+ CATALOG of Organic Seed Potatoes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2018 Consortium Funded Progress Reports
Northwest Potato Research Consortium Annual and Final Reports for FY 2017-18 and FY 2016-17, respectively Reports are presented here as submitted by the lead principle investigator on each project. Funded Scientists Project Title Page # Weed Science Targeted Herbicide Programs for Weed Control in Pam Hutchinson, Joel Felix, Potatoes: Educating Potato Growers and Ag Tim Miller, Steven Seefeldt, 1 Industry about Herbicide Resistance and Weed and Ian Burke Shifts Plant Pathology Kasia Duellman, Phill Characterizing Fusarium species associated with Wharton, James Woodhall, and refining management of potato dry rot in the 9 Ken Frost, Debra Inglis, Pacific Northwest Don McMoran Dennis Johnson, Ken Frost, Development of Verticillium Wilt-Suppressive Soils Mike Thornton, Phill and Evaluation of Fungicidal and Biorational 11 Wharton Products for Northwest Potato Production Assessing Efficacy of Disinfection of Fresh Pack Miller Research 42 Water on Bacterial Load and Tuber Decay Comparison of Metam Sodium Fumigation Methods Miller Research and Alternatives to Metam Sodium 53 Fumigation for Potato Pest Management Use of metconazole for improved yields and fungicide Miller Research 74 resistance management Evaluation of phosphorous acid fungicide programs for improved pink rot management Miller Research 87 and assessment of mefenoxam resistance in pink rot pathogen populations in the PNW Identifying a potential pathogenic cause of the Kylie Swisher disease symptoms and early plant 96 senescence in the Columbia Basin potatoes in 2016 Identification -
International Union for the Protection of New Varieties of Plants Geneva
E TG/23/6 ORIGINAL: English DATE: 2004-03-31 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA * POTATO (Solanum tuberosum L.) GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY Alternative Names: * Latin English French German Spanish Solanum tuberosum L., Potato Pomme de terre Kartoffel Papa, Patata S. tuberosum L. sensu lato ASSOCIATED DOCUMENTS These guidelines should be read in conjunction with document TG/1/3, “G eneral Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants” (hereinafter referred to as the “General Introduction”) and its associated “TGP” documents. * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest infor mation.] TG/23/6 Potato, 2004 -03 -31 - 2 - TABLE OF CONTENTS 1. SUBJECT OF THESE TES T GUIDELINES ................................ ................................ ................................ .. 3 2. MATERIAL REQUIRED ................................ ................................ ................................ ............................... 3 3. METHOD OF EXAMINATIO N................................ ................................ ................................ ..................... 3 3.1 Duration of Tests ................................ ................................ ............................... -
Best Practice Document for the Coexistence of Genetically Modified
JRC SCIENCE FOR POLICY REPORT European Coexistence Bureau (ECoB) Best practice document for the coexistence of genetically modified potato with conventional and organic farming Ivelin Rizov, Gerhard Rühl, Maren Langhof, Jonas Kathage, Emilio Rodríguez-Cerezo 2018 EUR 29047 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Address: Edificio Expo. c/ Inca Garcilaso, 3. E-41092 Seville (Spain) Email: [email protected] Tel.: +34 954 48 8318 JRC Science Hub: https://ec.europa.eu/jrc JRC109645 EUR 29047 EN PDF ISBN 978-92-79-77694-6 ISSN 1831-9424 doi:10.2760/055172 Print ISBN 978-92-79-77695-3 ISSN 1018-5593 doi:10.2760/336072 Luxembourg: Publications Office of the European Union, 2018 © European Union, 2018 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. How to cite this report: Ivelin Rizov, Gerhard Rühl, Maren Langhof, Jonas Kathage, and Emilio Rodríguez-Cerezo, Best practice document for the coexistence of genetically modified potato with conventional and organic farming, EUR 29047 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-77694-6, doi:10.2760/055172, JRC109645. -
2021 Alaska Certified Seed Potato Varieties
2021 Alaska Certified Seed Potato Varieties Variety Name Possible Other Names Potato Skin Color Potato Flesh Color Cooking/Eating Information Flower Description Yield Information Disease/Pest Information Adirondack Dark Blue (2) Dark Purple (2) Good roasted, steamed, and Petals are mainly Produces higher Can be susceptible to Blue in salads. Can be chipped, but white with some blue- yields than most common scab, silver scurf, not after being in cold storage. purple pigmentation. blue varieties. (1) and Colorado potato beetle. (1) (1) (1) Alaska AK Frostless Whitish/Yellowish White (3) Excellent flavor. (3) Good for Blue violet petals (3) Medium to high Somewhat resistant to Frostless (3) baking, chipping, and making yield potential. (3) common scab. Susceptible into french fries. Not good for to late blight, wart, and chipping after cold storage. (8) golden nematode. (3) Alaska Mountain Blush* Alaska Red AK Redeye Red (2) White (2) Good texture and flavor. Good Dark lilac petals. (9) High yielding. (9) Some susceptibility to scab. for boiling and baking, but not Susceptibility/resistance to good for chipping. (9) other diseases or pests is unknown. (9) Alby's Gold Yellow (2) Yellow (2) Texture is starchy. (2) Allegany Buff (10) Whitish-Yellowish Good for making french fries Light purple petals. High yielding. (10) Resistant to golden (10) and chipping, even after Yellow anthers. (10) nematode, early blight, and tubers are placed in cold verticillium wilt; some storage. Has good taste and resistance to pitted scab and texture after boiling and late blight. (10) baking. (11) Allagash Allagash Whitish/Yellowish White (3) Good Taste. -
Potato - Wikipedia, the Free Encyclopedia
Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area -
Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques
sustainability Review Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques. Is It Only a Matter of Public Acceptance? Daniela Pacifico * and Roberta Paris Council for Agricultural Research and Economics Analysis (CREA), Centre for Research on Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy; [email protected] * Correspondence: daniela.pacifi[email protected]; Tel.: +39-051-631-6811 Academic Editor: Gerhart U. Ryffel Received: 26 July 2016; Accepted: 13 October 2016; Published: 20 October 2016 Abstract: Organic farming practices are commonly thought to reduce the environmental impact of agriculture and to preserve the naturalness of the products. Herein, we report the effect of crop management practices on nutritional and toxicological value of potato tubers. Comparative studies are often controversial and the results are dependent on genotype and methodological approach. Targeted analysis and “omics” strategies are discussed, pointing at the nutritional aspects and the corresponding biological and molecular processes involved. Organic farming supporters still do not accept the use of genetic modification to produce new varieties suited for organic agriculture and crop improvement by genetic engineering still sparks hot debate among various scientific and social factions whose major concern is the possible existence of unintended effects both on human and world health. In this context, the advent of “new plant breeding techniques” has reignited the discussion on genetic engineering and on the compatibility of the new technologies with an eco-friendly agriculture. Could cisgenic and genome-edited potatoes be new good options for organic agriculture? We discuss how these approaches can be used to address food security challenges and to overcome specific problems based on the biological characteristics of potato tubers, producing new varieties that can improve farmers’ profit with a lower impact on public opinion. -
Selected List of Vegetable Varieties for Gardeners in New York State
Selected List of Vegetable Varieties for Gardeners in New York State 2021 (Revised 11/20) Vegetable varieties listed in this report should be well adapted for New York State community, school and home gardens. It is recognized that varieties not listed here may be satisfactory or even perform better under certain conditions. We encourage gardens to rate the varieties at: vegvariety.cce.cornell.edu Visit our Vegetable Varieties for Gardeners in New York State website for detailed descriptions and some seed sources of more than 7,000 vegetable varieties including those listed in this report. Compare varieties, read ratings and reviews by fellow gardeners, and offer your own observations of which varieties perform best in your garden. Note: Future reports will be largely based on variety ratings from this site. vegvariety.cce.cornell.edu Cornell Garden-Based Learning Horticulture School of Integrative Plant Sciences Cornell University Ithaca, NY 14853-0327 www.gardening.cornell.edu Selected List of Vegetable Varieties for Gardeners in NYS – A. Helmholdt – page 2 of 8 Key to Notation At least 4 NY gardeners’ ratings averaging # New varieties to this year’s list * >3.5 stars at: vegvariety.cce.cornell.edu Downy mildew resistant or A Alternaria stem resistant DM tolerant Tolerance to Bean Common Mosaic Powdery mildew resistant or BCMV PM Virus BV1 & NY15 tolerant Bacterial leaf spot resistant strains 1, 2, BLS R Rust resistant and 3 are noted CTV Tolerance to citrus tristeza virus SE Sugar enhanced F Fusarium resistant SH2 Supersweet LBR Late -
Seed Potato Directory 2017
The farm operation grows 93 acres of field generations one and two seed, operates 4 greenhouses producing conventional and NFT minitubers. Our stewardship of this seed continues through WISCONSIN the certification Our of stewardship these seed oflots this on seed Wisconsin continues seed through grower t farms, there is no other program like it. CERTIFIED The program maintains variety trueness to type; selecting and testing clones, rogueing of weak, genetic variants, and diseased plants to continue to develop and maintain germplasm of your SEED POTATOES favorite varieties at our laboratory. 103 Years of Seed Growing Tradition A Century Long Tradition Pioneers In Seed Potato Certification Administered since inception by the College of Agricultural and Life Sciences, University of Wisconsin – Madison, the program Much of the early research work on potato diseases and how retains a full-time staff of experienced professionals to ensure they spread was done Scientists in Germany found and that, Holland through around careful the monitoring turn thoroughness and impartiality in inspection and certification of the century. Scientists found that, through careful monitoring procedures. o of the crop and removal of unhealthy plants, Similar they could research maintain soon was a vigorous, healthy stock indefinitely. Similar research soon was Through providing information, exercising technical skill, doing b being conducted in the United States. research directed at solving problems, and conducting outreach activities, the University meets the growers at the field level. USDA plant pathologist W.A. Orton had studied potato This special relationship to the academic community brings new certification in Germany and upon his return, began to work with T information on pathogens, best practices, and introduces high potato growers and Universities to introduce those concepts quality basic seed into the marketplace. -
2004 Michigan Potato Research Report
MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 MICHIGAN POTATO RESEARCH REPORT Photo on Left Left to Right: Ben Kudwa, First Last, First Last, First Last, Senator Alan Cropsey, First Last, First Last Volume 36 TABLE OF CONTENTS PAGE INTRODUCTION AND ACKNOWLEDGMENTS……………………………. 1 2004 POTATO BREEDING AND GENETICS RESEARCH REPORT David S. Douches, J. Coombs, K. Zarka, S. Copper, L. Frank, J. Driscoll and E. Estelle…………………………………………. 5 2004 POTATO VARIETY EVALUATIONS D. S. Douches, J. Coombs, L. Frank, J. Driscoll, J. Estelle, K. Zarka, R. Hammerschmidt, and W. Kirk…………………..….……...… 18 MANAGEMENT PROFILE FOR NEW POTATO VARIETIES AND LINES DECEMBER 2004 Sieg S. Snapp, Chris M. Long, Dave S. Douches, and Kitty O’Neil…...….. 50 2004 ON-FARM POTATO VARIETY TRIALS Chris Long, Dr. Dave Douches, Fred Springborn (Montcalm), Dave Glenn (Presque Isle) and Dr. Doo-Hong Min (Upper Peninsula)..…... 56 SEED TREATMENT, IN-FURROW AND SEED PLUS FOLIAR TREATMENTS FOR CONTROL OF POTATO STEM CANKER AND BLACK SCURF, 2004 W.W. Kirk and R.L. Schafer and D. Berry, P. Wharton and P. Tumbalam………………………………..……...…………..………..... 70 POTATO SEED PIECE AND VARIETAL RESPONSE TO VARIABLE RATES OF GIBBRELLIC ACID 2003-2004 Chris Long and Dr. Willie Kirk……………..……...…………..……….... 73 MANAGING RHIZOCTONIA DISEASES OF POTATO WITH OPTIMIZED FUNGICIDE APPLICATIONS AND VARIETAL SUSCEPTIBILITY; RESULTS FROM THE FIELD EXPERIMENTS. Devan R. Berry, William W. Kirk, Phillip S. Wharton, Robert L. Schafer, and Pavani G. Tumbalam………………….……….... 78 HOST PLANT RESISTANCE AND REDUCED RATES AND FREQUENCIES OF FUNGICIDE APPLICATION TO CONTROL POTATO BLIGHT (COOPERATIVE TRIAL QUAD STATE GROUP 2004) W.W. -
Minnesota Area Ii Potato Research and Promotion Council and Northern
MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2019 RESEARCH REPORTS Table of Contents 3. Impact of Sublethal Dicamba & Glyphosate Rates on Three Chipping Potato Cultivars M. Brooke, H. Hatterman-Valenti, A. Robinson, G. Secor & A. Auwarter 7. Vine Desiccation as an Effective Disease Management Strategy to Control Verticillium Wilt of Potato N. Gudmestad 13. Nitrogen Fertilization Rate and Cold-induced Sweetening in Potato Tubers During Storage S. Gupta & C. Rosen 21. Pressure Flattening and Bruise Susceptibility Among New Fresh Market and Chip Varieties D. Haagenson 26. Adjuvent Comparison with Potato Desiccants, Grand Forks, 1 H. Hatterman-Valenti & C. Auwarter 27. Adjuvent Comparison with Potato Desiccants, Grand Forks, 2 H. Hatterman-Valenti and C. Auwarter 28. Evaluating SOP vs. MOP Programs in Russet Burbank Potato H. Hatterman-Valenti & C. Auwarter 29. Evaluating Single and Repeat Hail Event in “Clearwater” Potato H. Hatterman-Valenti & C. Auwarter 32. Baseline Evaluation of Pollinator Landscape Plantings Bordering Commercial Potato I. MacRae 36. Management of Colorado Potato Beetle in Minnesota & North Dakota I. MacRae 41. Managing PVY Vectors, 2018 I. MacRae 49. Carryover of Herbicides in Potato Production Systems A. Robinson, E. Brandvik, & P. Ihry 54. Effects of Planting Configuration & Plant Population Density on the N Response of Russet Burbank Tuber Yield & Size C. Rosen, J. Crants, M. McNearney, K. Olander& H. Barrett 66. Evaluation of Aspire, Micro-Essentials S10, & MicroEssentials SZ as Sources of Potassium, Phosphate, Sulfur, Boron & Zine for Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 73. Evaluation of New Controlled Release Urea Fertilizer Products as N Sources for Russet Burbank Potatoes C. -
Common Scab Susceptibility of 24 Most Popular Potato Cultivars in USA, Utilizing a Greenhouse Assay with Three Different Pathoge
Common scab susceptibility of 24 most popular potato cultivars in USA, utilizing a greenhouse assay with three different pathogenic Streptomyces strains (species) Increasing disease score 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 Norland No data R Norkotah (ND) R Norkotah (ID) Shepody R Norkotah (ND) Ranger Russet No data R Norkotah (ID) R Norkotah 296 R Norkotah ID Norkotah 3 Red La Soda Shepody Yukon Gold Norkotah 8 Shepody Premier Russet Alturas Norkotah 8 Pike Premier Russet Dk Red Norland Norland Yukon Gold Norkotah 3 Russet Burbank Red La Soda Atlantic R Norkotah 296 Russet Burbank Ranger Russet Gold Rush Dk Red Norland Red La Soda Alturas R Norkotah 296 Megachip Snowden Superior Atlantic Superior Yukon Gold Snowden Russet Burbank Megachip Silverton russet Megachip Rio Grande Yukon Gold ME Dakota Pearl Atlantic Canela russet Dakota Pearl Premier Russet Yukon Gold (ID) Norkotah 3 Norland Dakota Pearl Snowden Silverton russet Superior Canela russet Dk Red Norland Pike R Norkotah ND Yukon Gold (WI) S. scabies Blazer Russet S. stelliscabiei Gold Rush S. species IdX Pike Rio Grande Alturas ME01-11h NY02-1c ID01-12c Gold Rush Yukon Gold 5.1e8 CFU/pot Norkotah 8 1.2e9 CFU/pot Blazer Russet 1e9 CFU/pot Ranger Russet Silverton russet Rio Grande Canela russet Blazer Russet Cultivars are listed along the left side of graphs, ranked by disease severity, with most susceptible at the top and most resistant at the bottom. Disease score is a combination of type of lesion (surface, pits or raised lesions) and amount of surface area affected. -
Potato Glossary
A Potato Glossary A Potato Glossary by Richard E. Tucker Last revised 15 Sep 2016 Copyright © 2016 by Richard E. Tucker Introduction This glossary has been prepared as a companion to A Potato Chronology. In that work, a self-imposed requirement to limit each entry to a single line forced the use of technical phrases, scientific words, jargon and terminology that may be unfamiliar to many, even to those in the potato business. It is hoped that this glossary will aid those using that chronology, and it is hoped that it may become a useful reference for anyone interested in learning more about potatoes, farming and gardening. There was a time, a century or more ago, when nearly everyone was familiar with farming life, the raising of potatoes in particular and the lingo of farming in general. They were farmers themselves, they had relatives who farmed, they knew someone who was a farmer, or they worked on a nearby farm during their youth. Then, nearly everyone grew potatoes in their gardens and sold the extra. But that was a long ago time. Now the general population is now separated from the farm by several generations. Only about 2 % of the US population lives on a farm and only a tiny few more even know anyone who lives on a farm. Words and phrases used by farmers in general and potato growers in particular are now unfamiliar to most Americans. Additionally, farming has become an increasingly complex and technical endeavor. Research on the cutting edge of science is leading to new production techniques, new handling practices, new varieties, new understanding of plant physiology, soil and pest ecology, and other advances too numerous to mention.