Structure and Biochemistry of Cytochromes P450 Involved in the Biosynthesis of Macrolide Antibiotics

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Biochemistry of Cytochromes P450 Involved in the Biosynthesis of Macrolide Antibiotics Structure and Biochemistry of Cytochromes P450 Involved in the Biosynthesis of Macrolide Antibiotics by Matthew D. DeMars II A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Biology) in the University of Michigan 2017 Doctoral Committee: Professor David H. Sherman, Chair Professor David P. Ballou Professor John Montgomery Professor Stephen W. Ragsdale Professor Janet L. Smith Matthew D. DeMars II [email protected] ORCID iD: 0000-0002-7268-5286 © Matthew D. DeMars II 2017 Dedication This work is dedicated to the memory of my father, Matthew David DeMars. ii Acknowledgments I have been exceedingly fortunate to have worked with some exemplary scientists during the formative years of my scientific career, and it would simply be impossible to express the full depth and breadth of my gratitude in the rather limiting context of this acknowledgments section. Quite fortuitously, I joined the laboratory of Dr. Rudi Fasan as an undergraduate student at the University of Rochester. Although I had limited experience in carrying out research at the interface of chemistry and biology, Dr. Fasan recognized my potential as well as genuine interest in the project he had assigned me and provided me with a considerable degree of autonomy shortly after I joined his lab. The work that I carried out as an undergraduate helped to solidify my fundamental affinity for interdisciplinary research, providing me with the drive to apply to and matriculate at the University of Michigan in pursuit of an advanced degree in chemical biology. As I look back five years, it is surprising that Dr. David Sherman was barely even on my radar of potential research advisors when I was considering labs in which to rotate. However, my decision to come to Michigan and ultimately to join his lab is one that I will never regret. The opportunity to perform cutting-edge and exciting research in a highly cooperative environment with some of the most skilled and intelligent people I have ever known has been a true blessing, and I could not have asked for a better lab in which to spend my tenure as a graduate student. First and foremost, I would like to express my utmost gratitude to Dr. Sherman for giving me the freedom to pursue my own research interests and for his unabated support over the past four years. His hands-off mentoring style was appropriately complemented by his approachability and unremitting willingness to discuss and provide constructive feedback on a variety of matters whether or not they were directly related to research. Ultimately, my experience in his lab fostered my development into an independent scientist with the confidence to ask and attempt to answer my own iii research questions. I also owe a debt of gratitude to my committee members: Dr. David Ballou, Dr. John Montgomery, Dr. Stephen Ragsdale, and Dr. Janet Smith. Their thoughtful questions, constructive criticisms, and valuable insights challenged me to think outside of the box and were truly instrumental in my development into a more mature researcher. One of the most rewarding aspects of working in the Sherman lab was the opportunity to be a part of several interdisciplinary collaborations with labs across the country as well as overseas. In particular, I am extremely grateful to have gotten the chance to work with Dr. Larissa Podust, whose prolific career studying cytochromes P450 has made her a bona fide expert in the structure and biochemistry of these enzymes. Her work in solving the structures of two P450s that I extensively describe herein served as a critical foundation for many of the biochemical experiments that I later designed and carried out. More recently, we have established a collaboration with Dr. Kendall Houk, whose expertise in computational chemistry has provided an invaluable resource for better understanding dynamic processes during enzyme catalysis. I very much look forward to continuing our work with him and his lab (especially graduate student Song Yang) over the next year. Finally, I would like to thank Dr. John Montgomery and Dr. Pavel Nagorny for providing me with the opportunity to work with some of their students (Michael Gilbert, Jessica Stachowski, and Jia Hui Tay) on collaborative projects that are not described in the present body of work. My coworkers in the Sherman lab have been and continue to be a constant source of inspiration. I have truly never met a more motivated, intelligent, and talented group of people, and it has been an honor to work alongside them for the past four years. I would especially like to thank past members Dr. Alison Narayan and Dr. Sungryeol Park as well as current members Dr. Andrew Lowell, Dr. Sean Newmister, and Dr. Ashu Tripathi for their expert advice in many areas of personal scientific ignorance. I also want to thank my bay-mates Vik Shende, Amy Fraley, and Rosa Vasquez for putting up with my antics on a daily basis. I am indebted to them along with all other members of the lab for helping to take the edge off of graduate school. Finally, I would like to extend my gratitude to Pam Schultz for being irreplaceable in her role as iv lab manager as well as former and current lab secretaries Shamilya Williams and Debbie Lounds, respectively, for all of their amazing work in helping to maintain a functional and jovial work environment. I would also like to take this opportunity to thank the Program in Chemical Biology (PCB) for admitting me as a graduate student and for being an unwavering source of support during my time here at Michigan. Program director Dr. Anna Mapp and administrators Laura Howe and Traci Swan worked hard to ensure that the entire graduate school process went as smoothly as possible for me and many others, and I sincerely thank them for all of their efforts in this respect. I feel especially fortunate to have been one of ten fantastic students that matriculated at Michigan during the 2012- 2013 academic year. The camaraderie we shared is something I will forever remember and be grateful for. During my second and third years as a graduate student at Michigan, I was fortunate enough to receive funding through the Cellular Biotechnology Training Program, which provided me with enhanced education in different areas of biotechnology. As per one of its requirements, I was able to spend Summer 2014 in South Korea working under Dr. Eung-Soo Kim in his “Microbial Molecular Biotechnology Laboratory” at Inha University. I am grateful to Dr. Sherman for presenting me with this option, to Dr. Kim for hosting me in his laboratory, and to the Center for Selective C–H Functionalization (CCHF) for funding my entire trip. As my final year in the PCB was funded by the Rackham Predoctoral Fellowship, I would also like to thank the Rackham Graduate School for its financial support. One of the reasons I decided to come to Michigan for graduate school was the prospect of being able to simultaneously pursue my passion for early classical music. Indeed, I was afforded the opportunity to enroll in continuo and Baroque chamber ensemble courses at the School of Music starting from my very first semester as a graduate student. I want to thank Profs. Edward Parmentier and Joseph Gascho for providing me with the chance to learn about and play amazing music in a world-class university setting. Serendipitously, I also met another graduate student (Wallace Chan) whose passion for early music closely rivals mine. It has been a privilege to play music v with him and some of our mutual friends on a regular basis, and I have enjoyed going with him and his wife Mia to all of the early music concerts Ann Arbor offers every year. Last, but certainly not least, I would like to express my deepest gratitude to my family. My parents, Matt (who just recently passed away) and Farolyn DeMars, have been there for me from the beginning and have played key roles in fostering my persistent desire to learn and create. Although they are truly unique individuals with different sets of interests and beliefs, they have always emphasized their mutual love for me and have both sacrificed so much for me to be where I am today. I’m notoriously not a very emotional person, so my gratitude and love are not always explicitly expressed, but I would like my parents to know that these feelings are always there. I also thank my stepparents, Michael Reid and Denise DeMars, for all the love and support they have given me over the years. My godparents, Larry and Jan Singer, have always taken a keen interest in my life, and I thank them for their constant love, kindness, and generosity. My grandparents, Dave and Carol DeMars, kindly hosted me in their home for several weeks every summer when I was a child/young teenager. Looking back, I cannot think of anything more they could have done to demonstrate their love for me. I would also like to thank them for providing me with the chance to take a break from writing this dissertation by joining them and the rest of the family on an Alaskan cruise this past summer. Finally, I thank my late grandfather, Jack Weinberg, who passed away just as I was starting as an undergraduate at the University of Rochester back in Fall 2008. He was someone I truly looked up to as a role model for how to treat others with kindness, warmth, and generosity, and I will forever cherish the memories I have of spending time with him. vi Table of Contents Dedication .......................................................................................................................
Recommended publications
  • Weiterführende Literatur Zum Lehrbuch „Biochemie“ (Kapitel 4 – 50)
    Weiterführende Literatur zum Lehrbuch „Biochemie“ (Kapitel 4 – 50) Im Buch ist aus Platzgründen auf die Angabe weiterführender Literatur verzichtet worden. Auskünfte zu den thematischen Schwerpunkten der vier Hauptteile II bis V geben die im Folgenden aufgeführten knapp 1000 einschlägigen Artikel aus wissenschaftlichen Fachzeitschriften. Die Zusammenstellung folgt der Gliederung des Buchs. Jeder Link führt direkt zur Literaturliste des entsprechenden Kapitels, aber es ist stets auch die gesamte Literatur hinterlegt (z.B. für einen kompletten Ausdruck). Die Aufstellung enthält überwiegend Review-Artikel der letzten 4 Jahre, in denen der aktuelle Kenntnisstand zu einem ausgewählten Thema von führenden Wissenschaftlern präsentiert wird. Beim Einführungsteil (Kapitel 1 bis 3) haben wir dagegen bewusst auf Spezialliteratur verzichtet; hier sei auf einschlägige Lehrbücher der Biochemie, Molekularbiologie, Genetik und Zellbiologie, die diesen fundamentalen Aspekten breiten Raum widmen, verwiesen. Falls Sie als Leser interessante Artikel finden, die unsere Literatursammlung ergänzen und bereichern könnten, bitten wir um kurze Mitteilung an den Verlag. Werner Müller-Esterl Ulrich Brandt Oliver Anderka Stefan Kerscher 1 Teil II Struktur und Funktion von Proteinen 4 Proteine – Werkzeuge der Zelle 4.1 Liganden binden an Proteine und verändern deren Konformation Wilson MA, Brunger AT (2000) The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity, J Mol Biol 301, 1237-1256 O'Day DH & Myre MA (2004) Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis. Biochemical and Biophysical Research Communications, 320, 1051-1054. 4.2 Enzyme binden Substrate und setzen sie zu Produkten um Showalter AK & Tsai MD (2002) A reexamination of the nucleotide incorporation fidelity of DNA polymerases.
    [Show full text]
  • Part I Principles of Enzyme Catalysis
    j1 Part I Principles of Enzyme Catalysis Enzyme Catalysis in Organic Synthesis, Third Edition. Edited by Karlheinz Drauz, Harald Groger,€ and Oliver May. Ó 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. j3 1 Introduction – Principles and Historical Landmarks of Enzyme Catalysis in Organic Synthesis Harald Gr€oger and Yasuhisa Asano 1.1 General Remarks Enzyme catalysis in organic synthesis – behind this term stands a technology that today is widely recognized as a first choice opportunity in the preparation of a wide range of chemical compounds. Notably, this is true not only for academic syntheses but also for industrial-scale applications [1]. For numerous molecules the synthetic routes based on enzyme catalysis have turned out to be competitive (and often superior!) compared with classic chemicalaswellaschemocatalyticsynthetic approaches. Thus, enzymatic catalysis is increasingly recognized by organic chemists in both academia and industry as an attractive synthetic tool besides the traditional organic disciplines such as classic synthesis, metal catalysis, and organocatalysis [2]. By means of enzymes a broad range of transformations relevant in organic chemistry can be catalyzed, including, for example, redox reactions, carbon–carbon bond forming reactions, and hydrolytic reactions. Nonetheless, for a long time enzyme catalysis was not realized as a first choice option in organic synthesis. Organic chemists did not use enzymes as catalysts for their envisioned syntheses because of observed (or assumed) disadvantages such as narrow substrate range, limited stability of enzymes under organic reaction conditions, low efficiency when using wild-type strains, and diluted substrate and product solutions, thus leading to non-satisfactory volumetric productivities.
    [Show full text]
  • Enzyme DHRS7
    Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d.
    [Show full text]
  • Enzyme Promiscuity Prediction Using Hierarchy-Informed Multi-Label Classification Gian Marco Visani1, Michael C
    Bioinformatics doi: 10.1093/bioinformatics/xxxxx Advance Access Publication Date: 22 Jan 2021 Manuscript Category Systems Biology Enzyme promiscuity prediction using hierarchy-informed multi-label classification Gian Marco Visani1, Michael C. Hughes1 and Soha Hassoun1,2,* 1Department of Computer Science, Tufts University, 161 College Ave, Medford, MA, 02155, USA, 2Department of Chemical and Biological Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, USA *To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Motivation: As experimental efforts are costly and time consuming, computational characterization of enzyme capabilities is an attractive alternative. We present and evaluate several machine-learning models to predict which of 983 distinct enzymes, as defined via the Enzyme Commission (EC) numbers, are likely to interact with a given query molecule. Our data consists of enzyme-substrate interactions from the BRENDA database. Some interactions are attributed to natural selection and involve the enzyme’s natural substrates. The majority of the interactions however involve non-natural substrates, thus reflecting promiscuous enzymatic activities. Results: We frame this “enzyme promiscuity prediction” problem as a multi-label classification task. We maximally utilize inhibitor and unlabelled data to train prediction models that can take advantage of known hierarchical relationships between enzyme classes. We report that a hierarchical multi-label neural network, EPP-HMCNF, is the best model for solving this problem, outperforming k-nearest neighbours similarity-based and other machine learning models. We show that inhibitor information during training consistently improves predictive power, particularly for EPP-HMCNF. We also show that all promiscuity prediction models perform worse under a realistic data split when compared to a random data split, and when evaluating performance on non-natural substrates compared to natural substrates.
    [Show full text]
  • © Central University of Technology, Free State DECLARATION
    © Central University of Technology, Free State DECLARATION DECLARATION I, MOHAMMAD PARVEZ (INDIAN PASSPORT NUMBER ), hereby certify that the dissertation submitted by me for the degree DOCTOR OF HEALTH SCIENCES IN BIOMEDICAL TECHNOLOGY, is my own independent work; and complies with the Code of Academic Integrity, as well as other relevant policies, procedures, rules and regulations of the Central University of Technology (Free State). I hereby declare, that this research project has not been previously submitted before to any university or faculty for the attainment of any qualification. I further waive copyright of the dissertation in favour of the Central University of Technology (Free State). I also state that expression vector modified/generated in this study is in collaboration with my colleagues, Mr HANS DENIS BAMAL (student number: ) and Ms IPELENG KOPANO ROSINAH KGOSIEMANG (student number: ). MOHAMMAD PARVEZ DATE II | P a g e © Central University of Technology, Free State © Central University of Technology, Free State ACKNOWLEDGEMENT ACKNOWLEDGEMENTS This thesis would have remained a dream, had it not been for my supervisor, Prof Khajamohiddin Syed, who continuously supported me during my doctoral study. I would like to extend my gratitude to him, for his patience, motivation, enthusiasm, and immense knowledge in P450 research. I would also like to thank him for giving me the opportunity to attend national and international scientific conferences. He has shown great faith and trust in me throughout my studies and without such attributes I may not be where I am now. I would also like to thank Prof Samson Sitheni Mashele for his support, and always listening to our concerns.
    [Show full text]
  • Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
    Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury
    [Show full text]
  • Evaluation of Yarrowia Lipolytica As a Host For
    EVALUATION OF YARROWIA LIPOLYTICA AS A HOST FOR CYTOCHROME P450 MONOOXYGENASE EXPRESSION By GEORGE OGELLO OBIERO B.Sc. (U.O.N); M.Sc. (U.B) Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR In the Faculty of Natural and Agricultural Sciences, Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State, Bloemfontein, South Africa June, 2006 Promoter: Prof. M.S. Smit "It's not that I'm so smart, it's just that I stay with problems longer." Albert Einstein (1879-1955) I This thesis is dedicated to my late mother, Mrs. Beldine Obiero and my dad, Mr. Gabriel Obiero whose unwavering support and encouragement has been my pillar of strength. II ACKNOWLEDGEMENTS I would like to express my sincere gratitude toward the following people: Prof. M.S. Smit for her invaluable guidance, patience and constructive criticism during the course of the study. Thanks for the patience and determination throughout this project. Mr. P.J. Botes for his technical assistance with the chemical analyses. Dr. E. setati for her valuable and motivating discussions. All my colleagues in Biotransformation Research Group. Fellow students and staff in the Department of Microbial, Biochemical and Food Biotechnology, University of Free State My family and friends for being there for me throughout the study and for their much needed words of encouragement and support. National Research Foundation (NRF) for the financial support of this project. The Heavenly Father without whom this work would not have been successful. III TABLE OF CONTENTS CHAPTER 1: INTRODUCTION 1. Introduction............................................................................................................ 1 1.1.
    [Show full text]
  • Enzyme Promiscuity of Carbohydrate Active Enzymes and Their Applications in Biocatalysis Pallister E, Gray CJ and Flitsch SL
    Enzyme Promiscuity of Carbohydrate Active Enzymes and their applications in Biocatalysis Pallister E, Gray CJ and Flitsch SL School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK Corresponding Author: Sabine Flitsch ([email protected]) Abstract The application of biocatalysis for the synthesis of glycans and glycoconjugates is a well-established and successful strategy, both for small and large scale synthesis. Compared to chemical synthesis, is has the advantage of high selectivity, but biocatalysis had been largely limited to natural glycans both in terms of reactivity and substrates. This review describes recent advances in exploiting enzyme promiscuity to expand the range of substrates and reactions that carbohydrate active enzymes (CAZymes) can catalyse. The main focus is on formation and hydrolysis of glycosidic linkages, including sugar kinases, reactions that are central to glycobiotechnology. In addition, biocatalysts that generate sugar analogues and modify carbohydrates, such as oxidases, transaminases and acylases are reviewed. As carbohydrate active enzymes become more accessible and protein engineering strategies become faster, the application of biocatalysis in the generation of a wide range of glycoconjugates, beyond natural structures is expected to expand. Introduction Carbohydrate active enzymes (CAZymes) are responsible for the biosynthesis and metabolism of all sugars and in Nature they often have to be highly selective in a biochemically complex environment. However, as observed with other enzymes1,2, CAZymes do display ‘promiscuity’, a term that describes the capability of catalysing non-physiological secondary reactions. With the advent of high-throughput screening approaches, many examples of enzyme promiscuity have been identified and discussed in the context of evolution.
    [Show full text]
  • Targeting of Insect Epicuticular Lipids by the Entomopathogenic Fungus Beauveria Bassiana: Hydrocarbon Oxidation Within the Context of a Host-Pathogen Interaction
    ORIGINAL RESEARCH ARTICLE published: 15 February 2013 doi: 10.3389/fmicb.2013.00024 Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction Nicolás Pedrini 1, Almudena Ortiz-Urquiza 2, Carla Huarte-Bonnet 1, Shizhu Zhang 2,3 and Nemat O. Keyhani 2* 1 Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata CONICET-UNLP), La Plata, Argentina 2 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA 3 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China Edited by: Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts Rachel N. Austin, Bates College, via attachment to cuticular substrata and the production of enzymes for the degradation USA and penetration of insect cuticle. The outermost epicuticular layer consists of a complex Reviewed by: mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain Rachel N. Austin, Bates College, USA hydrocarbons are major components of the outer waxy layer of diverse insect species, Alan A. DiSpirito, Ohio State where they serve to protect against desiccation and microbial parasites, and as recognition University, USA molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved *Correspondence: mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with Nemat O. Keyhani, Department of overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific Microbiology and Cell Science, University of Florida, Gainesville, subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon FL 32611, USA.
    [Show full text]
  • Download Tool
    by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members Copyright 2019 by Adolfo Cuesta ii Acknowledgements For me, completing a doctoral dissertation was a huge undertaking that was only possible with the support of many people along the way. First, I would like to thank my PhD advisor, Jack Taunton. He always gave me the space to pursue my own ideas and interests, while providing thoughtful guidance. Nearly every aspect of this project required a technique that was completely new to me. He trusted that I was up to the challenge, supported me throughout, helped me find outside resources when necessary. I remain impressed with his voracious appetite for the literature, and ability to recall some of the most subtle, yet most important details in a paper. Most of all, I am thankful that Jack has always been so generous with his time, both in person, and remotely. I’ve enjoyed our many conversations and hope that they will continue. I’d also like to thank my thesis committee, Kevan Shokat and David Agard for their valuable support, insight, and encouragement throughout this project. My lab mates in the Taunton lab made this such a pleasant experience, even on the days when things weren’t working well. I worked very closely with Tangpo Yang on the mass spectrometry aspects of this project. Xiaobo Wan taught me almost everything I know about protein crystallography. Thank you as well to Geoff Smith, Jordan Carelli, Pat Sharp, Yazmin Carassco, Keely Oltion, Nicole Wenzell, Haoyuan Wang, Steve Sethofer, and Shyam Krishnan, Shawn Ouyang and Qian Zhao.
    [Show full text]
  • Published Version
    This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Research Article Cite This: ACS Catal. 2018, 8, 11648−11656 pubs.acs.org/acscatalysis Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme Maximilian J. L. J. Fürst,† Elvira Romero,† J. Rubeń Gomeź Castellanos,‡ Marco W. Fraaije,*,† and Andrea Mattevi*,‡ † Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands ‡ Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy *S Supporting Information ABSTRACT: Detoxifying enzymes such as flavin-containing monoox- ygenases deal with a huge array of highly diverse xenobiotics and toxic compounds. In addition to being of high physiological relevance, these drug-metabolizing enzymes are useful catalysts for synthetic chemistry. Despite the wealth of studies, the molecular basis of their relaxed substrate selectivity remains an open question. Here, we addressed this issue by applying a cumulative alanine mutagenesis approach to cyclohexanone monooxygenase from Thermocrispum municipale,aflavin-dependent Baeyer−Villiger monooxygenase which we chose as a model system because of its pronounced thermostability and substrate promiscuity. Simultaneous removal of up to eight noncatalytic active-site side chains including four phenylalanines had no effect on protein folding, thermo- stability, and cofactor loading. We observed a linear decrease in activity, rather than a selectivity switch, and attributed this to a less efficient catalytic environment in the enlarged active-site space. Time-resolved kinetic studies confirmed this interpretation.
    [Show full text]
  • Lipases: Sources, Characteristics and Application in Food Industry
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.12 pp 305-312, 2016 Lipases: Sources, Characteristics and application in Food industry ٭Farzad Mardani kataki1, Esmaeil Ataye Salehi2 1,2Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran Abstract : Lipases are used in various sectors, as pharmaceutical, food or detergency industry. Their advantage versus classical chemical catalysts is that they exhibit a better selectivity and operate in milder reaction conditions. Theses enzymes can also be used in lipophilization reactions corresponding to the grafting of a lipophilic moiety to a hydrophilic one such as sugar, amino acids and proteins, or phenolic compounds. Lipases are the most widely used class of enzymes in organic synthesis. Availability of large number of commercial preparations, their broad specificity and relatively better stability (as compared to other enzymes) in media containing organic solvents have all been contributing factors for this. This review has a sharp focus on their specificity. The recent results with catalytic promiscuity have shown that lipases are even more versatile than thought so far. These results have also prompted workers to rationalize the classification of specificity in terms of substrate promiscuity, condition promiscuity and catalytic promiscuity. The review also attempts to recast the known information on specificity of lipases in the context of enzyme promiscuity. Key words : Lipases, Lipophilization, Application of lipases, Biotechnology. 1. Introduction The present enzyme industry is a result of modern biotechnology boom. The world market for enzymes is expected to reach $7 billion by 20131. A major fraction of the enzyme industry is represented by lipases (EC 3.1.1.3)2.
    [Show full text]