Histones H3 and H4 Are Components of Upstream Activation Factor Required for the High-Level Transcription of Yeast Rdna by RNA Polymerase I
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 13458–13462, December 1997 Biochemistry Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I JOHN KEENER*, JONATHAN A. DODD*, DOMINIQUE LALO, AND MASAYASU NOMURA† Department of Biological Chemistry, University of California, Irvine, CA 92697-1700 Contributed by Masayasu Nomura, October 16, 1997 ABSTRACT RNA polymerase I (Pol I) transcription in consisting of Rrn6p, Rrn7p, and Rrn11p; refs. 3, 9, and 10), the yeast Saccharomyces cerevisiae is greatly stimulated in vivo Rrn3p (5), and Pol I are required. In addition to these factors, and in vitro by the multiprotein complex, upstream activation upstream activation factor (UAF) and TATA box-binding factor (UAF). UAF binds tightly to the upstream element of the protein, as well as the upstream element, are required for a rDNA promoter, such that once bound (in vitro), UAF does not high level of transcription from the yeast rDNA promoter (4, readily exchange onto a competing template. Of the polypep- 11). Purified UAF previously was shown to contain three tides previously identified in purified UAF, three are encoded genetically defined subunits, Rrn5p, Rrn9p, and Rrn10p, and by genes required for Pol I transcription in vivo: RRN5, RRN9, two uncharacterized subunits, p30 and p18 (4). and RRN10. Two others, p30 and p18, have remained unchar- DNA in the eukaryotic nucleus is organized as chromatin, acterized. We report here that the N-terminal amino acid consisting mostly of regularly repeating nucleosomes in which sequence, its mobility in gel electrophoresis, and the immu- DNA is wrapped around an octameric structure of core noreactivity of p18 shows that it is histone H3.
[Show full text]