Endophytic Fungi from the Branches of Camellia Taliensis (W. W. Smith) Melchior, a Widely Distributed Wild Tea Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft Risk Management Proposal, Partial Review of Malus Import
Risk Management Proposal: Partial review of Malus import requirements in the Importation of Nursery Stock Import Health Standard (155.02.06) FOR PUBLIC CONSULTATION November 2020 Plant Germplasm Imports Animal & Plant Health Directorate Ministry for Primary Industries Pastoral House 25 The Terrace PO Box 2526 Wellington 6140 New Zealand Tel: +64 4 894 0100 Email: [email protected] Table of Contents Page Submissions 1 Purpose 2 Objective 2 Background 2 Risk management approach 4 Proposed requirements for post entry quarantine 8 Appendix 1 14 i Submissions The Ministry for Primary Industries (MPI) invites comment from interested parties on proposed changes to import requirements in the Malus schedule in the import health standard (IHS) 155.02.061: Importation of Nursery Stock, which is supported by this risk management proposal. The purpose of an import health standard is defined as follows in section 22(1) of the Biosecurity Act 1993 (the Act): “An import health standard specifies requirements that must be met to effectively manage risks associated with importing risk goods, including risks arising because importing the goods involves or might involve an incidentally imported new organism”. In accordance with Section 23 of the Act, MPI must consult with interested parties before issuing or amending IHS under section 24A of the Act. Therefore, MPI therefore seeks formal comment on the proposed import requirements. The following points may be of assistance in preparing comments: • Wherever possible, comments should be specific to a particular section/requirement of the IHS; • Where possible, reasons, data and supporting published references to support comments are requested. • The use of examples to illustrate particular points is encouraged. -
GFS Fungal Remains from Late Neogene Deposits at the Gray
GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996). -
Camel/A Sinensis L. (Cultivated Tea) and Its Wild Relatives Based on Randomly Amplified Polymorphic DNA and Organelle-Specific STS
Heredity 78(1997)603—611 Received 11 July 1996 An assessment of genetic diversity among Camel/a sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS FRANCIS N. WACHIRA, WAYNE POWELL & ROBBIE WAUGH* Department of Cell and Mo/ecu/ar Genetics, Scottish Crop Research Institute, lnvergowrie, Dundee DD2 5DA, Scotland, U.K. Membersof the genus Camellia interbreed relatively freely and several natural species hybrids exist. Species introgression into the cultivated germplasm of tea, Camellia sinensis L. (0. Kuntz), from related Camellia species has been postulated, and it is thought that teas currently under cultivation are not archetypal varieties. Randomly amplified polymorphic DNAs (RAPDs) and organelle-specific polymerase chain reactions were used to establish the affin- ities among cultivated tea and its wild relatives. The measures of similarity obtained indicated that RAPDs were taxonomically informative in Came/ha, and the species relationships revealed were generally consistent with those obtained using morphological, compatibility and terpenoid affinities. Species-specific RAPD products and products potentially diagnostic of introgressive hybridization into the cultivated gene pool were identified. The organellar genomes were remarkably conserved, with polymorphism detected in only one of four noncoding regions in the chioroplast and mitochondrial genomes. Keywords: Camelliaspp., gene introgression,phenetics, randomly amplified polymorphic DNA, similarity. Introduction several, including C. taliensis, C. grandibractiata, C. kwangsiensis, C. gymnogyna, C. crassicolumna, C. Afundamental goal of germplasm collection and tachangensis, C. ptilophylla and C. irrawadiensis, are conservation is the understanding of genetic rela- already used in parts of Asia (Chang & Bartholo- tionships within and between the species of concern. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
P020110307527551165137.Pdf
CONTENT 1.MESSAGE FROM DIRECTOR …………………………………………………………………………………………………………………………………………………… 03 2.ORGANIZATION STRUCTURE …………………………………………………………………………………………………………………………………………………… 05 3.HIGHLIGHTS OF ACHIEVEMENTS …………………………………………………………………………………………………………………………………………… 06 Coexistence of Conserve and Research----“The Germplasm Bank of Wild Species ” services biodiversity protection and socio-economic development ………………………………………………………………………………………………………………………………………………… 06 The Structure, Activity and New Drug Pre-Clinical Research of Monoterpene Indole Alkaloids ………………………………………… 09 Anti-Cancer Constituents in the Herb Medicine-Shengma (Cimicifuga L) ……………………………………………………………………………… 10 Floristic Study on the Seed Plants of Yaoshan Mountain in Northeast Yunnan …………………………………………………………………… 11 Higher Fungi Resources and Chemical Composition in Alpine and Sub-alpine Regions in Southwest China ……………………… 12 Research Progress on Natural Tobacco Mosaic Virus (TMV) Inhibitors…………………………………………………………………………………… 13 Predicting Global Change through Reconstruction Research of Paleoclimate………………………………………………………………………… 14 Chemical Composition of a traditional Chinese medicine-Swertia mileensis……………………………………………………………………………… 15 Mountain Ecosystem Research has Made New Progress ………………………………………………………………………………………………………… 16 Plant Cyclic Peptide has Made Important Progress ………………………………………………………………………………………………………………… 17 Progresses in Computational Chemistry Research ………………………………………………………………………………………………………………… 18 New Progress in the Total Synthesis of Natural Products ……………………………………………………………………………………………………… -
'Camellia T'. Synonym for 'Donckelaeri'. (Masayoshi). TC Cole
T. T. Fendig. 1951, American Camellia Yearbook, p.77 as ‘Camellia T’. Synonym for ‘Donckelaeri’. (Masayoshi). T.C. Cole. Trewidden Estate Nursery, 1995, Retail Camellia List, p.8. Abbreviation for Thomas Cornelius Cole. T.C. Patin. (C.japonica) SCCS., 1976, Camellia Nomenclature, p.147: Light red. Very large, full, semi- double with irregular, large petals and a spray of large stamens. Originated in USA by T.C. Patin, Hammond, Louisiana. Sport: T.C. Patin Variegated. T.C. Patin Variegated. (C.japonica), SCCS., 1976, Camellia Nomenclature, p.147 as ‘T.C. Patin Var.’: A virus variegated form of T.C. Patin - Light red blotched white. Originated in USA by T.C. Patin, Hammond, Louisiana. T.D. Wipper. Nagoya Camellia Society Bulletin, 1992, No.25. Synonym for Dave’s Weeper. T.G. Donkelari. Lindo Nurseries Price List, 1949, p.7. Synonym for ‘Donckelaeri’. (Masayoshi). T.K. Blush. (C.japonica) Wilmot, 1943, Camellia Variety Classification Report, 1943, p.14: A light pink sport of T.K. Variegated. Originated in USA. Synonym: ‘T.K. Pink’. T.K. Number 4. Florida Nursery and Landscaping Co. Catalogue, 1948 as ‘T.K. No.4’. Synonym for T.K. Variegated. T.K. Pink. Morris, 1954, RHS., The Rhododendron and Camellia Yearbook, p.113. Synonym for T.K. Blush. T.K. Red. Semmes Nursery Catalogue, 1942-1943, p.21. Synonym for T.K. Variegated Red. T.K. Variegata. Kiyono Nursery Catalogue, 1942-1943. Synonym for T.K. Variegated. T.K. Variegated. (C.japonica) Kiyono Overlook Nursery Catalogue, 1934, p.14: Semi-double. Light pink edged dark pink. Gerbing’s Azalea Gardens Catalogue, 1938-1939: Semi-double, white flowers striped pink, rose and lavender, some flowers solid colour, purple and pink. -
Monograph on Dematiaceous Fungi
Monograph On Dematiaceous fungi A guide for description of dematiaceous fungi fungi of medical importance, diseases caused by them, diagnosis and treatment By Mohamed Refai and Heidy Abo El-Yazid Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2014 1 Preface The first time I saw cultures of dematiaceous fungi was in the laboratory of Prof. Seeliger in Bonn, 1962, when I attended a practical course on moulds for one week. Then I handled myself several cultures of black fungi, as contaminants in Mycology Laboratory of Prof. Rieth, 1963-1964, in Hamburg. When I visited Prof. DE Varies in Baarn, 1963. I was fascinated by the tremendous number of moulds in the Centraalbureau voor Schimmelcultures, Baarn, Netherlands. On the other hand, I was proud, that El-Sheikh Mahgoub, a Colleague from Sundan, wrote an internationally well-known book on mycetoma. I have never seen cases of dematiaceous fungal infections in Egypt, therefore, I was very happy, when I saw the collection of mycetoma cases reported in Egypt by the eminent Egyptian Mycologist, Prof. Dr Mohamed Taha, Zagazig University. To all these prominent mycologists I dedicate this monograph. Prof. Dr. Mohamed Refai, 1.5.2014 Heinz Seeliger Heinz Rieth Gerard de Vries, El-Sheikh Mahgoub Mohamed Taha 2 Contents 1. Introduction 4 2. 30. The genus Rhinocladiella 83 2. Description of dematiaceous 6 2. 31. The genus Scedosporium 86 fungi 2. 1. The genus Alternaria 6 2. 32. The genus Scytalidium 89 2.2. The genus Aurobasidium 11 2.33. The genus Stachybotrys 91 2.3. The genus Bipolaris 16 2. -
Transcriptomics of Different Tissues of Blueberry and Diversity Analysis Of
Chen et al. BMC Plant Biol (2021) 21:389 https://doi.org/10.1186/s12870-021-03125-z RESEARCH Open Access Transcriptomics of diferent tissues of blueberry and diversity analysis of rhizosphere fungi under cadmium stress Shaopeng Chen1*, QianQian Zhuang1, XiaoLei Chu2, ZhiXin Ju1, Tao Dong1 and Yuan Ma1 Abstract Blueberry (Vaccinium ssp.) is a perennial shrub belonging to the family Ericaceae, which is highly tolerant of acid soils and heavy metal pollution. In the present study, blueberry was subjected to cadmium (Cd) stress in simulated pot culture. The transcriptomics and rhizosphere fungal diversity of blueberry were analyzed, and the iron (Fe), manga- nese (Mn), copper (Cu), zinc (Zn) and cadmium (Cd) content of blueberry tissues, soil and DGT was determined. A correlation analysis was also performed. A total of 84 374 annotated genes were identifed in the root, stem, leaf and fruit tissue of blueberry, of which 3370 were DEGs, and in stem tissue, of which 2521 were DEGs. The annotation data showed that these DEGs were mainly concentrated in a series of metabolic pathways related to signal transduction, defense and the plant–pathogen response. Blueberry transferred excess Cd from the root to the stem for storage, and the highest levels of Cd were found in stem tissue, consistent with the results of transcriptome analysis, while the lowest Cd concentration occurred in the fruit, Cd also inhibited the absorption of other metal elements by blueberry. A series of genes related to Cd regulation were screened by analyzing the correlation between heavy metal content and transcriptome results. The roots of blueberry rely on mycorrhiza to absorb nutrients from the soil. -
Descargar En
Coordinación general Carlos de la Peña Organización general E.E.A. Concordia - INTA: Carlos de la Peña, Ciro Mastrandrea, María de los Ángeles García, Sergio Ramos, Matías S. Martínez, Javier Oberschelp, Leonel Harrand, Carla Salto, Gustavo López, María Nöel Comparetto. Dirección Nacional de Desarrollo Foresto Industrial: Mario Flores Palenzona UTN Concordia: Natalia Tesón, Sebastián Trupiano AIANER: Hernán Arriola, Paola Velázquez AFoA Regional Río Uruguay: Alejandro Guidici Municipalidad de Concordia: Marcos Follonier Municipalidad de Federación: Daniel Benítez IMFER: Jorge Rigoni, Aldo Colpo, María Julia Buffa CIPAF: Franco Pezzini, Dante Biazzizo Colaboración independiente: Victoria Burgués Comisión revisora de trabajos voluntarios Carla Salto Leonel Harrand Mario Flores Palenzona María de los Ángeles García Sergio Ramos Carlos de la Peña Ciro Mastrandrea Fotografías Pablo Olivieri, Manuel Cellini, Mario Flores Palenzona, Carlos de la Peña Editor General Sebastián Sarubi 3 4 5 Una vez más, pese a las adversidades y al especial momento que nos toca vivir debido a la pandemia de COVID 19, se llevan a cabo las Jornadas Forestales de Entre Ríos, evento que ha posicionado a nuestra región a nivel nacional, reuniendo a todos los actores del sector forestal, no solo de nuestra región sino también de otras provincias, e incluso otros países. Su continuidad le ha permitido ganarse un lugar en el calendario de los eventos forestales de relevancia. Este año nos encontraremos todos los viernes de octubre, en forma virtual a través del canal de youtube del INTA, donde disertantes referentes en diversas temáticas de interés actual harán sus exposiciones, y los asistentes, tendrán la posibilidad de realizar preguntas mediante un chat paralelo. -
Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %). -
International Camellia Journal 2017
International Camellia Journal 2017 An official publication of the International Camellia Society Journal Number 49 ISSN 0159-656X International Camellia Journal 2017 No. 49 International Camellia Society Congress 2018 Nantes, France, March 25 to 29 Pre-Congress Tour March 21-25 Gardens in Brittany Aims of the International Camellia Society Congress Registration March 25 in Nantes To foster the love of camellias throughout the world and maintain and increase their popularity Post-Congress Tours To undertake historical, scientific and horticultural research in connection with camellias Tour A March 29 to 31 Normandy, including World War II To co-operate with all national and regional camellia societies and with other horticultural societies sites To disseminate information concerning camellias by means of bulletins and other publications To encourage a friendly exchange between camellia enthusiasts of all nationalities Tour B March 29 to 31 Gardens and nurseries in southwest France Major dates in the International Camellia Society calendar Reassemble in Paris April 1 to 2, including visit to Versailles International Camellia Society Congresses 2018 - Nantes, Brittany, France. 2020 - Goto City, Japan. 2022 - Italy ISSN 0159-656X Published in 2017 by the International Camellia Society. © The International Camellia Society unless otherwise stated 3 Contents Camellia research A transcriptomic database of petal blight-resistant Camellia lutchuensis 47 Nikolai Kondratev1, Matthew Denton-Giles1,2, Cade D Fulton1, President’s message 6 Paul P Dijkwel1 -
Colonization of Vines by Petri Disease Fungi, Susceptibility of Rootstocks To
PLANT PATHOLOGY / SCIENTIFIC ARTICLE DOI: 10.1590/1808-1657000882017 Colonization of vines by Petri disease fungi, susceptibility of rootstocks to Phaeomoniella chlamydospora and their disinfection Colonização de videiras pelos fungos da doença de Petri, suscetibilidade de porta-enxertos ao fungo Phaeomoniella chlamydospora e sua desinfecção Ana Beatriz Monteiro Ferreira1, Luís Garrigós Leite1, José Luiz Hernandes2, Ricardo Harakava3, Carlos Roberto Padovani4, César Junior Bueno1* ABSTRACT: Petri disease is complex, attacks young RESUMO: A doença de Petri é complexa, ataca plantas jovens vine plants and it is difficult to be controlled. The fungus de videira e é difícil de ser controlada. O fungo Phaeomoniella Phaeomoniella chlamydospora (Phc) has been identified as chlamydospora é o principal agente causal dessa doença. Os obje- the main causative agent of this disease. This study aimed to tivos deste estudo foram: avaliar o local prevalente dos fungos da evaluate the prevalent colonization of the Petri disease fungi doença de Petri, em diferentes partes de plantas de videira; ava- in different portions of vine plants; to assess the susceptibility liar a suscetibilidade de porta-enxertos de videira para o fungo of grapevine rootstocks to the fungus P. chlamydospora; to P. chlamydospora; avaliar o efeito da solarização e da biofumiga- assess the effect of solarization and biofumigation, followed by ção seguido de tratamento com água quente sobre a desinfecção hot-water treatment (HWT), on the disinfection of cuttings de estacas do porta-enxerto IAC 766 infectadas com o fungo of the rootstock IAC 766 infected with P. chlamydospora, and P. chlamydospora; avaliar o efeito da solarização e da biofumigação assess the effect of solarization and biofumigation, followed by seguido de tratamento com água quente sobre o enraizamento de HWT, on the rooting of cuttings of the rootstock IAC 766.