Environment, Prehistory & Archaeology of Mount Rainier

Total Page:16

File Type:pdf, Size:1020Kb

Environment, Prehistory & Archaeology of Mount Rainier Environment, Prehistory & Archaeology of Mount Rainier National Park, Washington by Greg C. Burtchard with contributions by Stephen C. Hamilton and Richard H. McClure, Jr. a report prepared for NATIONAL PARK SERVICE, Seattle, Washington International Archaeological Research Institute,Inc. Originally published February, 1998 Reprinted February, 2003 Environment, Prehistory and Archaeology of Mount Rainier National Park, Washington by Greg C. Burtchard with contributions by Stephen C. Hamilton Richard H. McClure, Jr. prepared for United States Department of the Interior National Park Service Columbia Cascades System Support Office 909 First Avenue Seattle, Washington 98104-1060 International Archaeological Research Institute, Inc. 2081 Young Street Honolulu, Hawai‘i 96826 Originally published February 1998 Reprinted February 2003 ii Subalpine parkland at “Summerland” looking northwest into Fryingpan Creek drainage during an August 16, 1995 snowstorm. Because they afforded access to upper elevation resources, moderated distance to lowland residence and provided relief from unpredictable severe weather, base camps in forest/subalpine ecotonal settings may have been an important element of prehistoric use of Mount Rainier. Fryingpan Rockshelter (45PI43) is situated near Fryingpan Creek below the snowline at photo right. The cover photograph shows Mount Rainier and its early evening reflection in a tarn lake in Spray Park. Photo taken September 1, 1995. This document is printed on acid-free archival paper. It is intended to be a long-term record of the archaeology of Mount Rainier National Park. iii FOREWORD TO THE 2003 EDITION Environment, Prehistory and Archaeology of Mount Rainier National Park is the park’s most comprehensive archaeological overview and research design. Based on the results of field and archival research through 1997, it draws together the park’s known prehistoric archaeological record, and evaluates it in light of its place within broader regional subsistence and settlement patterns. The 2003 edition remains unchanged except for this foreword, use of color graphics where available, addition of Appendix C containing an otherwise hard-to-get citation in support of ecological arguments made in the body of the text, minor editorial corrections, and production in both paper and compact disk (CD) format. As the following Preface notes, two historical sites, 20 prehistoric sites and 18 prehistoric isolated finds were documented within park boundaries when the original report was written. These totals account for data available during the overview’s preparation period. Text and tabular information included in this reprinted volume is limited to this earlier record. Subsequent archaeological surveys and tests by park service archaeologists, and by Central Washington University’s archaeological field school, have increased the site inventory; thereby enhancing our understanding of site age, content, and stratigraphy. At the beginning of 2003, Mount Rainier’s archaeological inventory stands at 40 prehistoric and multi-component sites, 29 prehistoric isolated finds, and 31 historical sites and isolates. Firmly dated cultural deposits document human use of Mount Rainier to 3,500 radiocarbon years ago. Test results from two open sites and two rockshelter sites have revealed surprisingly high densities of lithic debris, suggesting repeated use of park landscapes since at least that time. Stratigraphic sequences from Sunrise Ridge in the park’s northeastern quadrant indicate the presence of a glacier-free, wooded environment at 6,400 feet by 8,500 years ago. Results of these ongoing studies will be made available as separate technical reports as they are completed. Preliminary results tend to support this overview’s findings, and suggest a substantial human presence on the mountain dating to at least the mid-Holocene as indicated by the available radiocarbon record, and very likely to the early Holocene as indicated in stratigraphic profiles. It is important to note that doubling the size of the park’s prehistoric site inventory has not changed basic site location or site type patterns emphasized in this overview. As with the original data, a preponderance of prehistoric sites and isolates are found in subalpine habitats: fifty-one (74%) of the current total are located in patchy subalpine parklands, eleven (16%) in alpine settings, and seven (10%) in montane forest contexts—most near the upper elevation forest/subalpine ecotone. No sites have been documented on Mount Rainier’s high energy floodplains. In this report, I suggest that the relatively high site count in subalpine to alpine settings reflects focused use of those habitats due to the relatively high abundance of economically useful plant animal species that tend to aggregate there during the summer season. The reality of the pattern and, in my opinion, the basic reasons underlying it have only grown stronger in the intervening years. Because it has attracted interest and generated much discussion, the notion that prehistoric people directed their activities preferentially toward high elevation subalpine habitats, rather than to lower, more densely forested settings, warrants clarification. In making this argument, it should be noted, that even under the best conditions, archaeological remains are difficult to find on Mount Rainier. Lithic artifacts tend to be small and are obscured by the park’s multiple volcanic deposits. They are even more difficult to locate in heavily wooded settings. There is little doubt that the subalpine versus forest pattern iv reflects, in part, differences in site discovery potential between different vegetation regimes. That said, I am convinced that Mount Rainier site location patterning reflects genuine variation in resource potential, human use patterns, and the archaeological record of that use during the prehistoric past. This is not to say that lower elevation, forested landscapes were avoided altogether; but rather that 1) subalpine and alpine environments constitute the largest expanse of naturally maintained, productive, early seral-stage habitat available within park boundaries; and that 2) in the absence of productive low-elevation salmon bearing streams, these environments were sought out and maintained because of their high resource potential relative to the lower, but more resource-impoverished, wet maritime forests. Mount Rainier’s prehistoric site distribution model, temporal land-use model, and other issues germane to long-term use of high-elevation Cascade landscapes are developed at several points in the body of the text (see, for example, pages 15-16, 44-50, and summary discussion on pages 158-172). Much of the ecological argument included in these discussions, and especially that relevant to site distribution, is built on site location patterns first recognized in an earlier study for Mount Hood National Forest in the northern Oregon Cascades; and refined further through discussions with archaeologists such as Randall Schalk and Bob Mierendorf, who had prepared earlier overviews that modeled human use of high-elevation landscapes in Olympic National Park and North Cascade National Park Complex respectively. In both the Mount Hood report and the present report, I couch arguments relevant to variation in edible resource potential in terms of relative forest maturity. In retrospect, I believe that points would have been better made, and more easily applied to a wider variety of environmental circumstances, if I had referred to differences in seral-stage productivity as summarized above, rather than using the more restrictive and ambiguously interpretable ecosystem maturity concept. Resulting expectations for Mount Rainier, however, are identical. Readers wishing to delve more deeply into the ecological basis for variation in resource productivity, and ultimately site density, in montane habitats may wish to refer to Appendix C which has been added to this printing. Appendix C provides relevant text from the Mount Hood report that was referenced in the original version, but was difficult for many readers to locate. Prehistoric sites and site types also warrant brief discussion. A prehistoric archaeological site at Mount Rainier, as well as at North Cascades and Olympic National Parks, is identified by the presence of two or more artifacts or features co-occurring within 50 meters or less on the same landform (reduced from the three artifact minimum employed when this report originally was written). The number is low compared to definitions typically employed by archaeologists working in arid lands or where mineral soil visibility is high, but it is one that fairly reflects sustained use of the landscape in this environment. Because knappable stone sources are rare at Mount Rainier, tool kits tended to be highly curated and characterized by late-stage manufacture, resulting in low density assemblages with a high fraction of small, difficult to see, artifacts. Furthermore, use was dominated by small, mobile groups with relatively short-duration stays as reflected in the site type model presented in the body of the text. These factors, combined with the park’s active depositional landscape and heavy vegetation, limit the count of artifacts observable through normal surface survey techniques. More recent sub-surface reconnaissance and site testing procedures using fine screen techniques have demonstrated that these sites typically are associated with a higher density of sub-surface remains than would be expected on the
Recommended publications
  • Mount Rainier National Park, WASHINGTON TEP~RJ\ ~EF's ' in Mount Rainier National Park
    PUMICE AND OTHER PYROCLASTIC DEPOSITS IN Mount Rainier National Park, WASHINGTON TEP~RJ\ ~EF's ' in Mount Rainier National Park. Pumice and scoria layers from Mount Rainier volcano (note layers R, L, D, and C) typically are stained to fairly strong brown or reddish brown; interbedded lithic ash deposits have relatively neutral but somewhat darker brownish-gray colors. Ash beds from other volcanoes (note beds marked 0, set Y, set P, and WI characteristically are lighter in color than the locally derived deposits that enclose them. S1te is in an alpine meadow near Williwakas Glacier on the southeast flank of Mount Ramier . PUMICE AND OTHER PYROCLASTIC DEPOSITS IN Mount Rainier National Park, WASHINGTON By Donal R. Mullineaux 254924 GEOLOGICAL SURVEY BULLETIN 1326 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600110 U.S. GOVERNMENT PRINTING OFFICE -1974 For sale by the Superintendent of· Documents, U.S. Government Printing Office, Washington, D.C. 20402- Price $1.35 (paper cover) Stock Number 2401-02550 Contents Page Abstract.................................................. 1 Introduction . 2 Previous work and acknowledgments . 4 Terminology . 6 General setting . 8 Brief description of tephra deposits . 8 Postglacial activity of Mount Rainier . 15 Eruptive history ........................ c............. 15 Volume............................................... 18 Kinds of eruptions . 18 Hazards from future eruptions of tephra . 21 Kinds of hazards . 21 Location . 22 Warning.............................................. 23 Ages of tephra layers and their use as marker beds . 23 Tephra from distant volcanoes . 27 Tephra layer 0 (Mazama ash) . 27 Distribution, thickness, and grain size . 29 Source and age .
    [Show full text]
  • Phytoarkive Project General Report: Phytolith Assessment of Samples from 16-22 Coppergate and 22 Piccadilly (ABC Cinema), York
    PhytoArkive Project General Report: Phytolith Assessment of Samples from 16-22 Coppergate and 22 Piccadilly (ABC Cinema), York An Insight Report By Hayley McParland, University of York ©H. McParland 2016 Contents 1. INTRODUCTION .............................................................................................................................. 3 A VERY BRIEF HISTORY OF PHYTOLITH STUDIES IN THE UK................................................................................ 4 2. METHODOLOGY ............................................................................................................................. 6 3. RESULTS .......................................................................................................................................... 6 4. RECOMMENDATIONS AND POTENTIAL .......................................................................................... 7 2 1. Introduction This pilot study builds on an initial assessment of phytolith preservation in samples from Coppergate and 22 Picadilly (ABC Cinema) which demonstrated adequate to excellent preservation of phytoliths1. At that time, phytolith studies were in their infancy and their true potential for the interpretation of archaeological contexts was unknown. Phytoliths are plant silica microfossils, ranging from 0.01mm to 0.1mm in size and visible only through a high powered microscope. Phytoliths, literally ‘plant rocks’12, are formed from solidified monosilicic acid, which is absorbed by the plant in the groundwater. It is deposited as
    [Show full text]
  • Ancient Jades Map 3,000 Years of Prehistoric Exchange in Southeast Asia
    Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia Hsiao-Chun Hunga,b, Yoshiyuki Iizukac, Peter Bellwoodd, Kim Dung Nguyene,Be´ re´ nice Bellinaf, Praon Silapanthg, Eusebio Dizonh, Rey Santiagoh, Ipoi Datani, and Jonathan H. Mantonj Departments of aArchaeology and Natural History and jInformation Engineering, Australian National University, Canberra ACT 0200, Australia; cInstitute of Earth Sciences, Academia Sinica, P.O. Box 1-55, Nankang, Taipei 11529, Taiwan; dSchool of Archaeology and Anthropology, Australian National University, Canberra ACT 0200, Australia; eDepartment of Ancient Technology Research, Vietnam Institute of Archaeology, Hanoi, Vietnam; fCentre National de la Recherche Scientifique, Unite´Mixte de Recherche 7528, 27 Rue Paul Bert, 94204 Ivry-sur-Seine, France; gDepartment of Archaeology, Silpakorn University, Bangkok 10200, Thailand; hArchaeology Division, National Museum of the Philippines, Manila, Philippines; and iSarawak Museum, Kuching, Malaysia Edited by Robert D. Drennan, University of Pittsburgh, Pittsburgh, PA, and approved October 5, 2007 (received for review August 3, 2007) We have used electron probe microanalysis to examine Southeast Japanese archaeologist Kano Tadao (7) recognized four types of Asian nephrite (jade) artifacts, many archeologically excavated, jade earrings with circumferential projections that he believed dating from 3000 B.C. through the first millennium A.D. The originated in northern Vietnam, spreading from there to the research has revealed the existence of one of the most extensive Philippines and Taiwan. Beyer (8), Fox (3), and Francis (9) also sea-based trade networks of a single geological material in the suggested that the jade artifacts found in the Philippines were of prehistoric world. Green nephrite from a source in eastern Taiwan mainland Asian origin, possibly from Vietnam.
    [Show full text]
  • Naches Watershed Washington
    Washington Naches Watershed HUC: 17030002 Rapid Watershed Assessment This assessment involves the collection of quantitative and qualitative information to develop a watershed profile, sufficient analysis of that information to make qualitative statements as to resource concerns and conditions, and the generation of information with which to make decisions about conservation needs and recommendations. These assessments are conducted through the use of Geographic Information System (GIS) technology and by conservation planning teams working within the watershed, meeting with landowners and conservation groups, inventorying agricultural areas, assessing current levels of resource management, identifying conservation recommendations and, making qualitative estimates of the impacts of conservation on local resource concerns. October 2, 2006 1 Naches Watershed Introduction 717,048 Total Acres HUC# 17030003 The Naches Watershed is located in the Yakima River drainage in on the east side of the Cascade Mountain range. The Naches 8-Digit Hydrologic Unit Code (HUC) subbasin is approximately 717,048 acres in size. The watershed is 20% privately owned and 80% publicly owned. The majority of the watershed is forest and cropland. Cropland is located mostly in the lower elevations. Agricultural enterprises include hay and pasture, orchards and small beef operations. The city of Naches makes up the largest urban area in the watershed. The majority of the watershed is located in Yakima County. Major resource concerns are soil erosion from forest roads, streambank erosion, impaired water quality, forest health issues, invasive weeds, and poor pasture condition. Primary natural resource technical assistance is provided by the Yakima NRCS Field Office, North Yakima Conservation District and the South Central Resource Conservation and Development Area.
    [Show full text]
  • Banff National Park Offers Many More Helen Katherine Backcountry Opportunities Than Those Lake Lake PARK Trail Shelters Berry River Described Here
    BACKCOUNTRY CAMPGROUNDS JASPER CAMPGR OUND TOPO MAP NO . GRID REF . CAMPGR OUND TOPO MAP NO . GRID REF . WHITE GOAT NATIONAL Nigel Ba15 Wildflower Creek 82 N/8 686-003 * Lm20 Mount Costigan 82 0/3 187-783 Pass Bo1c Bow River/canoe 82 0/4 802-771 * Lm22 The Narrows 82 0/6 200-790 PARK * Br9 Big Springs 82 J/14 072-367 Lm31 Ghost Lakes 82 0/6 210-789 Sunwapta WILDERNESS AREA ◊ Br13 Marvel Lake 82 J/13 043-387 ◊ Ml22 Mystic Valley 82 0/5 886-824 Mount Pass Abraham Snowdome Lake Br14 McBride’s Camp 82 J/13 041-396 Mo5 Mosquito Creek 82 N/9 483-240 Mount Br17 Allenby Junction 82 J/13 016-414 * Mo16 Molar Creek 82 N/9 555-154 BIA Athabasca * Bw10 Brewster Creek 82 0/4 944-600 ◊ Mo18 Fish Lakes 82 N/9 556-217 NORTH * Cr6 Cascade Bridge 82 0/5 022-827 * No5 Norman Lake 83 C/2 071-706 * Cr15 Stony Creek 82 0/5 978-896 ◊ Pa8 Paradise Valley 82 N/8 528-898 * Cr31 Flints Park 82 0/5 862-958 * Re6 Lost Horse Creek 82 0/4 784-714 COLUM Glacier 93 Saskatchewan * Cr37 Block Lakes Junction 82 0/5 815-935 Re14 Shadow Lake 82 0/4 743-691 Cs Castleguard 82 C/3 857-703 * Re16 Pharaoh Creek 82 0/4 768-654 ICE FIELD Pinto Lake Mount E5 Healy Creek 82 0/4 825-608 Re21 Ball Pass Junction 82 0/4 723-652 Mount Sunset Coleman ◊ ◊ Sk5 Hidden Lake 82 N/8 626-029 Saskatchewan Pass E13 Egypt Lake 82 0/4 772-619 Ek13 Elk Lake Summit 82 0/5 951-826 ◊ Sk11 Baker Lake 82 N/8 672-049 Cs Fm10 Mount Cockscomb 82 0/4 923-766 ◊ Sk18 Merlin Meadows 82 N/9 635-093 No 5 ◊ SASKATCHEWAN 11 * Fm19 Mystic Junction 82 0/5 897-834 Sk19 Red Deer Lakes 82 N/9 667-098 River * Fm29 Sawback Lake 82 0/5 868-904 Sf Siffleur 82 N/16 441-356 Mount Gl 9 Glacier Lake 82 N/15 114-528 ◊ Sp6 Mount Rundle 82 0/4 030-647 Amery Alexandra He5 Hector Lake 82 N/9 463-144 Sp16 Rink’s Camp 82 0/4 040-555 Mount Jo9 Larry’s Camp 82 0/5 820-830 * Sp23 Eau Claire 82 J/14 067-505 Wilson * Jo18 Johnston Creek 82 0/5 771-882 * Sp35 Mount Fortune 82 J/14 123-425 ◊ Jo19 Luellen Lake 82 0/5 764-882 Su8 Howard Douglas Lake 82 0/4 880-546 Ta6 Taylor Lake 82 N/8 636-832 SASKATCHEWAN RIVER Jo29 Badger Pass Junction 82 0/5 737-932 N.
    [Show full text]
  • The Manis Mastodon Site
    The Manis Mastodon Site Raven Taylor Division - Junior History Paper Word Count - 1562 Since I was little, I’ve wanted to help animals. Naturally, for me as a five-year-old, my dream job was to become a vet. There was something about helping more than just the dogs and cats, so my enthusiasm for becoming a vet turned into my enthusiasm of becoming a zoologist. Around age 9, I met a lady named Iesha while my mom and I were on our way to Arizona. We started talking and then Iesha told us she had just been Hawaii helping leatherback turtles. The stranger sitting next to me quickly became the coolest person I had ever met. She went on to explain that she was going to Arizona to help the bats at a festival so they wouldn’t go extinct from a fungus. All I knew at that point was that I wanted to do what she did. She got to travel the world and save animals, and I thought that was really fantastic. So, yet again, my dream job changed to becoming a zoologist that traveled around the world and saved endangered species. Due to a recent assignment, I’ve found that the job I truly want to do, and that is under the label of Endangered Species Biologist. Since then my heart has been set on saving African Elephants from going extinct. Oddly enough, one of the topics to do for my project was to write about the mastodon, which is an animal that has gone extinct.
    [Show full text]
  • The Oxen at Naches Pass
    78 News Department The Washington Historical Quarterly extends welcome to the new association and cherishes the hope that the "British Columbia Historical Quarterly" may soon make its appearance. The Oxen at Naches Pass In "Van Ogle's Memory of Pioneer Days," which appeared in the Washington Historical Quarterly for October, 1922, the old pioneer was shown (pages 269-270) to differ with George H. Himes, the eminent historical authority of Oregon, about the fam­ ous story of killing oxen at Naches Pass in order to make raw­ hide ropes, with which to let the immigrant wagons down what was called "the jumping-off place." Mr. Himes promptly took ex­ ception to such criticism of his historical work and painstaking efforts at accuracy as follows: "I just saw your October Quarterly and read Van Ogle's account. A lot of what he gave Miss Judson is an after thought. There was not a single wagon driven down from the summit with a team attached, even one yoke. I began the preparation of my article, as printed in the Transactions of the Oregon Pioneer As­ sociation, 1907, fully twenty-five years before that, at the request of James Biles, one day when I was his guest at Tumwater. "'Why, Mr. Biles,' I said, 'I am not the person to write an account of that trip through the Naches Pass. Some one or more of the adults otIght to do it. I was nothing but a 1.oy and am not positive about the facts. I remember many of the details of the trip-that is, I think I remember them.' Finally, upon Mr.
    [Show full text]
  • A Study on Ancient Artifacts Around Badami Hill and Their Correlation with the Natural Rock Arch Of
    A Study on Ancient Artifacts Around Badami Hill and Their Correlation with the Natural Rock Arch of Sidlaphadi SHORT REPORT PRADIPTA BANERJEE MAYUR BAJAJ *Author affiliations can be found in the back matter of this article ABSTRACT CORRESPONDING AUTHOR: Pradipta Banerjee The Badami hill of Bagalkot district, Karnataka, India, houses a large rock arch termed Dayananda Sagar University, IN “Sidlaphadi” that was used as a shelter by primitive man. The hill was searched to [email protected] find any prehistoric artifact that would act as a directional marker towards the arch. An interesting structure was noted in one of the natural caves near the southwestern part of the hill at 15°55’06”N latitude and 75°41’02”E longitude. A miniature replica TO CITE THIS ARTICLE: of the arch was carved onto the floor of the cave. The axis of the miniature bridge Banerjee, P and Bajaj, M. 2021. made an angle of 28.5 ± 1.5° with the 75°41’02”E longitude. The axis, upon extension A Study on Ancient Artifacts eastwards at the defining angle reaches the northern slope of Sidlaphadi. The authors Around Badami Hill and Their also located a megalithic stone arrangement in the northern part of the hill that had Correlation with the Natural a pointed capstone and was thought to be oriented towards the rock arch. The stone Rock Arch of Sidlaphadi. Ancient Asia, 12: 9, pp. 1–9. arrangement was in the same latitude as that of the Sidlaphadi site, but the capstone DOI: https://doi.org/10.5334/ ° ° was oriented 22 E towards the winter solstice sunrise at 112.5 azimuth.
    [Show full text]
  • The Preservation of Archaeological Records and Photographs
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Anthropology Department Theses and Dissertations Anthropology, Department of 12-2010 The Preservation of Archaeological Records and Photographs Kelli Bacon University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/anthrotheses Part of the Anthropology Commons Bacon, Kelli, "The Preservation of Archaeological Records and Photographs" (2010). Anthropology Department Theses and Dissertations. 9. https://digitalcommons.unl.edu/anthrotheses/9 This Article is brought to you for free and open access by the Anthropology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Anthropology Department Theses and Dissertations by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE PRESERVATION OF ARCHAEOLOGICAL RECORDS AND PHOTOGRAPHS By Kelli Bacon A THESIS Presented to the Faculty of The Graduate College of the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Arts Major: Anthropology Under the Supervision of Professor LuAnn Wandsnider Lincoln, Nebraska December 2010 THE PRESERVATION OF ARCHAEOLOGICAL RECORDS AND PHOTOGRAPHS Kelli Bacon, M.A. University of Nebraska, 2010 Advisor: LuAnn Wandsnider Substantive and organized research about archaeological records and photograph preservation, especially those written by and for archaeologists, are few. Although the Society for American Archaeology has a code of ethics regarding archaeological records preservation, and the federal government has regulations regarding the care and preservation of federally owned archaeological collections, there is a lack of resources. This is detrimental to archaeology because not all archaeologists, given the maturity of the discipline, understand how important it is to preserve archaeological records and photographs.
    [Show full text]
  • Chapter 11. Mid-Columbia Recovery Unit Yakima River Basin Critical Habitat Unit
    Bull Trout Final Critical Habitat Justification: Rationale for Why Habitat is Essential, and Documentation of Occupancy Chapter 11. Mid-Columbia Recovery Unit Yakima River Basin Critical Habitat Unit 353 Bull Trout Final Critical Habitat Justification Chapter 11 U. S. Fish and Wildlife Service September 2010 Chapter 11. Yakima River Basin Critical Habitat Unit The Yakima River CHU supports adfluvial, fluvial, and resident life history forms of bull trout. This CHU includes the mainstem Yakima River and tributaries from its confluence with the Columbia River upstream from the mouth of the Columbia River upstream to its headwaters at the crest of the Cascade Range. The Yakima River CHU is located on the eastern slopes of the Cascade Range in south-central Washington and encompasses the entire Yakima River basin located between the Klickitat and Wenatchee Basins. The Yakima River basin is one of the largest basins in the state of Washington; it drains southeast into the Columbia River near the town of Richland, Washington. The basin occupies most of Yakima and Kittitas Counties, about half of Benton County, and a small portion of Klickitat County. This CHU does not contain any subunits because it supports one core area. A total of 1,177.2 km (731.5 mi) of stream habitat and 6,285.2 ha (15,531.0 ac) of lake and reservoir surface area in this CHU are proposed as critical habitat. One of the largest populations of bull trout (South Fork Tieton River population) in central Washington is located above the Tieton Dam and supports the core area.
    [Show full text]
  • Development of Redmond's Cultural Resources Management Plan Preliminary Draft Prepared for the City of Redmond Prepared By
    Development of Redmond’s Cultural Resources Management Plan Preliminary Draft Prepared for the City of Redmond Prepared by DOWL May 2017 Table of Contents 1 Introduction ..................................................................................................................................................................... 1 1.1 Cultural Resources: An Overview .................................................................................................................. 2 1.2 Vision ......................................................................................................................................................................... 4 1.3 Purpose and Layout ............................................................................................................................................ 5 1.4 Process for Development .................................................................................................................................. 6 2 Regulatory Context ........................................................................................................................................................ 7 2.1 Laws and Regulations ......................................................................................................................................... 8 Federal 8 Washington State ......................................................................................................................................................... 10 King County ...................................................................................................................................................................
    [Show full text]
  • A G~Ographic Dictionary of Washington
    ' ' ., • I ,•,, ... I II•''• -. .. ' . '' . ... .; - . .II. • ~ ~ ,..,..\f •• ... • - WASHINGTON GEOLOGICAL SURVEY HENRY LANDES, State Geologist BULLETIN No. 17 A G~ographic Dictionary of Washington By HENRY LANDES OLYMPIA FRAN K M, LAMBORN ~PUBLIC PRINTER 1917 BOARD OF GEOLOGICAL SURVEY. Governor ERNEST LISTER, Chairman. Lieutenant Governor Louis F. HART. State Treasurer W.W. SHERMAN, Secretary. President HENRY SuzzALLO. President ERNEST 0. HOLLAND. HENRY LANDES, State Geologist. LETTER OF TRANSMITTAL. Go,:ernor Ernest Lister, Chairman, and Members of the Board of Geological Survey: GENTLEMEN : I have the honor to submit herewith a report entitled "A Geographic Dictionary of Washington," with the recommendation that it be printed as Bulletin No. 17 of the Sun-ey reports. Very respectfully, HENRY LAKDES, State Geologist. University Station, Seattle, December 1, 1917. TABLE OF CONTENTS. Page CHAPTER I. GENERAL INFORMATION............................. 7 I Location and Area................................... .. ... .. 7 Topography ... .... : . 8 Olympic Mountains . 8 Willapa Hills . • . 9 Puget Sound Basin. 10 Cascade Mountains . 11 Okanogan Highlands ................................ : ....' . 13 Columbia Plateau . 13 Blue Mountains ..................................... , . 15 Selkirk Mountains ......... : . : ... : .. : . 15 Clhnate . 16 Temperature ......... .' . .. 16 Rainfall . 19 United States Weather Bureau Stations....................... 38 Drainage . 38 Stream Gaging Stations. 42 Gradient of Columbia River. 44 Summary of Discharge
    [Show full text]