A Comparative Genomic Investigation of Niche Adaptation in Fungi”

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Genomic Investigation of Niche Adaptation in Fungi” The Pennsylvania State University The Graduate School Huck Institute of the Life Sciences A COMPARATIVE GENOMIC INVESTIGATION OF NICHE ADAPTATION IN FUNGI A Dissertation in Integrative Biosciences by Venkatesh Moktali © 2013 Venkatesh Moktali Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 ! The dissertation of Venkatesh Moktali was reviewed and approved* by the following: Seogchan Kang Professor of Plant Pathology and Environmental Microbiology Dissertation Advisor Chair of Committee David M. Geiser Professor of Plant Pathology and Environmental Microbiology Kateryna Makova Professor of Biology Anton Nekrutenko Associate Professor of Biochemistry and Molecular Biology Yu Zhang Associate Professor of Statistics Peter Hudson Department Head, Huck Institute of the Life Sciences *Signatures are on file in the Graduate School ! ! Abstract The Kingdom Fungi has a diverse array of members adapted to very disparate and the most hostile surroundings on earth: such as living plant and/or animal tissues, soil, aquatic environments, other microorganisms, dead animals, and exudates of plants, animals and even nuclear reactors. The ability of fungi to survive in these various niches is supported by the presence of key enzymes/proteins that can metabolize extraneous harmful factors. Characterization of the evolution of these key proteins gives us a glimpse at the molecular mechanisms underpinning adaptations in these organisms. Cytochrome P450 proteins (CYPs) are among the most diversified protein families, they are involved in a number of processed that are critical to fungi. I evaluated the evolution of Cytochrome P450 proteins (CYPs) in order to understand niche adaptation in fungi. Towards this goal, a previously developed database the fungal cytochrome P450 database (FCPD) was improved and several features were added in order to allow for systematic comparative genomic and phylogenomic analysis of CYPs from numerous fungal genomes. Specifically, an in-house platform was developed to standardize and improve the protein sequence clustering procedure, more than 100 fungal and non-fungal genomes were added, putative functional classification of CYPs into three broad categories was added, the CYP clan/family classification was extended to 117 CYP clans and 292 families. With these new features the FCPD 1.2 (http://p450.riceblast.snu.ac.kr/) was published with systematic classification of 22,940 CYPs from 213 species. Using the CYP data from the FCPD 1.2 I carried out detailed phylogenomic analysis of 6108 CYPs belonging to 51 species from the subphylum Pezizomycotina. The analysis revealed CYPomes that were specific to the niches occupied by the different fungi. There was preferential ! iii ! ! presence of CYP families among pathogenic species. I introduced a putative functional diversification ratio to identify divergence of “CYPomes”, the ratio suggests that the non- pathogenic fungi tended to have comparatively more CYP families/clans compared to the pathogenic fungi. I also identified the CYP clans ancestral to Pezizomycotina fungi, the results confirm previously estimated ancestral CYP clans CYP51, CYP61 and add CYP52 and CYP58 to the set of clans present in the last common ancestor of Pezizomycotina fungi. Putative metabolic classification of CYPs in the group suggests increase in CYPs involved in secondary metabolism among fungal plant pathogens. I also carried out gene family evolution analysis with the CYP data, the analyses suggested high number of gains and losses among serious plant pathogens such as Magnaporthe oryzae and Fusarium spp. Calcium is a ubiquitous ion that plays a major role in myriad processes in the fungal cell. I developed the fungal calcium-signaling database (FCSD: http://fcsd.ifungi.org/) in order to understand the roles of genes interacting directly or indirectly with calcium. The computational pipeline standardized in the FCPD was used to cluster the calcium signaling gene dataset. Comparative genomics analyses of calcium signaling genes indicated varying complexity of the calcium-signaling pathway across fungal phyla. I also carried out detailed gene family analysis of different calcium signaling genes, niche-specific gene gains were observed through this analysis. I believe that the various features built into FCSD encourage community participation and research on understanding calcium signaling in fungi. ! iv ! ! Contents Pages List of Tables x List of Figures xii Acknowledgements xv 1 Introduction 1 1.1 History of Fungal Research…………………………………………………...............1 1.2 Diversity in Kingdom Fungi…………………………………………………………..2 1.3 Variation in Fungal genome content…………………………………………………..3 1.4 Emergence of Comparative Genomics and “Phylogenomics”………………………..7 1.5 Investigating evolution via comparative analysis of protein families………...............9 2 Pilot Project: Optimization of Cytochrome P450 sequence clustering procedure 10 2.1 Background…………………………………………………………………………..11 2.1.1 Cytochrome P450 proteins…………………………………………………11 2.1.2 Cytochrome P450 nomenclature system…………………………...............14 2.1.3 FCPD Pipeline……………………………………………………………..15 2.1.4 Fungal cytochrome P450 database: drawbacks …………………...............16 2.2 Results and Discussion………………………………………………………………17 2.2.1 Genus Aspergillus …………………………………………………………17 2.2.2 P450 Analysis Platform……………………………………………………21 2.2.3 Species-specific CYPs……………………………………………………..26 2.2.4 CYPs involved in Secondary Metabolism Clusters………………………..29 2.2.5 N. fischeri cluster…………………………………………………………..31 2.2.6 Putative secretory CYPs…………………………………………...............35 2.3 Materials & Methods………………………………………………………...............38 2.3.1 Data………………………………………………………………...............38 ! v ! ! 2.3.2 Analyses Tools……………………………………………………………..38 2.4 Conclusion …………………………………………………………………………..39 3 Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes 40 3.1 Background…………………………………………………………………………..42 3.2 Results and Discussion………………………………………………………………44 3.2.1 Identification of CYPs and optimization of clustering parameters...............44 3.2.2 CYP clustering in fungal cytochrome P450 database (FCPD) 1.2...............46 3.2.3 Wide variation of the CYPome……………………………………………47 3.2.4 Phyletic distribution of CYP families and clans in fungi………………….48 3.2.5 Functional annotation and classification of CYP clusters ………...............50 3.2.6 Detailed analysis of specific clans…………………………………………51 3.2.6a Clans 51 and 61 ………………………………………………….52 3.2.6b Clans 65 and 68…………………………………………………...53 3.2.6c Clan 505…………………………………………………………..54 3.2.6d Clan 52 …………………………………………………………...54 3.2.6e Clan 53 and Clan 504 …………………………………………….55 3.2.6f Clan 533 …………………………………………………………..56 3.2.7 CYPs in Mucoromycotina, Blastocladiomycota and Oomycota ………….57 3.2.8 CYPs with unusual phyletic profiles ………………………………………58 3.3 Conclusion…………………………………………………………………...............60 3.4 Materials and methods ………………………………………………………………62 3.4.1 Acquisition of sequence data and phylogenetic analyses …………………62 3.4.2 Clustering the CYPs using BLASTp and the optimized Tribe-MCL algorithm…………………………………………………………………………63 3.4.3 Clan Identification…………………………………………………………63 3.4.4 Classification of CYPs into putative functional categories………………..64 3.4.5 Online database architecture……………………………………………….64 3.5 Tables………………………………………………………………………...............65 3.7 Figures………………………………………………………………………………..77 ! vi ! ! 4 Phylogenomic investigation of Cytochrome P450 proteins from 51 Pezizomycotina species 85 4.1 Background…………………………………………………………………………..85 4.2 Results………………..………………………………………………………………87 4.2.1 CYP clan/family diversity in Pezizomycotina……………………………..87 4.2.2 Metabolic distribution of CYPs……………………………………………89 4.2.3 CYP clan gains and losses in Pezizomycotina………….………………….91 4.2.4 CYPs under selection pressure………………………….………………….93 4.2.5 CYP duplication in Pezizomycotina……..………………………...............94 4.2.6 Taxa and species-specific CYPs…………………………………...............95 4.2.7 Secretory CYPs of Pezizomycotina………………………………………..95 4.3 Discussion.………………………………………………….………………………..96 4.3.1 CYP functional diversity is correlated with pathogenic lifestyles…………96 4.3.2 CYP clan losses and gains are correlated with fungal lifestyles…...............97 4.3.3 Preferential gains/losses of CYPs in specific metabolic categories..………98 4.3.4 CYP clan evolution…………..…………………………………………...100 4.3.5 Species and Class-specific CYPs indicate niche specific diversification...101 4.3.6 Reasons to find species-specific CYPs…………….……………………..103 4.4 Conclusion………………………………………………….………………………104 4.5 Materials and methods……………………………………………………………...105 4.5.1 Description of the computational pipeline…………………………..……105 4.5.2 Comparison of Pezizomycotina with characterized CYPs……….............105 4.5.3 Calculating dN/dS ratio……………………………………………..……105 4.5.4 Phylogenetic tree construction……………………………………………106 4.5.5 CYP clan gain and loss analysis………………………………………….106 4.5.6 Finding secretory CYPs…………………………………………………..106 4.5 Supplementary Figures……………….……………….……………………………107 4.6 Supplementary Tables………………………………….…………………...............108 ! vii ! ! 5 Fungal Calcium Signaling Database (FCSD): A community resource for calcium signaling in fungi 119 5.1 Background………………………………………………….……………………...120 5.2 Construction and content…………………………………………………...............121 5.2.1 Computational pipeline utilized in FCPD………………………………...121 5.2.2 Searching and accessing sequence data in FCSD………………...............122 5.2.3 BLAST utility………………………………………………….…………123
Recommended publications
  • Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya Gossypii
    Chalmers Publication Library Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya gossypii This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s version of a work that was accepted for publication in: Biotechnology and Bioengineering (ISSN: 0006-3592) Citation for the published paper: Ledesma-Amaro, R. ; Kerkhoven, E. ; Revuelta, J. (2014) "Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya gossypii". Biotechnology and Bioengineering, vol. 111(6), pp. 1191-1199. http://dx.doi.org/10.1002/bit.25167 Downloaded from: http://publications.lib.chalmers.se/publication/200098 Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription. Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library. (article starts on next page) ARTICLE Genome Scale Metabolic Modeling of the
    [Show full text]
  • Mals (22,24,28,31,32)
    Brazilian Journal of Microbiology (2003) 34:363-372 ISSN 1517-8382 EFFECTS OF PHOSPHORUS ON POLYPHOSPHATE ACCUMULATION BY CUNNINGHAMELLA ELEGANS Marcos Antonio Barbosa de Lima1,2,3; Aline Elesbão do Nascimento1,2; Wanderley de Souza4; Kazutaka Fukushima 5; Galba Maria de Campos-Takaki 1,2,3* 1Núcleo de Pesquisas em Ciências Ambientais; Departamentos de Biologia e Química, Universidade Católica de Pernambuco, Recife, PE, Brasil. 2Laboratório de Imunopatologia Keizo Asami, Microscopia Eletrônica, Universidade Federal de Pernambuco, Recife, PE, Brasil. 3Centro de Ciências Biológicas, Departamento de Micologia, Mestrado em Biologia de Fungos, Universidade Federal de Pernambuco, Recife, PE, Brasil. 4Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. 5Research Center for Pathogenic Fungi and Microbial Toxicosis, Chiba University, Chiba, Japan. Submitted: February 02, 2003; Returned to Authors for corrections: April, 29, 2003; Approved: July 08, 2003 ABSTRACT The content of inorganic polyphosphate and the polymeric degree of these compounds were evaluated during the growth of Cunninghamella elegans in medium containing varying orthophosphate (Pi) concentrations. For this purpose, a combination of chemical methods for polyphosphate extraction and ultrastructural cytochemistry were used. The orthophosphate and glucose consumption was also determined during the fungal cultivation. At Pi concentrations of 0.5, 2.5 and 0.0 g/L, the maximum amounts of biomass were 3.18, 3.29 and 0.24 g/L, respectively. During growth the cells accumulated Pi from the medium. At three days of growth the biomass consumed up to 100 and 95% of Pi from the media at initial concentrations of 0.5 and 2.5 g/L, respectively.
    [Show full text]
  • © Central University of Technology, Free State DECLARATION
    © Central University of Technology, Free State DECLARATION DECLARATION I, MOHAMMAD PARVEZ (INDIAN PASSPORT NUMBER ), hereby certify that the dissertation submitted by me for the degree DOCTOR OF HEALTH SCIENCES IN BIOMEDICAL TECHNOLOGY, is my own independent work; and complies with the Code of Academic Integrity, as well as other relevant policies, procedures, rules and regulations of the Central University of Technology (Free State). I hereby declare, that this research project has not been previously submitted before to any university or faculty for the attainment of any qualification. I further waive copyright of the dissertation in favour of the Central University of Technology (Free State). I also state that expression vector modified/generated in this study is in collaboration with my colleagues, Mr HANS DENIS BAMAL (student number: ) and Ms IPELENG KOPANO ROSINAH KGOSIEMANG (student number: ). MOHAMMAD PARVEZ DATE II | P a g e © Central University of Technology, Free State © Central University of Technology, Free State ACKNOWLEDGEMENT ACKNOWLEDGEMENTS This thesis would have remained a dream, had it not been for my supervisor, Prof Khajamohiddin Syed, who continuously supported me during my doctoral study. I would like to extend my gratitude to him, for his patience, motivation, enthusiasm, and immense knowledge in P450 research. I would also like to thank him for giving me the opportunity to attend national and international scientific conferences. He has shown great faith and trust in me throughout my studies and without such attributes I may not be where I am now. I would also like to thank Prof Samson Sitheni Mashele for his support, and always listening to our concerns.
    [Show full text]
  • Evaluation of Yarrowia Lipolytica As a Host For
    EVALUATION OF YARROWIA LIPOLYTICA AS A HOST FOR CYTOCHROME P450 MONOOXYGENASE EXPRESSION By GEORGE OGELLO OBIERO B.Sc. (U.O.N); M.Sc. (U.B) Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR In the Faculty of Natural and Agricultural Sciences, Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State, Bloemfontein, South Africa June, 2006 Promoter: Prof. M.S. Smit "It's not that I'm so smart, it's just that I stay with problems longer." Albert Einstein (1879-1955) I This thesis is dedicated to my late mother, Mrs. Beldine Obiero and my dad, Mr. Gabriel Obiero whose unwavering support and encouragement has been my pillar of strength. II ACKNOWLEDGEMENTS I would like to express my sincere gratitude toward the following people: Prof. M.S. Smit for her invaluable guidance, patience and constructive criticism during the course of the study. Thanks for the patience and determination throughout this project. Mr. P.J. Botes for his technical assistance with the chemical analyses. Dr. E. setati for her valuable and motivating discussions. All my colleagues in Biotransformation Research Group. Fellow students and staff in the Department of Microbial, Biochemical and Food Biotechnology, University of Free State My family and friends for being there for me throughout the study and for their much needed words of encouragement and support. National Research Foundation (NRF) for the financial support of this project. The Heavenly Father without whom this work would not have been successful. III TABLE OF CONTENTS CHAPTER 1: INTRODUCTION 1. Introduction............................................................................................................ 1 1.1.
    [Show full text]
  • Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
    Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics ..............................................................................................................................
    [Show full text]
  • Ashbya Gossypii
    A role of actin-regulatory proteins in the formation of needle-shaped spores in the filamentous fungus Ashbya gossypii Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Fachbereich Biologie/Chemie der Universität Osnabrück vorgelegt von Manuela Lickfeld Osnabrück, im März 2012 Table of contents 1 Summary 1 2 Introduction 3 2.1 Ashbya gossypii - a model for the investigation of cell biological processes 3 2.2 Sporulation in ascomycetes 7 2.3 The role of actin in spore development 11 2.4 Aims of this study 14 3 Results 21 3.1 A Bnr-like formin links actin to the spindle pole body during sporulation in the 23 filamentous fungus Ashbya gossypii M. Kemper, L. Mohlzahn, M. Lickfeld, C. Lang, S. Wählisch & H.P. Schmitz, (2011) Molecular Microbiology 80: 1276-1295 3.2 Selection of STOP-free sequences from random mutagenesis for 51 ދloss of interactionތ two-hybrid studies Lickfeld, M. & H.P. Schmitz, (2011) Yeast 28: 535-545. 3.3 A network involving Rho-type GTPases, a Paxillin and a Formin homolog 65 regulates spore length and spore wall integrity in the filamentous fungus Ashbya gossypii Lickfeld, M. & H.P. Schmitz, (2012) manuscript submitted 3.4 Dissection of Rho-GTPase function in polar growth and sporulation of 111 Ashbya gossypii Lickfeld, M. & H.P. Schmitz, (2012) manuscript in preparation 4 Concluding remarks 141 5 Appendix 145 5.1 The AgPXL1 deletion and overexpression strains show septation defects 145 5.2 AgPrk1 is essential in A. gossypii 146 6 Abbreviations 149 7 Anlage 1 151 8 Danksagung 153 1 Summary 1 Summary Spore formation is an essential step in the fungal life cycle that contributes to the dispersal of the organism and also to survival under harsh environmental conditions.
    [Show full text]
  • VU Research Portal
    VU Research Portal Yeast as a model eukaryote in drug safety studies van Leeuwen, J.S. 2011 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) van Leeuwen, J. S. (2011). Yeast as a model eukaryote in drug safety studies: New insights on diclofenac- induced toxicity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 I Yeast as a model organism for biotransformation- related toxicity 7 Chapter 1 OUTLINE High drug attrition rates due to toxicity, the controversy of experimental animal usage, and the EU REACH regulation demanding toxicity profiles of a high number of chemicals demonstrate the need for new, in vitro toxicity models with high predictivity and throughput. Metabolism by cytochrome P450s is one of the main causes of drug toxicity.
    [Show full text]
  • Targeting of Insect Epicuticular Lipids by the Entomopathogenic Fungus Beauveria Bassiana: Hydrocarbon Oxidation Within the Context of a Host-Pathogen Interaction
    ORIGINAL RESEARCH ARTICLE published: 15 February 2013 doi: 10.3389/fmicb.2013.00024 Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction Nicolás Pedrini 1, Almudena Ortiz-Urquiza 2, Carla Huarte-Bonnet 1, Shizhu Zhang 2,3 and Nemat O. Keyhani 2* 1 Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata CONICET-UNLP), La Plata, Argentina 2 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA 3 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China Edited by: Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts Rachel N. Austin, Bates College, via attachment to cuticular substrata and the production of enzymes for the degradation USA and penetration of insect cuticle. The outermost epicuticular layer consists of a complex Reviewed by: mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain Rachel N. Austin, Bates College, USA hydrocarbons are major components of the outer waxy layer of diverse insect species, Alan A. DiSpirito, Ohio State where they serve to protect against desiccation and microbial parasites, and as recognition University, USA molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved *Correspondence: mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with Nemat O. Keyhani, Department of overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific Microbiology and Cell Science, University of Florida, Gainesville, subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon FL 32611, USA.
    [Show full text]
  • Cunninghamella As a Microbiological Model for Metabolism of Histamine H3 Receptor Antagonist 1-[3-(4-Tert-Butylphenoxy)Propyl]Piperidine
    Appl Biochem Biotechnol (2012) 168:1584–1593 DOI 10.1007/s12010-012-9880-8 Cunninghamella as a Microbiological Model for Metabolism of Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine Elżbieta Pękala & Paulina Kubowicz & Dorota Łażewska Received: 5 March 2012 /Accepted: 28 August 2012 / Published online: 16 September 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract The aim of the study was to analyze the ability of the microorganism Cunninghamella to carry out the biotransformation of 1-[3-(4-tert-butylphenoxy)- propyl]piperidine (DL76) and to compare the obtained results with in silico models. Biotransformation was carried out by three strains of filamentous fungus: Cunning- hamella echinulata, Cunninghamella blakesleeana,andCunninghamella elegans. Most probable direction of DL76 metabolic transition was the oxidation of the methyl group in the tert-butyl moiety leading to the formation of the metabolite with I° alcohol properties. This kind of reaction was conducted by all three strains tested. However, only in the case of C. blakesleeana that biotransformation product had a structure of carboxylic acid. CYP2C19 was identified by Metasite software to be the isoform of major importance in the oxidation process in the tert-butyl moiety of DL76. In silico data coincide with the results of experiments conducted in vitro. It was confirmed that Cunninghamella fungi are a very good model to study the metabolism of xenobiotics. The computational methods and microbial models of metabolism can be used as useful tools in early ADME-Tox assays in the process of developing new drug candidates.
    [Show full text]
  • Genome Sequence of the Lignocellulose-Bioconverting and Xylose-Fermenting Yeast Pichia Stipitis
    ARTICLES Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis Thomas W Jeffries1,2,8, Igor V Grigoriev3,8, Jane Grimwood4, Jose´ M Laplaza1,5, Andrea Aerts3, Asaf Salamov3, Jeremy Schmutz4, Erika Lindquist3, Paramvir Dehal3, Harris Shapiro3, Yong-Su Jin6, Volkmar Passoth7 & Paul M Richardson3 Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. http://www.nature.com/naturebiotechnology The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions. Xylose is a five-carbon sugar abundant in hardwoods and agri- RESULTS cultural residues1, so its fermentation is essential for the economic The 15.4-Mbp genome of P. stipitis was sequenced using a shotgun conversion of lignocellulose to ethanol2. Pichia stipitis Pignal (1967) is approach and finished to high quality (o1 error in 100,000). The a haploid, homothallic, hemiascomycetous yeast3,4 that has the eight chromosomes range in size from 3.5 to 0.97 Mbp, as previously highest native capacity for xylose fermentation of any known reported16.
    [Show full text]
  • Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G
    Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G. NAGY,1 RENÁTA TÓTH,2 ENIKŐ KISS,1 JASON SLOT,3 ATTILA GÁCSER,2 and GÁBOR M. KOVÁCS4,5 1Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary; 2Department of Microbiology, University of Szeged, Szeged, Hungary; 3Department of Plant Pathology, Ohio State University, Columbus, OH 43210; 4Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; 5Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ABSTRACT The fungal lineage is one of the three large provides an overview of some of the most important eukaryotic lineages that dominate terrestrial ecosystems. fungal traits, how they evolve, and what major genes They share a common ancestor with animals in the eukaryotic and gene families contribute to their development. The supergroup Opisthokonta and have a deeper common ancestry traits highlighted here represent just a sample of the with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among characteristics that have evolved in fungi, including po- all living organisms. This article provides an overview of some of larized multicellular growth, fruiting body development, the most important fungal traits, how they evolve, and what dimorphism, secondary metabolism, wood decay, and major genes and gene families contribute to their development. mycorrhizae. However, a great deal of other important The traits highlighted here represent just a sample of the traits also underlie the evolution of the taxonomically characteristics that have evolved in fungi, including polarized and phenotypically hyperdiverse fungal kingdom, which multicellular growth, fruiting body development, dimorphism, could fill up a volume on its own.
    [Show full text]
  • Biotransformation of Natural Antioxidants Osajin and Pomiferin by Cunninghamella Elegans (ATCC® 9245TM)
    University of the Incarnate Word The Athenaeum Theses & Dissertations 5-2019 Biotransformation of Natural Antioxidants Osajin and Pomiferin by Cunninghamella Elegans (ATCC® 9245TM) Stephen Luis University of the Incarnate Word, [email protected] Follow this and additional works at: https://athenaeum.uiw.edu/uiw_etds Part of the Biochemistry Commons, and the Biology Commons Recommended Citation Luis, Stephen, "Biotransformation of Natural Antioxidants Osajin and Pomiferin by Cunninghamella Elegans (ATCC® 9245TM)" (2019). Theses & Dissertations. 359. https://athenaeum.uiw.edu/uiw_etds/359 This Thesis is brought to you for free and open access by The Athenaeum. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of The Athenaeum. For more information, please contact [email protected]. BIOTRANSFORMATION OF NATURAL ANTIOXIDANTS OSAJIN AND POMIFERIN BY CUNNINHAMELLA ELEGANS (ATCC® 9245TM) by STEPHEN B. LUIS A THESIS Presented to the Faculty of the University of the Incarnate Word in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE UNIVERSITY OF THE INCARNATE WORD May 2019 ii ACKNOWLEDGMENTS I would like to begin by thanking my thesis committee Dr. Paulo Carvalho, associate professor of pharmaceutical sciences at the Feik School of Pharmacy, Dr.’s Christopher Pierce and Ana Vallor, associate professors of biology at the University of the Incarnate Word, and my advisor Dr. Russel Raymond. Over the past two years I have had the privilege of coming to these four individuals for both assistance and guidance. No matter the situation or time of day, these four displayed unwavering dedication to ensuring the successful completion of this project. I would also like to give a special thanks to my parents and my girlfriend for always supporting me in every way possible and instilling in me the sense to never give up, no matter how grim the circumstances are.
    [Show full text]