Oxyfunctionalization of Alkanes, Alkenes and Alkynes by Unspecific Peroxygenase (EC 1.11.2.1) Oxyfunktionalisierung Von Alkanen
Total Page:16
File Type:pdf, Size:1020Kb
Oxyfunctionalization of alkanes, alkenes and alkynes by unspecific peroxygenase (EC 1.11.2.1) Oxyfunktionalisierung von Alkanen, Alkenen und Alkinen durch die Unspezifische Peroxygenase (EC 1.11.2.1) Vom Institutsrat des Internationalen Hochschulinstitutes Zittau und der Fakultät Mathematik/ Naturwissenschafften der Technischen Universität Dresden genehmigte Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.-Ing. (Umwelttechnik) Sebastian Peter geboren am 04. Juni 1982 in Erlenbach am Main (Deutschland) Gutachter: Herr Prof. Dr. Martin Hofrichter (TU Dresden, IHI Zittau) Herr Prof. Dr. John T. Groves (Princeton University , USA) Frau Prof. Dr. Katrin Scheibner (Hochschule Lausitz) Tag der Verteidigung: 26.04.2013 Oxyfunctionalization of alkanes, alkenes and alkynes by unspecific peroxygenase (EC 1.11.2.1) Approved by the council of International Graduate School of Zittau and the Faculty of Science of the TU Dresden Academic Dissertation Doctor rerum naturalium (Dr. rer. nat.) by Sebastian Peter, Dipl.-Ing. (Environmental Engeneering) born on June 4, 1982 in Erlenbach am Main (Germany) Reviewer: Prof. Dr. Martin Hofrichter (TU Dresden, IHI Zittau) Prof. Dr. John T. Groves (Princeton University , USA) Prof. Dr. Katrin Scheibner (Hochschule Lausitz) Day of defense: April 26, 2013 CONTENTS Contents CONTENTS ............................................................................................................. I LIST OF ABBREVIATIONS .................................................................................. IV ABSTRACT ........................................................................................................... VI 1. INTRODUCTION .............................................................................................. 10 1.1 The importance of enzymes in living organisms ............................................. 10 1.2 Agrocybe aegerita peroxygenase – history and classification over time ........ 10 1.3 Aliphatic hydrocarbons ................................................................................... 21 1.3.1 Alkanes .................................................................................................... 21 1.3.2 Alkenes .................................................................................................... 24 1.3.3. Alkynes ................................................................................................... 25 1.4 Enzymes catalyzing alkane, alkene and alkyne oxidation .............................. 27 1.4.1 Diiron enzymes - methane monooxygenase ............................................ 31 1.4.2 Monoiron enzymes – alkane hydroxylases (alkB) .................................... 33 1.4.3.1 Cytochrome P450 monooxygenases ................................................. 34 1.4.3.2 Heme peroxidases ............................................................................ 38 1.4.4 Biotechnological relevance of hydrocarbon oxygenation and fungal bioremediation .................................................................................................. 40 1.5 Objectives and aims ....................................................................................... 41 2. MATERIALS AND METHODS ......................................................................... 42 2.1 Reagents ........................................................................................................ 42 2.2 Solvent selection and enzyme stability ........................................................... 43 2.2.1 The stability of AaeUPO in organic solvents ............................................ 43 2.2.2 The optimum acetone concentration ........................................................ 43 2.2.3 Inhibition experiment with DMSO ............................................................. 43 2.3 Substrate conversion ...................................................................................... 44 2.3.1 Alkane conversion.................................................................................... 44 2.3.2 Alkene conversion.................................................................................... 44 2.3.3 Alkyne conversion .................................................................................... 45 2.4 Product identification ...................................................................................... 45 2.4.1 Products of alkane conversion ................................................................. 45 2.4.2 Products of alkene and alkyne conversion ............................................... 46 2.4.3 Chiral separation of alcohols, epoxides and alkynols............................... 47 2.5 pH-Optimum of AaeUPO-catalyzed cyclohexane conversion ......................... 47 I 18 2.6 O-labeling experiments ................................................................................ 48 18 2.6.1 Conversion of cyclohexane with H2 O2 ................................................... 48 18 2.6.2 Conversion of 2,3-dimethyl-2-butene with H2 O2 .................................... 48 2.7 Enzyme kinetics ............................................................................................. 49 2.7.1 Cyclohexane conversion .......................................................................... 49 2.7.2 2-Methyl-2-butene conversion ................................................................. 49 2.8 Product quantification ..................................................................................... 49 2.9 Deuterium isotope effect experiments ............................................................ 49 2.10 Radical clock experiments ............................................................................ 50 2.11 Heme N-alkylation by alkenes and alkynes .................................................. 50 2.12 Stopped-flow experiments ............................................................................ 51 2.12.1 Method improvement ............................................................................. 51 2.12.2 AaeUPO compound I – kinetics ............................................................. 51 3. RESULTS ........................................................................................................ 52 3.1 Solvent selection and enzyme stability ........................................................... 52 3.1.1 Stability of AaeUPO in organic solvents .................................................. 52 3.1.2 Inhibition of AaeUPO by DMSO ............................................................... 52 3.2.1 Alkane conversion ................................................................................... 54 3.2.1.1 Linear alkanes ................................................................................... 57 3.2.1.2 Branched alkanes ............................................................................. 57 3.2.1.3 Cyclic alkanes ................................................................................... 57 3.2.1.4 Stereoselectivity of alkane hydroxylation........................................... 60 3.2.2 Alkene conversion ................................................................................... 60 3.2.2.1 Terminal linear alkenes ..................................................................... 61 3.2.2.2 Non-terminal and branched alkenes ................................................. 61 3.2.2.3 Cyclic alkenes ................................................................................... 62 3.2.2.4 Dienes ............................................................................................... 62 3.2.2.5 Stereoselectivity of alkene epoxidation ............................................. 66 3.2.3 Alkyne conversion .................................................................................... 66 3.2.3.1 Linear alkynes ................................................................................... 66 3.2.3.2 Stereoselectivity of alkyne conversion .............................................. 66 3.3 Source of the oxygen incorporated during substrate peroxygenation............. 66 3.4 Kinetic data for AaeUPO-catalyzed reactions ................................................ 69 3.4.1 Cyclohexane hydroxylation ...................................................................... 69 3.4.2 Epoxidation of 2-methyl-2-butene ............................................................ 70 3.5 Deuterium isotope effects ............................................................................... 70 3.6 Evidence for the presence of a radical intermediate....................................... 72 3.7 Enzyme inactivation by heme N-alkylation ..................................................... 73 II CONTENTS 3.8 Stopped-flow experiments .............................................................................. 73 3.8.1 Method improvement ............................................................................... 73 3.8.2 AaeUPO-I – UV/Vis spectrum and properties .......................................... 73 3.8.3 Compound I – kinetic data ....................................................................... 75 4. DISCUSSION ................................................................................................... 75 4.1 AaeUPO stability, inhibition and inactivation .................................................. 78 4.1.1 AaeUPO stability in organic solvents ......................................................