Evolutionary Relationship and Substrate Specificity of Arabidopsis Thaliana Fatty Acid Omega-Hydroxylase
Plant Science 170 (2006) 326–338 www.elsevier.com/locate/plantsci Evolutionary relationship and substrate specificity of Arabidopsis thaliana fatty acid omega-hydroxylase Ire`ne Benveniste a, Takeshi Saito b, Yong Wang c, Sylvie Kandel a, Hongwei Huang b, Franck Pinot a, Rachel A. Kahn a, Jean-Pierre Salau¨n d, Miyuki Shimoji e,* a IBMP-CNRS UPR 2357, De´partement Re´sponse Me´taboliques a l’Environnement Biotique, 28 rue Goethe F-67083 Strasbourg Cedex, France b Accelrys Inc., 3-3-1 Nishi-Shinbashi, Minato-ku, Tokyo 105-0003, Japan c De´partment de Biologie Mole´culaire Ve´ge´tale, Baˆtiment de Biologie, Universite´ de Lausanne, CH-1015 Lausanne, Switzerland d Biochime et Biologie Mole´culaire Faculte´ de Me´decine de Brest CS93837-29238, Brest-Cedex 3, France e Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, S-17177 Stockholm, Sweden Received 8 April 2005; accepted 30 August 2005 Available online 3 October 2005 This paper is dedicated to Prof. Francis Durst on occasion of his retirement. Abstract On the basis of a phylogenic tree constructed using the available Arabidopsis thaliana genomic sequence, new fatty acid (FA) omega- hydroxylases were cloned and expressed in yeast. Several uncharacterized cytochrome P450s (CYP, P450), comprising a phylogenic sub-cluster (CYP86A, 94B, 94C, 96A, 704A, 97B and 711A) demonstrated FA omega-hydroxylase activities towards saturated FAs with medium chain length. While CYP96A4 showed the highest catalytic activity among the enzymes characterized in this study, other CYP96A subfamily members did not display any potent activity. In addition, CYP704A2 and CYP711A1, which are phylogenetically distant to both CYP86 and CYP94 with FA omega- hydroxylase activities, did not show any metabolic conversion of FAs.
[Show full text]