spin ½ (anti) particles: ψ = ⎜ψ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ψ 4 ⎠ Extremely 4 ⎛ µ ∂ ⎞ compressed j = 1...4 : ∑ ⎜∑ i ⋅ (γ ) jk µ − mδ jk ⎟ψ k description k =1⎝ µ ∂x ⎠ U.
    [Show full text]
  • 2 Quantum Theory of Spin Waves
    2 Quantum Theory of Spin Waves In Chapter 1, we discussed the angular momenta and magnetic moments of individual atoms and ions. When these atoms or ions are constituents of a solid, it is important to take into consideration the ways in which the angular momenta on different sites interact with one another. For simplicity, we will restrict our attention to the case when the angular momentum on each site is entirely due to spin. The elementary excitations of coupled spin systems in solids are called spin waves. In this chapter, we will introduce the quantum theory of these excita- tions at low temperatures. The two primary interaction mechanisms for spins are magnetic dipole–dipole coupling and a mechanism of quantum mechanical origin referred to as the exchange interaction. The dipolar interactions are of importance when the spin wavelength is very long compared to the spacing between spins, and the exchange interaction dominates when the spacing be- tween spins becomes significant on the scale of a wavelength. In this chapter, we focus on exchange-dominated spin waves, while dipolar spin waves are the primary topic of subsequent chapters. We begin this chapter with a quantum mechanical treatment of a sin- gle electron in a uniform field and follow it with the derivations of Zeeman energy and Larmor precession. We then consider one of the simplest exchange- coupled spin systems, molecular hydrogen. Exchange plays a crucial role in the existence of ordered spin systems. The ground state of H2 is a two-electron exchange-coupled system in an embryonic antiferromagnetic state.
    [Show full text]
  • Spin in Relativistic Quantum Theory∗
    Spin in relativistic quantum theory∗ W. N. Polyzou, Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 W. Gl¨ockle, Institut f¨urtheoretische Physik II, Ruhr-Universit¨at Bochum, D-44780 Bochum, Germany H. Wita la M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krak´ow,Poland today Abstract We discuss the role of spin in Poincar´einvariant formulations of quan- tum mechanics. 1 Introduction In this paper we discuss the role of spin in relativistic few-body models. The new feature with spin in relativistic quantum mechanics is that sequences of rotationless Lorentz transformations that map rest frames to rest frames can generate rotations. To get a well-defined spin observable one needs to define it in one preferred frame and then use specific Lorentz transformations to relate the spin in the preferred frame to any other frame. Different choices of the preferred frame and the specific Lorentz transformations lead to an infinite number of possible observables that have all of the properties of a spin. This paper provides a general discussion of the relation between the spin of a system and the spin of its elementary constituents in relativistic few-body systems. In section 2 we discuss the Poincar´egroup, which is the group relating inertial frames in special relativity. Unitary representations of the Poincar´e group preserve quantum probabilities in all inertial frames, and define the rel- ativistic dynamics. In section 3 we construct a large set of abstract operators out of the Poincar´egenerators, and determine their commutation relations and ∗During the preparation of this paper Walter Gl¨ockle passed away.
    [Show full text]
  • Measurement in the De Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran
    Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran, Alexandre Gondran To cite this version: Michel Gondran, Alexandre Gondran. Measurement in the de Broglie-Bohm interpretation: Double- slit, Stern-Gerlach and EPR-B. Physics Research International, Hindawi, 2014, 2014. hal-00862895v3 HAL Id: hal-00862895 https://hal.archives-ouvertes.fr/hal-00862895v3 Submitted on 24 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Measurement in the de Broglie-Bohm interpretation: Double-slit, Stern-Gerlach and EPR-B Michel Gondran University Paris Dauphine, Lamsade, 75 016 Paris, France∗ Alexandre Gondran École Nationale de l’Aviation Civile, 31000 Toulouse, Francey We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B. First, we demonstrate the conditions in which the de Broglie-Bohm interpretation can be assumed to be valid through continuity with classical mechanics.
    [Show full text]
  • Spin State Determination Using Stern-Gerlach Device
    OBbEflMHEHHblM MHCTMTYT flflEPHbIX MCCJlEflOBAHMM rws fly6Ha E4-96-339 M.I.Shirokov* SPIN STATE DETERMINATION USING STERN—GERLACH DEVICE Submitted to ^Foundations of Physics» ♦Fax 7(09621) 65084 VUL 2 8 m 1 1 il 1996 1 Introduction In order to determine a physical system state, one needs a physical procedure which allows one to find the density matrix which the system had before this procedure. If the state is pure, then one must determine the system wave function. The state determination differs from the well-known quantum observable measurement. The problem and different approaches to its solution have been reviewed in W. The paper contains references to Kemble (1937), Gale, Guth and Trammel (1968), Lamb (1969), d’Espagnat (1976). The book (2) gives additional references (the problem being called "informationaly complete measurement”). The determination of a particle spin state is the simplest example. In the case of spin one-half one has to find two read parameters which determine the spin wave function or three parameters determining the density matrix. The purpose of this paper is to show how the initial spin state can be found (in the case of an arbitrary spin s = 1/2,1,...) using the Stern-Gerlach device. The device is well-known as the experimental procedure destined for spin observable measurement, e g. see (3,4L In order to describe a spin state, one may use instead of the density matrix D the ex ­ pectation values (sjs, • ■ ■ sjt) = 7V(s,s; • ■ • Sk)D of products of the spin vector components s,,7 = 1,2,3.
    [Show full text]
  • Chapter 3 Feynman Path Integral
    Chapter 3 Feynman Path Integral The aim of this chapter is to introduce the concept of the Feynman path integral. As well as developing the general construction scheme, particular emphasis is placed on establishing the interconnections between the quantum mechanical path integral, classical Hamiltonian mechanics and classical statistical mechanics. The practice of path integration is discussed in the context of several pedagogical applications: As well as the canonical examples of a quantum particle in a single and double potential well, we discuss the generalisation of the path integral scheme to tunneling of extended objects (quantum fields), dissipative and thermally assisted quantum tunneling, and the quantum mechanical spin. In this chapter we will temporarily leave the arena of many–body physics and second quantisation and, at least superficially, return to single–particle quantum mechanics. By establishing the path integral approach for ordinary quantum mechanics, we will set the stage for the introduction of functional field integral methods for many–body theories explored in the next chapter. We will see that the path integral not only represents a gateway to higher dimensional functional integral methods but, when viewed from an appropriate perspective, already represents a field theoretical approach in its own right. Exploiting this connection, various techniques and concepts of field theory, viz. stationary phase analyses of functional integrals, the Euclidean formulation of field theory, instanton techniques, and the role of topological concepts in field theory will be motivated and introduced in this chapter. 3.1 The Path Integral: General Formalism Broadly speaking, there are two basic approaches to the formulation of quantum mechan- ics: the ‘operator approach’ based on the canonical quantisation of physical observables Concepts in Theoretical Physics 64 CHAPTER 3.
    [Show full text]