In Silico Engineering Van Cytochroom P450 Via Machine Learning Technieken

Total Page:16

File Type:pdf, Size:1020Kb

In Silico Engineering Van Cytochroom P450 Via Machine Learning Technieken Faculteit Bio-ingenieurswetenschappen Academiejaar 2015-2016 In silico engineering van cytochroom P450 via machine learning technieken Laurentijn Tilleman Promotoren: prof. dr. Willem Waegeman & prof. dr. Bernard De Baets Tutor: ir. Michiel Stock Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: Cel- en genbiotechnologie Faculteit Bio-ingenieurswetenschappen Academiejaar 2015-2016 In silico engineering van cytochroom P450 via machine learning technieken Laurentijn Tilleman Promotoren: prof. dr. Willem Waegeman & prof. dr. Bernard De Baets Tutor: ir. Michiel Stock Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: Cel- en genbiotechnologie De auteur en promotor geven de toelating deze scriptie voor consultatie beschikbaar te stellen en delen ervan te kopi¨eren voor persoonlijk gebruik. Elk ander gebruik valt onder de beper- kingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze scriptie. The author and promoter give the permission to use this thesis for consultation and to copy parts of it for personal use. Any other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis. Gent, juni 2016 De promotoren prof. dr. Willem Waegeman prof. dr. Bernard De Baets De tutor De auteur ir. Michiel Stock Laurentijn Tilleman Dankwoord Het schrijven van deze thesis heeft mij een beter beeld gegeven van de fascinerende wereld van eiwitoptimalisatie met behulp van machine learning technieken. Dit alles zou mij alleen niet gelukt zijn en daarom zou ik graag enkele personen bedanken. Als eerste wil ik mijn tutor ir. Michiel Stock bedanken om mij te ondersteunen bij het uit- denken van de thesis en de wekelijkse opvolging. Hiernaast wil ik ook graag mijn promotoren prof. dr. Waegeman en prof. dr. De Baets bedanken voor de opbouwende begeleiding tijdens mijn thesis. In het bijzonder wil ik ook mijn medethesisstudenten en in het algemeen alle leden van de vakgroep bedanken voor de fijne sfeer op de vakgroep. Graag zou ik ook mijn ouders, mijn broer en zussen bedanken voor de mentale steun tijdens het maken van deze thesis. Ook mijn vrienden wil ik bedanken voor de nodige ontspanning. Als laatste zou ik graag mijn computer en de HPC faciliteiten van de UGent willen bedanken, zonder deze zou het nooit gelukt zijn om deze thesis tot een goed einde te brengen. i ii Samenvatting Cytochroom P450 is een enzymsuperfamilie met meer dan 52000 enzymen (Fischer et al., 2007; Ortiz de Montellano, 2015). Zij bezitten allemaal een heemgroep en katalyseren mono- oxidatie reacties (Meunier et al., 2004). Daar deze enzymen belangrijke reacties katalyseren in de productie van industrieel interessante chemische componenten, is er veel onderzoek gedaan naar het optimaliseren van deze enzymen (Girvan & Munro, 2016). In deze thesis werd een workflow opgesteld voor het optimaliseren van deze enzymsuperfamilie. De optimalisatie gebeurt hier aan de hand van een machine learning model dat paarsgewijze interacties tussen enzymen van de cytochroom P450 superfamilie en chemische componen- ten voorspelt. Hiervoor werd interactiedata van het internet gehaald en opgeslagen in een gestructureerde databank. Voor het opstellen van het machine learning model werd voor de cytochroom P450s gebruik gemaakt van features afgeleid van de eerste drie principale componenten van de aminozuur- eigenschappen. Voor de chemische componenten werd gebruik gemaakt van convolutionele neurale netwerken op grafen om hieruit de moleculaire fingerpints af te leiden. Er werden verschillende machine learning modellen opgesteld. Voor de binaire classificatiedata werd met het random forests model een area under the curve van 0.72, 0.64 en 0.68 verkregen voor respectievelijk substraat-, inhibitor- en activator-interactie via cross-validatie. Voor het regressiemodel werd via random forests op de gezamenlijke dataset afkomstig van de Sabio- en Brenda-database een c-index van 0.62 bereikt via cross-validatie. Als casestudie bij de optimalisatie werd gekozen voor het cytochroom P450 CYP52M1 uit het onderzoek van Van Bogaert et al. (2009). Via simulated annealing werd deze sequentie geoptimaliseerd. Hierbij werd de katalytische activiteit verhoogd met een factor 64 volgens het onderliggende machine learning model. iii iv Inhoudsopgave Dankwoord i Samenvatting iii Inhoudsopgave vii 1 Inleiding 1 2 Biologische achtergrond van cytochroom P450 3 2.1 De cytochroom P450 superfamilie . .3 2.1.1 Nomenclatuur . .3 2.1.2 Verspreiding onder de verschillende soorten . .4 2.2 Katalytische werking van cytochroom P450 . .5 2.2.1 Elektronentransfer naar cytochroom P450 . .5 2.2.2 Activatie van het katalytisch centrum . .7 2.2.3 Mechanismen van katalyse door cytochroom P450 . .8 2.2.4 Inhibitie van cytochroom P450 . 11 2.3 Enkele voorbeelden voor het belang van cytochroom P450 . 11 2.3.1 Industri¨ele toepassingen . 11 2.3.2 Medische toepassingen . 13 3 Bestaande modellen voor cytochroom P450 functiepredictie 17 3.1 Voorspellen van de interactie met cytochroom P450 enzymen . 17 3.1.1 Ligand-gebaseerd model voor de isovorm specificiteit van substraten voor cytochroom P450 CYP3A4, CYP2D6 en CYP2C9 . 18 3.1.2 Classificatie van cytochroom P450 CYP1A2 inhibitoren en niet inhibi- toren met machine learning technieken . 19 3.1.3 Vergelijking van multi- en single-label classificatie toegepast op het voorspellen van isovorm specificiteit van cytochroom P450 substraten 19 3.2 Voorspellen van reactieparameters . 22 v 3.2.1 Voorspellen van de katalytische parameters van CYP2C19 voor enanti- oselective oxidaties . 22 3.3 Modellen voor het voorspellen van de interactie voor zowel nieuwe cytochroom P450s als chemische componenten . 23 3.3.1 Een eenduidig proteochemometrisch model voor het voorspellen van inhibitoren van cytochroom P450 . 23 4 Overzicht van de dataset 27 4.1 Databanken voor cytochroom P450 . 27 4.1.1 DrugBank . 28 4.1.2 Sabio . 28 4.1.3 SuperCYP . 29 4.1.4 Brenda . 29 4.1.5 MuteinDB . 29 4.1.6 AID: 1851 . 30 4.1.7 Sequenties en 3D structuren van cytochroom P450s . 30 4.1.8 Ligand structuren . 30 4.2 Gestructureerd opslaan van de data . 30 4.2.1 Reactie . 30 4.2.2 Controle . 32 4.2.3 Ligand . 32 4.2.4 FP SMILE . 32 4.2.5 EiwittenSeq . 33 4.2.6 SubSequence . 33 4.2.7 EiwittenPDB . 33 4.2.8 FP PDB................................... 33 5 Featurevoorstelling van de cytochroom P450s en de chemische componen- ten 35 5.1 Features op basis van de sequentie . 35 5.1.1 Onderlinge vergelijking en similariteitsmaten: kernelmethoden . 36 5.1.2 Features afgeleid van de eigenschappen van de sequentie en zijn amino- zuren . 37 5.1.3 Features op basis van evolutie . 39 5.2 Features op basis van structuren en grafen . 40 5.2.1 Binaire fingerprints . 41 5.2.2 Convolutionele neurale netwerken op grafen voor moleculaire fingerprints 41 vi 6 Modelbouw 45 6.1 Gebruikte machine learning technieken . 45 6.1.1 Support Vector Machine . 45 6.1.2 Random forests . 46 6.1.3 AdaBoost . 46 6.1.4 Bagging . 46 6.1.5 Ridge Regressie . 46 6.2 Cross-validatie voor paarsgewijze data . 47 6.3 Evaluatiecriteria . 48 6.3.1 C-index . 48 6.3.2 AUC . 48 6.4 Vergelijken met reeds bestaande modellen op basis van de AID: 1851 dataset 49 6.4.1 Testen van verschillende features voor de chemische componenten bij regressie en classificatie . 49 6.4.2 Extrapolatie van het regressiemodel naar de Brenda inhibitor dataset 52 6.5 Classificatiemodellen voor het voorspellen van de interactie . 52 6.5.1 Multi-label classificatie . 52 6.5.2 Klasse kansen gebruiken als ordeningsmaat voor activiteit . 53 6.6 Regressiemodellen voor het voorspellen van de kcat-waarde . 55 6.6.1 Selecteren van het beste model . 55 6.6.2 Selecteren van features voor de cytochroom P450s . 55 6.6.3 Voorspellend vermogen van model gefit aan de Sabio en Brenda dataset naar mutaties . 56 7 Optimalisatie van een cytochroom P450 59 7.1 De 20 natuurlijk voorkomende aminozuren in eiwitsequenties . 59 7.2 Opstellen van de PSSM . 59 7.3 Gevoeligheidsanalyse . 61 7.4 Simulated annealing . 61 7.4.1 Optimalisatie van eiwitten . 61 7.5 Optimalisatie van CYP52M1 . 62 7.5.1 PSSM van de CYP52 familie . 62 7.5.2 Gevoeligheidsanalyse voor CYP52M1 . 62 7.5.3 Optimalisatiemodellen voor CYP52M1 . 64 8 Conclusie 75 Bibliografie 77 vii viii HOOFDSTUK 1 Inleiding Cytochroom P450 enzymen vormen een superfamilie van mono-oxygenase enzymen. De ver- scheidenheid in biologische reacties die gekatalyseerd worden door cytochroom P450s is enorm (Ortiz de Montellano, 2015). De 52675 tot nog toe beschreven cytochroom P450s zijn terug te vinden in bijna alle levende wezens (Fischer et al., 2007). Het veelvuldig voorkomen en de grote verscheidenheid aan cytochroom P450s maakt het voor wetenschappers interessant om deze enzymen te bestuderen en aan te passen aan de noden van de mens, bv. voor de productie van geneesmiddelen (Girvan & Munro, 2016). Het gebruik van enzymen voor de productie van levensmiddelen gebeurt al langer. Toe- passingen in de biotechnologie kwamen later. In het begin gebeurde het selecteren van de betere enzymen passief doordat snelgroeiende organismen betere enzymen hadden en zo in aandeel stegen. Later werd door random mutaties en selectie geprobeerd om betere enzymen te verkrijgen. Door het ontstaan van de mogelijkheden om eiwitten te sequeneren en hun 3D-structuur op te helderen, is het nu mogelijk om op een rationele manier deze enzymen te verbeteren. De hoeveelheid sequenties en 3D-structuren groeit zo snel aan, dat het niet meer mogelijk is om deze handmatig te analyseren. Hiervoor worden tegenwoordig computermo- dellen opgesteld om al deze data te verwerken en op basis hiervan aan enzym engineering te doen (Fox & Huisman, 2008). Verschillende optimalisatieprocedures werden al ontwikkeld. Hierbij werd meestal slechts op ´e´ensequentie gewerkt, waarbij gekeken werd naar verschillende mutaties.
Recommended publications
  • © Central University of Technology, Free State DECLARATION
    © Central University of Technology, Free State DECLARATION DECLARATION I, MOHAMMAD PARVEZ (INDIAN PASSPORT NUMBER ), hereby certify that the dissertation submitted by me for the degree DOCTOR OF HEALTH SCIENCES IN BIOMEDICAL TECHNOLOGY, is my own independent work; and complies with the Code of Academic Integrity, as well as other relevant policies, procedures, rules and regulations of the Central University of Technology (Free State). I hereby declare, that this research project has not been previously submitted before to any university or faculty for the attainment of any qualification. I further waive copyright of the dissertation in favour of the Central University of Technology (Free State). I also state that expression vector modified/generated in this study is in collaboration with my colleagues, Mr HANS DENIS BAMAL (student number: ) and Ms IPELENG KOPANO ROSINAH KGOSIEMANG (student number: ). MOHAMMAD PARVEZ DATE II | P a g e © Central University of Technology, Free State © Central University of Technology, Free State ACKNOWLEDGEMENT ACKNOWLEDGEMENTS This thesis would have remained a dream, had it not been for my supervisor, Prof Khajamohiddin Syed, who continuously supported me during my doctoral study. I would like to extend my gratitude to him, for his patience, motivation, enthusiasm, and immense knowledge in P450 research. I would also like to thank him for giving me the opportunity to attend national and international scientific conferences. He has shown great faith and trust in me throughout my studies and without such attributes I may not be where I am now. I would also like to thank Prof Samson Sitheni Mashele for his support, and always listening to our concerns.
    [Show full text]
  • 1 AMINO ACIDS Commonly, 21 L-Amino Acids Encoded by DNA Represent the Building Blocks of Animal, Plant, and Microbial Proteins
    1 AMINO ACIDS Commonly, 21 L-amino acids encoded by DNA represent the building blocks of animal, plant, and microbial proteins. The basic amino acids encountered in proteins are called proteinogenic amino acids 1.1). Biosynthesis of some of these amino acids proceeds by ribosomal processes only in microorganisms and plants and the ability to synthesize them is lacking in animals, including human beings. These amino acids have to be obtained in the diet (or produced by hydrolysis of body proteins) since they are required for normal good health and are referred to as essential amino acids. The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. The rest of encoded amino acids are referred to as non-essential amino acids (alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine). Arginine and histidine are classified as essential, sometimes as semi-essential amino acids, as their amount synthesized in the body is not sufficient for normal growth of children. Although it is itself non-essential, cysteine (classified as conditionally essential amino acid) can partly replace methionine, which is an essential amino acid. Similarly, tyrosine can partly replace phenylalanine. 1.1 The glutamic acid group 1.1.1 Glutamic acid and glutamine Free ammonium ions are toxic to living cells and are rapidly incorporated into organic compounds. One of such transformations is the reaction of ammonia with 2-oxoglutaric acid from the citric acid cycle to produce L-glutamic acid. This reaction is known as reductive amination. Glutamic acid is accordingly the amino acid generated first as both constituent of proteins and a biosynthetic precursor.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Characterization of a Second Secologanin Synthase Isoform
    Dugé de Bernonville et al. BMC Genomics (2015) 16:619 DOI 10.1186/s12864-015-1678-y RESEARCH ARTICLE Open Access Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome Thomas Dugé de Bernonville1†, Emilien Foureau1†, Claire Parage1†, Arnaud Lanoue1, Marc Clastre1, Monica Arias Londono1,2, Audrey Oudin1, Benjamin Houillé1, Nicolas Papon1, Sébastien Besseau1, Gaëlle Glévarec1, Lucia Atehortùa2, Nathalie Giglioli-Guivarc’h1, Benoit St-Pierre1, Vincenzo De Luca3, Sarah E. O’Connor4 and Vincent Courdavault1* Abstract Background: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C.
    [Show full text]
  • Evaluation of Yarrowia Lipolytica As a Host For
    EVALUATION OF YARROWIA LIPOLYTICA AS A HOST FOR CYTOCHROME P450 MONOOXYGENASE EXPRESSION By GEORGE OGELLO OBIERO B.Sc. (U.O.N); M.Sc. (U.B) Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR In the Faculty of Natural and Agricultural Sciences, Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State, Bloemfontein, South Africa June, 2006 Promoter: Prof. M.S. Smit "It's not that I'm so smart, it's just that I stay with problems longer." Albert Einstein (1879-1955) I This thesis is dedicated to my late mother, Mrs. Beldine Obiero and my dad, Mr. Gabriel Obiero whose unwavering support and encouragement has been my pillar of strength. II ACKNOWLEDGEMENTS I would like to express my sincere gratitude toward the following people: Prof. M.S. Smit for her invaluable guidance, patience and constructive criticism during the course of the study. Thanks for the patience and determination throughout this project. Mr. P.J. Botes for his technical assistance with the chemical analyses. Dr. E. setati for her valuable and motivating discussions. All my colleagues in Biotransformation Research Group. Fellow students and staff in the Department of Microbial, Biochemical and Food Biotechnology, University of Free State My family and friends for being there for me throughout the study and for their much needed words of encouragement and support. National Research Foundation (NRF) for the financial support of this project. The Heavenly Father without whom this work would not have been successful. III TABLE OF CONTENTS CHAPTER 1: INTRODUCTION 1. Introduction............................................................................................................ 1 1.1.
    [Show full text]
  • Targeting of Insect Epicuticular Lipids by the Entomopathogenic Fungus Beauveria Bassiana: Hydrocarbon Oxidation Within the Context of a Host-Pathogen Interaction
    ORIGINAL RESEARCH ARTICLE published: 15 February 2013 doi: 10.3389/fmicb.2013.00024 Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction Nicolás Pedrini 1, Almudena Ortiz-Urquiza 2, Carla Huarte-Bonnet 1, Shizhu Zhang 2,3 and Nemat O. Keyhani 2* 1 Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata CONICET-UNLP), La Plata, Argentina 2 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA 3 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China Edited by: Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts Rachel N. Austin, Bates College, via attachment to cuticular substrata and the production of enzymes for the degradation USA and penetration of insect cuticle. The outermost epicuticular layer consists of a complex Reviewed by: mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain Rachel N. Austin, Bates College, USA hydrocarbons are major components of the outer waxy layer of diverse insect species, Alan A. DiSpirito, Ohio State where they serve to protect against desiccation and microbial parasites, and as recognition University, USA molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved *Correspondence: mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with Nemat O. Keyhani, Department of overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific Microbiology and Cell Science, University of Florida, Gainesville, subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon FL 32611, USA.
    [Show full text]
  • A Comparative Genomic Investigation of Niche Adaptation in Fungi”
    The Pennsylvania State University The Graduate School Huck Institute of the Life Sciences A COMPARATIVE GENOMIC INVESTIGATION OF NICHE ADAPTATION IN FUNGI A Dissertation in Integrative Biosciences by Venkatesh Moktali © 2013 Venkatesh Moktali Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 ! The dissertation of Venkatesh Moktali was reviewed and approved* by the following: Seogchan Kang Professor of Plant Pathology and Environmental Microbiology Dissertation Advisor Chair of Committee David M. Geiser Professor of Plant Pathology and Environmental Microbiology Kateryna Makova Professor of Biology Anton Nekrutenko Associate Professor of Biochemistry and Molecular Biology Yu Zhang Associate Professor of Statistics Peter Hudson Department Head, Huck Institute of the Life Sciences *Signatures are on file in the Graduate School ! ! Abstract The Kingdom Fungi has a diverse array of members adapted to very disparate and the most hostile surroundings on earth: such as living plant and/or animal tissues, soil, aquatic environments, other microorganisms, dead animals, and exudates of plants, animals and even nuclear reactors. The ability of fungi to survive in these various niches is supported by the presence of key enzymes/proteins that can metabolize extraneous harmful factors. Characterization of the evolution of these key proteins gives us a glimpse at the molecular mechanisms underpinning adaptations in these organisms. Cytochrome P450 proteins (CYPs) are among the most diversified protein families, they are involved in a number of processed that are critical to fungi. I evaluated the evolution of Cytochrome P450 proteins (CYPs) in order to understand niche adaptation in fungi. Towards this goal, a previously developed database the fungal cytochrome P450 database (FCPD) was improved and several features were added in order to allow for systematic comparative genomic and phylogenomic analysis of CYPs from numerous fungal genomes.
    [Show full text]
  • Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants
    RESEARCH ARTICLE Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants Wil Prall, Oliver Hendy, Leeann E. Thornton* Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America * [email protected] a11111 Abstract Plant adaptation to external pressures depends on functional diversity in cytochrome P450 (CYP) enzymes. CYPs contain structural domains necessary for the characteristic P450 fold that allows monooxygenation, but they also have great variation in substrate binding affinity. Plant genomes typically contain hundreds of CYPs that contribute to essential func- tions and species-specific metabolism. The CYP72A subfamily is conserved in angio- OPEN ACCESS sperms but its contribution to physiological functions is largely unknown. With genomic Citation: Prall W, Hendy O, Thornton LE (2016) information available for many plants, a focused analysis of CYP subfamily diversity is Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering important to understand the contributions of these enzymes to plant evolution. This study Plants. PLoS ONE 11(9): e0163024. doi:10.1371/ examines the extent to which independent gene duplication and evolution have contributed journal.pone.0163024 to structural diversification of CYP72A enzymes in different plant lineages. CYP72A genes Editor: BjoÈrn Hamberger, Michigan State are prevalent across angiosperms, but the number of genes within each genome varies University, UNITED STATES greatly. The prevalence of CYP72As suggest that the last common ancestor of flowering Received: May 12, 2016 plants contained a CYP72A sequence, but gene duplication and retention has varied Accepted: September 1, 2016 greatly for this CYP subfamily.
    [Show full text]
  • Poster Session Abstracts 610
    Pharmaceutical Biology Pharmaceutical Biology, 2012; 50(2): 537–610 2012 © 2012 Informa Healthcare USA, Inc. ISSN 1388-0209 print/ISSN 1744-5116 online 50 DOI: 10.3109/13880209.2012.658723 2 537 Poster Session Abstracts 610 00 00 0000 00 00 0000 UMU APPLIED FOR SCREENING HERB AND PLANT EXTRACTS OR PURE PHYTOCHEMICALS FOR ANTIMUTAGENIC ACTIVITY 00 00 0000 Monique Lacroix, Stéphane Caillet, Stéphane Lessard INRS-Institut Armand-Frappier, Laval, Quebec H7V1B7, Canada 1388-0209 Antimutagenic activities of twelve herb extracts and twenty two plant extracts or pure phytochemicals assessed using a method based on the umu test system for screening natural antimutagens. All herb extracts tested showed antimuta- 1744-5116 genic properties except for Italian parsley that had mutagenic activity. Sage, mint, vervaine and oregano were the most © 2012 Informa Healthcare USA, Inc. antimutagenic. With regard to the metabolites, those from most herb extracts showed antimutagenic properties and those from garlic and thyme showed very strong antimutagenic activities, while those from camomile, rosemary and 10.3109/13880209.2012.658723 tarragon showed mutagenic activities, and those from celeriac and sage showed very strong mutagenic activities. Among pure compounds, pycnogenol metabolites showed strong antimutagenic activities. NPHB 658723 INSECTICIDAL ACTIVITY OF DERRIS MALACCENSIS FROM FRENCH POLYNESIA Heinui Philippe,1 Taivini Teai,1 Maurice Wong,2 Christian Moretti,3 Phila Raharivelomanana1 1Université de la Polynésie Française, Laboratoire BIOTEM, Faa’a, 98702, French Polynesia, 2Service du Développement Rural, Papeete, 98713, French Polynesia, 3Institut de Recherche pour le Développement, Papeete, 98713, French Polynesia Derris malaccensis (G. Bentham) D. Prain, a tropical member of the Fabaceae growing in French Polynesia, was inves- tigated to determine concentrations of metabolites (rotenoids and flavonoids) with pesticidal potential.
    [Show full text]
  • Among the Budding Yeasts (Sub-Phylum Saccharomycotina)
    Article Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina) Tomas Linder Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; [email protected] Received: 30 June 2019; Accepted: 7 August 2019; Published: 8 August 2019 Abstract: Cytochrome P450 monooxygenases (CYPs) are ubiquitous throughout the tree of life and play diverse roles in metabolism including the synthesis of secondary metabolites as well as the degradation of recalcitrant organic substrates. The genomes of budding yeasts (phylum Ascomycota, sub-phylum Saccharomycotina) typically contain fewer families of CYPs than filamentous fungi. There are currently five CYP families among budding yeasts with known function while at least another six CYP families with unknown function (“orphan CYPs”) have been described. The current study surveyed the genomes of 372 species of budding yeasts for CYP-encoding genes in order to determine the taxonomic distribution of individual CYP families across the sub-phylum as well as to identify novel CYP families. Families CYP51 and CYP61 (represented by the ergosterol biosynthetic genes ERG11 and ERG5, respectively) were essentially ubiquitous among the budding yeasts while families CYP52 (alkane/fatty acid hydroxylases), CYP56 (N-formyl-l-tyrosine oxidase) displayed several instances of gene loss at the genus or family level. Phylogenetic analysis suggested that the three orphan families CYP5217, CYP5223 and CYP5252 diverged from a common ancestor gene following the origin of the budding yeast sub-phylum. The genomic survey also identified eight CYP families that had not previously been reported in budding yeasts. Keywords: CYPome; enzyme; metabolism; orphan gene; yeast 1.
    [Show full text]
  • Folivory Elicits a Strong Defense Reaction in Catharanthus Roseus
    www.nature.com/scientificreports OPEN Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic Received: 20 July 2016 Accepted: 06 December 2016 analyses reveal distinct local and Published: 17 January 2017 systemic responses Thomas Dugé de Bernonville1,*, Inês Carqueijeiro1,*, Arnaud Lanoue1, Florent Lafontaine1, Paloma Sánchez Bel2, Franziska Liesecke1, Karine Musset3, Audrey Oudin1, Gaëlle Glévarec1, Olivier Pichon1, Sébastien Besseau1, Marc Clastre1, Benoit St-Pierre1, Victor Flors2, Stéphane Maury4, Elisabeth Huguet3, Sarah E. O’Connor5 & Vincent Courdavault1 Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio- aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts.
    [Show full text]
  • Effect of First, Second and Third Chromosome on the Promoter Activity of Cyp6a8 Gene of Drosophila Melanogaster
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2008 Effect of First, Second and Third Chromosome on the Promoter Activity of Cyp6a8 Gene of Drosophila Melanogaster Anirban Mukherjee University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Life Sciences Commons Recommended Citation Mukherjee, Anirban, "Effect of First, Second and Third Chromosome on the Promoter Activity of Cyp6a8 Gene of Drosophila Melanogaster. " Master's Thesis, University of Tennessee, 2008. https://trace.tennessee.edu/utk_gradthes/472 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Anirban Mukherjee entitled "Effect of First, Second and Third Chromosome on the Promoter Activity of Cyp6a8 Gene of Drosophila Melanogaster." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Life Sciences. Ranjan Ganguly, Major Professor We have read this thesis and recommend its acceptance: Mariano Labrador, Jae H. Park Accepted for the Council: Carolyn R. Hodges
    [Show full text]