A New Entrez Database Transitioning from Locuslink to Entrez

Total Page:16

File Type:pdf, Size:1020Kb

A New Entrez Database Transitioning from Locuslink to Entrez NCBI News National Center for Biotechnology Information National Library of Medicine National Institutes of Health Spring 2004 Department of Health and Human Services Transitioning from LocusLink to Entrez Gene Cancer Chromosomes: a New Entrez Database A gene-based view of annotated The Entrez Gene help document genomes is essential to capitalize on provides tips to ease the transition Three databases, the NCI/NCBI the increase in the sequencing and for LocusLink users to the current SKY (Spectral Karyotyping)/M- analysis of model genomes. The Entrez Gene database. FISH (Multiplex-FISH) and CGH Entrez Gene database has been (Comparative Genomic The default display format for developed to supply key connections Hybridization) Database, the NCI Entrez Gene is the graphics display between maps, sequences, expression Mitelman Database of Chromosome shown in Figure 1 for BMP7, which profiles, structure, function, homolo- Aberrations in Cancer, and the NCI resembles the traditional view of a gy data, and the scientific literature. Recurrent Chromosome Aberrations LocusLink record. The array of col- Unique identifiers are assigned to in Cancer databases are now integrat- ored boxes at the head of LocusLink genes with defining sequence, genes ed into NCBI’s Entrez system as the reports that provide links to gene- with known map positions, and “Cancer Chromosomes” database. related resources is replaced by the genes inferred from phenotypic Cancer Chromosomes supports “Links” menu in Gene, which information. These gene identifiers searches for cytogenetic, clinical, or includes additional links, such as are tracked, and functional informa- reference information using the flexi- those to Books, GEO, UniSTS, and tion is added when available. Access ble Entrez search and retrieval sys- Taxonomy. The Gene Transcripts Entrez Gene from the Entrez Home and Products section is provided continued on page 3 Page or directly at: when a gene has been annotated on www.ncbi.nlm.nih.gov/entrez/ a genomic Reference Sequence In this issue query.fcgi?db=gene 1 Transitioning from LocusLink to continued on page 6 Entrez Gene 1 Cancer Chromosomes: a New Entrez Database 2 HomoloGene 4 BLAST Link (BLink) 5 Debut of HCT Database 7 350Kb Sequence Length Limit Removed 7 New Eukaryotic Genomes in Map Viewer 8 Environmental Samples from the Sargasso Sea 8 HIV Protein Interaction Database 9 Perform Reverse ePCR 9 New Organisms in UniGene 9 Rat Gets NP_999999 10 RefSeq Release 6 10 Entrez Tools new “Hotspot” 11 BLAST Lab Figure 1. Entrez Gene display for human BMP7 showing links to over 20 related resources in the “Links” 12 Entrez Quiz pulldown menu. HomoloGene: An Entrez Database with a New Look NCBI News HomoloGene is a system for auto- New Views of the Data mated detection of homologs among the annotated genes of several com- HomoloGene reports include NCBI News is distributed four times pletely sequenced eukaryotic homology and phenotype informa- a year. We welcome communication genomes. The genomes represented tion drawn from Online Mendelian from users of NCBI databases and in the recent Build 36 of Inheritance in Man (OMIM), Mouse software and invite suggestions for Genome Informatics (MGI), articles in future issues. Send corre- HomoloGene include H. sapiens, spondence to NCBI News at the M.musculus, R.norvegicus , D. Zebrafish Information Network address below. To subscribe to NCBI melanogaster , A. gambiae, C. elegans , S. (ZFIN), Saccharomyces Genome News, send your name and address to pombe, S. cerevisiae , N. crassa, M. grisea, Database (SGD), Clusters of either the street or E-mail address below. A. thaliana, and P. falciparum. Orthologous Groups (COG), and NCBI News FlyBase. A “Pairwise Scores” display National Library of Medicine NCBI has adopted a new Homolo- gives a table of pairwise statistics for Bldg. 38A, Room 3S-308 Gene build procedure which is guid- members of a Homologene group 8600 Rockville Pike ed by the taxonomic tree, relies on that includes percent amino acid and Bethesda, MD 20894 conserved gene order and measures nucleotide identities, the Jukes- Phone: (301) 496-2475 Fax: (301) 480-9241 of DNA similarity among closely Cantor genetic distance parameter, E-mail: info@ncbi.nlm.nih.gov related species, while making use of D, the ratio of non-synonymous to protein similarity for more distantly synonymous amino acid substitutions Editors Dennis Benson related organisms. The new compu- (Ka/Ks) for predicted proteins, and David Wheeler tational procedure greatly increases the ratio of nucleotide identities the reliability of the computed within non-coding regions of the Contributors Susan Dombrowski homologous gene sets and the result- transcript to those within coding Scott McGinnis ing HomoloGene entries now regions (Knr/Knc). Tao Tao include paralogs in addition to orthologs. For more details or to —DW Writers search the database, see the Vyvy Pham New HomoloGene FTP File Formats David Wheeler Homologene home page at: The Homologene data is available by FTP where Editing and Production www.ncbi.nlm.nih.gov/entrez/ the data for each build is contained in two files; Robert Yates query.fcgi?db=homologene "homologene.data" and "homologene.xml.gz". Follow the "FTP site" link in the sidebar on the Graphic Design New Search Strategies Supported Homologene home page to download the files. Robert Yates homologene.data homologene.data is a tab delimited file con- In 1988, Congress established the Because HomoloGene is now an taining, from left to right: National Center for Biotechnology Entrez database, it can be queried •HomoloGene group id •Taxonomy ID Information as part of the National Library using an assortment of fielded terms •gene ID •gene symbol •geninfo identifier of Medicine; its charge is combined with boolean operators. (gi) of the protein product of the gene to create information systems for Among the fields unique to Homolo- •accession number of the protein product molecular biology and genetics of the gene Gene is the “Ancestor” field which data and perform research in homologene.xml.gz computational molecular biology. refers to the taxonomic group of the homologene.xml.gz is a compressed file last common ancestor of the species that contains a complete XML version of the The contents of this newsletter may represented in a HomoloGene entry. HomoloGene build and includes the infor- be reprinted without permission. mation available on the public webpage. The mention of trade names, com- Using the “Ancestor” field it is possi- The Homologene XML DTD is available in mercial products, or organizations ble to limit a search to genes con- the archive "homologene.dtd.tar" at the top level of the ftp site. does not imply endorsement by served in one of 9 ancestral groups: NCBI, NIH, or the U.S. Government. Sordariomycetes (147,550 entries), The old HomoloGene FTP files of the formats NIH Publication No. 04-3272 Eukaryota (2,759 entries), used in "hmlg.ftp" and "hmlg.trip.ftp" will be dis- Fungi/Metazoa (33,154 entries), continued after a transition period. During the ISSN 1060-8788 transition, a new set of codes, reflecting the new build procedure, will be used in these files ISSN 1098-8408 (Online Version) Bilateria (33,213 entries), Coelomata to indicate the nature of the evidence for (33,316 entries), Mammalia (9,172 homology: b - reciprocal best, B - reciprocal entries), Ascomycota (1,083 entries), best in a self-consistent triplet, m - similarity between sequences that do not give reciprocal Insecta (1,689 entries), Rodentia (1,587 best hits. entries). Spring 2004 NCBI News 2 Cancer Chromosomes Mitelman and Recurrent databases & CGH Database, the total matches continued from page 1 use a different system. The menus found in the Mitelman database, and include all ICD-O-3 terms entered the total matches from the Mitelman into the database to date and all Recurrent Database. tem. Search tips are provided in the terms used in the Mitelman and Help document at: Recurrent databases. Descriptions of From the results list, users can access the sections and terms indexed are the pull-down menu and display a www.ncbi.nlm.nih.gov/entrez/query/ variety of features, including the cor- SkyCgh/help.html given in the Help document. responding literature from PubMed, Search “Cancer Chromosomes” Searches based on case information, the results as a list of UI (unique from the database pulldown menu such as diagnosis and disease site, identifier) numbers, or view related on the NCBI home page or navigate return a “case-based report” that lists reports based on common cytoge- to the “Cancer Chromosomes” all cases matching the query terms. netic or diagnostic features. Users page for advanced searches via the Searches based on underlying cytoge- can also view Similarity reports, link on the Entrez home page at: netic features are displayed as a which show terms common to a “clone/cell report” in which each group or records within several term www.ncbi.nlm.nih.gov/Entrez clone or cell-line is listed separately. categories such as diagnosis/site and cytogenetic abnormalities Three search formats are (including CGH) among the offered on the Entrez selected cases or clones/cells. Chromosomes home page: Term co-occurences are listed a conventional Entrez at several levels: common to Query, a Quick/Simple all cases, common to 50%- Search, and an Advanced 90% of cases, and common Search. The Entrez Query to less than 50% of cases. is performed using the The common term or abnor- search box at the top of mality is shown in the left col- the page, and, as with umn and the number of other Entrez databases, affected cases is shown in the searches may be combined right column. The cytogenet- using term limits and ic abnormalities are shown at Boolean expressions. The all levels of resolution. Select Simple Search, available via Figure 1. Results of an Entrez Cancer Chromosomes search for records using the ‘Similarity Report (High a link in the sidebar on the query "8q".
Recommended publications
  • Illegitimate DNA Integration in Mammalian Cells
    Gene Therapy (2003) 10, 1791–1799 & 2003 Nature Publishing Group All rights reserved 0969-7128/03 $25.00 www.nature.com/gt REVIEW Illegitimate DNA integration in mammalian cells HWu¨ rtele1, KCE Little2 and P Chartrand2,3 1Programme de Biologie Mole´culaire, Universite´ de Montre´al, Montre´al, Canada; 2Department of Medicine, Division of Experimental Medicine, McGill University, Montre´al, Que´bec, Canada; and 3Centre Hospitalier de l’Universite´ de Montre´al and De´partement de Pathologie et de Biologie Cellulaire, Universite´ de Montre´al, Montre´al, Que´bec, Canada Foreign DNA integration is one of the most widely exploited therapy procedures can result in illegitimate integration of cellular processes in molecular biology. Its technical use introduced sequences and thus pose a risk of unforeseeable permits us to alter a cellular genome by incorporating a genomic alterations. The choice of insertion site, the degree fragment of foreign DNA into the chromosomal DNA. This to which the foreign DNA and endogenous locus are modified process employs the cell’s own endogenous DNA modifica- before or during integration, and the resulting impact on tion and repair machinery. Two main classes of integration structure, expression, and stability of the genome are all mechanisms exist: those that draw on sequence similarity factors of illegitimate DNA integration that must be con- between the foreign and genomic sequences to carry out sidered, in particular when designing genetic therapies. homology-directed modifications, and the nonhomologous or Gene Therapy (2003) 10, 1791–1799. doi:10.1038/ ‘illegitimate’ insertion of foreign DNA into the genome. Gene sj.gt.3302074 Keywords: illegitimate DNA integration; DNA repair; transgenesis; recombination; mutagenesis Introduction timate integration.
    [Show full text]
  • Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya Gossypii
    Chalmers Publication Library Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya gossypii This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s version of a work that was accepted for publication in: Biotechnology and Bioengineering (ISSN: 0006-3592) Citation for the published paper: Ledesma-Amaro, R. ; Kerkhoven, E. ; Revuelta, J. (2014) "Genome Scale Metabolic Modeling of the Riboflavin Overproducer Ashbya gossypii". Biotechnology and Bioengineering, vol. 111(6), pp. 1191-1199. http://dx.doi.org/10.1002/bit.25167 Downloaded from: http://publications.lib.chalmers.se/publication/200098 Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription. Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library. (article starts on next page) ARTICLE Genome Scale Metabolic Modeling of the
    [Show full text]
  • Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
    Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics ..............................................................................................................................
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Ashbya Gossypii
    A role of actin-regulatory proteins in the formation of needle-shaped spores in the filamentous fungus Ashbya gossypii Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Fachbereich Biologie/Chemie der Universität Osnabrück vorgelegt von Manuela Lickfeld Osnabrück, im März 2012 Table of contents 1 Summary 1 2 Introduction 3 2.1 Ashbya gossypii - a model for the investigation of cell biological processes 3 2.2 Sporulation in ascomycetes 7 2.3 The role of actin in spore development 11 2.4 Aims of this study 14 3 Results 21 3.1 A Bnr-like formin links actin to the spindle pole body during sporulation in the 23 filamentous fungus Ashbya gossypii M. Kemper, L. Mohlzahn, M. Lickfeld, C. Lang, S. Wählisch & H.P. Schmitz, (2011) Molecular Microbiology 80: 1276-1295 3.2 Selection of STOP-free sequences from random mutagenesis for 51 ދloss of interactionތ two-hybrid studies Lickfeld, M. & H.P. Schmitz, (2011) Yeast 28: 535-545. 3.3 A network involving Rho-type GTPases, a Paxillin and a Formin homolog 65 regulates spore length and spore wall integrity in the filamentous fungus Ashbya gossypii Lickfeld, M. & H.P. Schmitz, (2012) manuscript submitted 3.4 Dissection of Rho-GTPase function in polar growth and sporulation of 111 Ashbya gossypii Lickfeld, M. & H.P. Schmitz, (2012) manuscript in preparation 4 Concluding remarks 141 5 Appendix 145 5.1 The AgPXL1 deletion and overexpression strains show septation defects 145 5.2 AgPrk1 is essential in A. gossypii 146 6 Abbreviations 149 7 Anlage 1 151 8 Danksagung 153 1 Summary 1 Summary Spore formation is an essential step in the fungal life cycle that contributes to the dispersal of the organism and also to survival under harsh environmental conditions.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: abhaysharma@igib.res.in Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Genetics As Explanation: Limits to the Human Genome Project’ (2006, 2009)
    els a0026653.tex V2 - 08/29/2016 4:00 P.M. Page 1 Version 3 a0026653 Genetics as Explanation: Introductory article Article Contents Limits to the Human • Definitions • Metaphors and Programs Genome Project • Metaphors and Expectations • Genome is Not a Simple Program Irun R Cohen, The Weizmann Institute of Science, Rehovot, Israel • Microbes, Symbiosis and the Holobiont Henri Atlan, Ecole des Hautes Etudes en Sciences Sociales, Paris, France and Hadas- • Stem Cells Express Multiple Genes • sah University Hospital, Jerusalem, Israel Meaning: Line or Loop? AU:1 • Self-Organisation and Program Sol Efroni, Bar-Ilan University, Ramat Gan, Israel • Complexity, Reduction and Emergence • Evolving Genomes AU:2 Based in part on the previous versions of this eLS article ‘Genetics as Explanation: Limits to the Human Genome Project’ (2006, 2009). • The Environment and the Genome • Language Metaphor • Tool and Toolbox Metaphors • Conclusion Online posting date: 14th October 2016 Living organisms are composed of cells and all biological evolution, single organisms, populations of organisms, living cells contain a genome, the organism’s stock species, cells and molecules, heredity, embryonic development, of deoxyribonucleic acid (DNA). The role of the health and disease and life management. These are quite diverse genome has been likened to a computer program subjects, and the people who study them would seem to use the term gene in distinctly different ways. But genetics as a whole that encodes the organism’s development and its is organised by a single unifying principle, the deoxyribonucleic subsequent response to the environment. Thus, the acid (DNA) code; all would agree that the information borne by organism and its fate can be explained by genetics, a gene is linked to particular sequences of DNA.
    [Show full text]
  • Endosomal PI(3)P Regulation by the COMMD/CCDC22/CCDC93
    ARTICLE https://doi.org/10.1038/s41467-019-12221-6 OPEN Endosomal PI(3)P regulation by the COMMD/ CCDC22/CCDC93 (CCC) complex controls membrane protein recycling Amika Singla 1,5, Alina Fedoseienko2,5, Sai S.P. Giridharan3, Brittany L. Overlee2, Adam Lopez1, Da Jia 4, Jie Song1, Kayci Huff-Hardy1, Lois Weisman3, Ezra Burstein 1,6 & Daniel D. Billadeau2,6 1234567890():,; Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment. 1 Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Division of Oncology Research and Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
    [Show full text]
  • An Atlas of Cell Types in the Mouse Epididymis and Vas Deferens
    TOOLS AND RESOURCES An atlas of cell types in the mouse epididymis and vas deferens Vera D Rinaldi1†, Elisa Donnard2†, Kyle Gellatly2, Morten Rasmussen1‡, Alper Kucukural2, Onur Yukselen2, Manuel Garber2,3, Upasna Sharma4, Oliver J Rando1* 1Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States; 2Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States; 3Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States; 4Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States Abstract Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated *For correspondence: support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Oliver.Rando@umassmed.edu Moreover, our data illuminate extensive regional specialization of principal cell populations across †These authors contributed the length of the epididymis. In addition to region-specific specialization of principal cells, we find equally to this work evidence for functionally specialized subpopulations of stromal cells, and, most notably, two ‡ distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal Present address: Department of Virus and Microbiological biology, and provides a wealth of information on potential regulatory and signaling factors that Special Diagnostics, Statens bear future investigation.
    [Show full text]
  • Genome Sequence of the Lignocellulose-Bioconverting and Xylose-Fermenting Yeast Pichia Stipitis
    ARTICLES Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis Thomas W Jeffries1,2,8, Igor V Grigoriev3,8, Jane Grimwood4, Jose´ M Laplaza1,5, Andrea Aerts3, Asaf Salamov3, Jeremy Schmutz4, Erika Lindquist3, Paramvir Dehal3, Harris Shapiro3, Yong-Su Jin6, Volkmar Passoth7 & Paul M Richardson3 Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. http://www.nature.com/naturebiotechnology The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions. Xylose is a five-carbon sugar abundant in hardwoods and agri- RESULTS cultural residues1, so its fermentation is essential for the economic The 15.4-Mbp genome of P. stipitis was sequenced using a shotgun conversion of lignocellulose to ethanol2. Pichia stipitis Pignal (1967) is approach and finished to high quality (o1 error in 100,000). The a haploid, homothallic, hemiascomycetous yeast3,4 that has the eight chromosomes range in size from 3.5 to 0.97 Mbp, as previously highest native capacity for xylose fermentation of any known reported16.
    [Show full text]
  • Connecting Myelin-Related and Synaptic Dysfunction In
    www.nature.com/scientificreports OPEN Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich Received: 24 October 2016 Accepted: 27 February 2017 gene expression hubs Published: 07 April 2017 Hedi Hegyi Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated “expression neighbors” of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases. Gene expression correlation, protein-protein interaction and other high-throughput experiments in the post-genomic era have revealed that genes tend to form complex, scale-free networks where most genes have a few connections with others and a few have a high number of interactions, commonly referred to as “hubs”, estab- lishing them as important central genes in these gene networks1.
    [Show full text]
  • Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G
    Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G. NAGY,1 RENÁTA TÓTH,2 ENIKŐ KISS,1 JASON SLOT,3 ATTILA GÁCSER,2 and GÁBOR M. KOVÁCS4,5 1Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary; 2Department of Microbiology, University of Szeged, Szeged, Hungary; 3Department of Plant Pathology, Ohio State University, Columbus, OH 43210; 4Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; 5Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ABSTRACT The fungal lineage is one of the three large provides an overview of some of the most important eukaryotic lineages that dominate terrestrial ecosystems. fungal traits, how they evolve, and what major genes They share a common ancestor with animals in the eukaryotic and gene families contribute to their development. The supergroup Opisthokonta and have a deeper common ancestry traits highlighted here represent just a sample of the with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among characteristics that have evolved in fungi, including po- all living organisms. This article provides an overview of some of larized multicellular growth, fruiting body development, the most important fungal traits, how they evolve, and what dimorphism, secondary metabolism, wood decay, and major genes and gene families contribute to their development. mycorrhizae. However, a great deal of other important The traits highlighted here represent just a sample of the traits also underlie the evolution of the taxonomically characteristics that have evolved in fungi, including polarized and phenotypically hyperdiverse fungal kingdom, which multicellular growth, fruiting body development, dimorphism, could fill up a volume on its own.
    [Show full text]