Neural Control

Total Page:16

File Type:pdf, Size:1020Kb

Neural Control Committee 3 Neural Control Chair L. BIRDER (USA) Co-Chairman M. DRAKE (UK) Members W. DE GROAT (USA), C. FOWLER (U.K), E. MAYER (USA), J. MORRISON (UAE), J. PATON (U.K) Consultants D. GRIFFITHS (Canada), I. MILLS (U.K), K. THOR (USA) 167 CONTENTS OVERVIEW V. MIDBRAIN-BRAINSTEM CONTROL OF BLADDER FUNCTION LEVELS OF EVIDENCE 1. AFFERENT PATHWAYS TO THE BRAINSTEM I. THE UROTHELIUM 2. DEFINING BRAINSTEM CIRCUITRY REGULATING BLADDER FUNCTION 1. INTRODUCTION TO THE ANATOMY AND 3. THE PONTINE MICTURITION CENTER (PMC) BARRIER FUNCTION OF THE UROTHELIUM 4. BLADDER ‘FILLING’ NEURONES IN THE PMC 2. RESPONSE TO THE UROTHELIUM TO AND MEDIAL RETICULAR FOR-MATION: INJURY WHAT’S THEIR ROLE? 3. UROTHELIAL HETEROGENEITY 5. OFF-SWITCHING MICTURITION – THE 4. ROLES FOR UROTHELIAL CELLS IN PONTINE CONTINENCE CENTRE (PCC) VISCERAL SENSATION 6. THE PERIAQUEDUCTAL GREY (PAG): IS THIS AN ESSENTIAL REGION FOR 5. CLINICAL SIGNIFICANCE OF THE SENSORY SUPPRESSING THE MICTURITION WEB REFLEX? II. AFFERENT NEURONES 7. NEUROTRANSMITTERS & MODULATORS WITHIN BRAINSTEM NETWORKS 1. PROPERTIES OF BLADDER AFFERENT CONTROLLING BLADDER FUNCTION NEURONS VI. CORTEX AND BRAINSTEM 2. UROTHELIAL AFFERENTS CONTROL OF BLADDER FUNCTION 3. SENSITIVITY OF AFFERENT ENDINGS 4. SPINAL CORD 1. BACKGROUND 5. SPINAL CORD GLIAL CELLS AND 2. ROLE AND IMPORTANCE OF CEREBRAL CONTROL OF VOIDING MODULATION OF PELVIC AFFERENTS 3. CORTICAL AND SUBCORTICAL CENTRES III. NEURAL CONTROL OF FEMALE INVOLVED IN BLADDER CONTROL. PELVIC FLOOR MUSCLES AND EVIDENCE FROM OBSERVATIONS OF RHABDOSPHINCTERS LESIONS AND FROM FUNCTIONAL BRAIN IMAGING IN HUMANS 1. STRUCTURAL ELEMENTS OF THE PELVIC 4. WORKING MODEL OF BRAIN/BLADDER FLOOR CONTROL 2. INNERVATION OF THE FEMALE LEVATOR VII. ABNORMAL LOWER URINARY ANI MUSCLES TRACT FUNCTION 3. INNERVATION OF URETHRAL AND ANAL RHABDOSPHINCTERS 1. ABNORMALITIES INVOLVING 4. SPINAL URINE-STORAGE-REFLEX INFLAMMATION INHIBITORY CENTER (SUSRIC) 2. INVOLVING ABNORMAL URINE STORAGE 3. INVOLVING ABNORMAL VOIDING 5. PHARMACOLOGY OF URETHRAL AND ANAL RHABDOSPHINCTERS 4. CO-MORBID DISORDERS VIII. BRAIN-GUT INTERACTIONS IV. EFFERENT PATHWAYS TO THE BLADDER 1. BACKGROUND 2. ORGANIZATION OF HOMEOSTATIC 1. PREGANGLIONIC NEURONS REFLEXES: PROCESSING OF PELVIC 2. GANGLIA VISCERAL INFORMATION WITHIN 3. TERMINAL NERVE FIBRES HIERARCHICAL ORGANIZED 4. DESCENDING AND SPINAL SEGMENTAL HOMEOSTATIC REFLEXES INFLUENCES ON SPINAL AUTONOMIC 3. CONSCIOUS PERCEPTION OF INPUT FROM CENTRES THE BODY AS ASPECTS OF HOMEOSTASIS 5. NEURAL TRAFFIC 4. DESCENDING MODULATION OF HOMEO- STATIC REFLEXES AND FEELINGS 6. PELVIC ORGAN INTERACTIONS AT THE 5. BRAIN CIRCUITS ACTIVATED BY ACUTE EFFERENT NEURAL LEVEL VISCERAL STIMULI: EVIDENCE FROM 7. EFFERENT INHIBITION FUNCTIONAL BRAIN IMAGING STUDIES IN 8. PERIPHERAL EXCITATORY MECHANISMS HUMANS 168 Neural Control L. BIRDER, M. DRAKE, W. DE GROAT, C. FOWLER, E. MAYER, J. MORRISON, J. PATON Consultants D. GRIFFITHS, I. MILLS, K. THOR OVERVIEW LEVELS OF EVIDENCE This chapter deals with individual components This book attempts to use Levels of Evidence regulating the neural control of the urinary bladder. This throughout. The Oxford Centre for Evidence Based chapter has been completely remodeled and updated Medicine has laid down guidelines that apply to Levels with the focus on factors and processes involved in of Therapeutic Interventions and Grades of the two models of operation of the bladder: storage Recommendations to Patients; the existence of dispute and elimination. There has been significant new regarding each major conclusion should be information since the last consultation in a number of documented. However this advice does not really fields: apply to the basic sciences, where randomized controlled trials are not a common format of • The urothelium and its roles in sensor and investigation, and acute studies with internal controls transducer functions including interactions with are more common. other cell types within the bladder wall (‘sensory web’) Within this chapter we intend to be selective and report scientific evidence that has appropriate controls • The location and properties of bladder afferents and achieves statistical significance. Other categories including factors involved in regulating afferent of evidence, e.g. uncontrolled studies, anecdotal sensitization information, hypothesis or speculation will be referred • The neural control of the pelvic floor muscle and to as such. pharmacology of urethral and anal sphincters Of some importance in this field are species (focusing on monoamine pathways) differences, and efforts have been made to make it • Efferent pathways to the urinary bladder very clear when each new topic is introduced in which species the observation was made with special • Abnormalities in bladder function including emphasis as to the extent comparable data exists for mechanisms underlying co-morbid disorders humans. associated with bladder pain syndrome and incontinence In this report, we intend to indicate whether the conclusions are based on (A) peer-reviewed papers The next sections deal with the current understanding in reputable journals (B) evidence in book chapters of brainstem neuronal networks, which regulate lower or reviews, and (C) Abstracts: abstracts will only be urinary tract function (1-4). The importance is reflected mentioned if they refer to a systematic study with in the current advances in functional brain imaging good statistical methodology. (both positron emission topography or PET and functional magnetic resonance imaging or fMRI). These advances have had a major impact on understanding CNS control of the human bladder. This section has been completely revised to also include the recent advances in understanding of bidirectional brain-gut interactions in addition to discussion of homeostatic function and neural mechanisms underlying fecal and anal continence. 169 membrane, which reduce the permeability of the cells I. THE UROTHELIUM to small molecules (water, urea, protons) [5,11]. The apical surface of the urothelium is also covered with There is evidence that a number of functional pain a sulfated polysaccharide glycosaminoglycan (GAG) syndromes are associated with changes in the or mucin layer that is thought to act as a nonspecific epithelial layer. Alterations of bladder urothelium at the anti-adherence factor and as a defense mechanism molecular and structural levels have been reported in against infection [12-14]. In addition, during bladder both patients and animals modeled for various bladder filling the umbrella cells become flat and squamous disorders. It is likely that many therapies currently and this shape change is accompanied by vesicular used in the treatment of bladder disease may target traffic (i.e. exocytosis/endocytosis), adding membrane urothelial receptors and/or their release mechanisms. to the apical surface thereby increasing overall urinary bladder surface area [7,15,16]. There is evidence that 1. INTRODUCTION TO THE ANATOMY AND this stretch-induced exocytosis is dependent on BARRIER FUNCTION OF THE UROTHELIUM activation of epidermal growth factor receptor (EGFR) [17,18]. These processes allow the bladder to The urothelium is the epithelial lining of the lower accommodate increasing volumes of urine during urinary tract between the renal pelvis and the urinary filling without compromising the barrier function. bladder. Urothelium is composed of at least three Exocytosis/endocytosis (vesicular recycling) may also layers: a basal cell layer attached to a basement play an important role in modulating the release of a membrane, an intermediate layer, and a superficial or number of neurotransmitters/mediators as well as apical layer composed of large hexagonal cells regulation of the function of many receptors and ion (diameters of 25-250 µm) known as ‘umbrella cells’ channels in urothelial cells [19,20]. [5, 6] (Figure 1) The umbrella cells are interconnected by tight junctions (which are composed of multiple 2. RESPONSE OF THE UROTHELIUM TO proteins such as the claudins) and are covered on their INJURY apical surface (nearly 70-80%) by crystalline proteins called uroplakins that assemble into hexagonal plaques Basal cells, which are thought to be precursors for [7-10]. Uroplakins and other urothelial cellular other cell types, normally exhibit a low (3-6 month) differentiation markers, such as cytokeratin 20, are not turnover rate, in fact the slowest turnover of any expressed in the stratified epithelium of the urethra. mammalian epithelial cells [7,21]. It has been shown In some species, the umbrella cells and perhaps also that neither urine-derived factors nor cyclic mechanical the intermediate cells have projections to the basement changes contribute to urothelial proliferation and membrane [5]. differentiation; however accelerated proliferation can occur in pathology. For example, using a model The ability of the bladder to maintain the barrier (protamine sulfate) that selectively damages the function, despite large alterations in urine volume and umbrella cell layer, it has been shown that the increases in pressure during bladder filling and urothelium rapidly undergoes both functional and emptying, is dependent on several features of the structural changes in order to restore the barrier in umbrella cell layer. These features include tight- response to injury [22]. The initiation of urothelial junction complexes that reduce the movement of ions proliferation is thought to involve up-regulation of and solutes between cells and specialized lipid growth factors
Recommended publications
  • Nuclear Expression of PG-21, SRC-1, and Pcreb in Regions of the Lumbosacral Spinal Cord Involved in Pelvic Innervation in Young Adult and Aged Rats
    Original Article http://dx.doi.org/10.5115/acb.2012.45.4.241 pISSN 2093-3665 eISSN 2093-3673 Nuclear expression of PG-21, SRC-1, and pCREB in regions of the lumbosacral spinal cord involved in pelvic innervation in young adult and aged rats Richard N. Ranson1,2, Jennifer H. Connelly1, Robert M. Santer1, Alan H. D. Watson1 1Cardiff School of Biosciences, Cardiff University, Cardiff,2 School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK Abstract: In rats, ageing results in dysfunctional patterns of micturition and diminished sexual reflexes that may reflect degenerative changes within spinal circuitry. In both sexes the dorsal lateral nucleus and the spinal nucleus of the bulbospongiosus, which lie in the L5-S1 spinal segments, contain motor neurons that innervate perineal muscles, and the external anal and urethral sphincters. Neurons in the sacral parasympathetic nucleus of these segments provide autonomic control of the bladder, cervix and penis and other lower urinary tract structures. Interneurons in the dorsal gray commissure and dorsal horn have also been implicated in lower urinary tract function. This study investigates the cellular localisation of PG-21 androgen receptors, steroid receptor co-activator one (SRC-1) and the phosphorylated form of c-AMP response element binding protein (pCREB) within these spinal nuclei. These are components of signalling pathways that mediate cellular responses to steroid hormones and neurotrophins. Nuclear expression of PG-21 androgen receptors, SRC-1 and pCREB in young and aged rats was quantified using immunohistochemistry. There was a reduction in the number of spinal neurons expressing these molecules in the aged males while in aged females, SRC-1 and pCREB expression was largely unchanged.
    [Show full text]
  • St. Lawrence School Subject
    St. Lawrence School Subject - Science Class - 4 Chapter - 3 Human Body : Digestive and Excetory System ( Part - 1 ) Learn about * Digestive system * Excretory system * Healthy eating habits Digestive System The process by which food is broken down into a simpler form so that it can be easily taken in or absorbed by our body is called digestion. Many organs work together and help in the process of digestion. The mouth, food pipe, stomach, small and large intestine, liver, rectum, and anus are the main organs of the digestive system. Let us learn about them. Mouth Digestion starts in the mouth. The teeth help to break down and chew food. The chewed food then mixes with a liquid, called saliva, produced in our mouth. It makes the food softer and easier to swallow. The tongue helps in the proper mixing of saliva with the food. Food pipe The food pipe ( oesophagus ) passes the food from the mouth to the stomach. Stomach Inside the stomach, the food is broken down further into smaller pieces by churning and with the help of chemicals called digestive juices. Small intestine From the small intestine, the undigested food passes into the large intestine. The large intestine is a shorter but wider, tube - like structure, which collects the indigestible food from the small intestine. The large intestine absorbs water from this undigested food and forms waste products called faeces. Rectum Rectum is the final part of the large intestine. Faeces are stored in the rectum for a short time before being passed out through anus. Anus Faeces are removed from the body through the anus.
    [Show full text]
  • Motor Tracts
    Motor tracts There are two major descending tracts Pyramidal tracts (Corticospinal ) : Conscious control of skeletal muscles Extrapyramidal: Upper motor Subconscious neurons. regulation of balance, muscle tone, eye, hand, and upper limb position: Vestibulospinal tracts Lower motor neurons. Reticulospinal tracts Rubrospinal tracts Tectospinal tracts Extrapyramidal tracts arise in the brainstem, but are under the influence of the cerebral cortex Rexed laminae • Lamina 8: motor interneurons, Commissural nucleus • Lamina 9: ventral horn, LMN, divided into nuclei: Ventromedial : all segements (extensors of vertebral coloumn) Dorsomedial : (T1-L2) intercostals and abdominal muscles Ventrolateral: C5-C8 (arm) L2-S2 (thigh) Dorsolateral: C5-C8 (Forearm), L3-S3 (Leg) Reterodorsolateral: C8-T1 (Hand), S1-S2 (foot) Central: Phrenic nerve (C3-C5) • Lamina X : Surrounds the central canal – the grey commissure Motor neurons of anterior horn Medial group: (All segments) Lateral group: only enlargements Muscle spindles are sensory receptors within the belly of a muscle that primarily detect changes in the length of this muscle. Each muscle spindle consists of an encapsulated cluster of small striated muscle fibers (" intrafusal muscle fibers ") with somewhat unusual structure (e.g., nuclei may be concentrated in a cluster near the middle of the fiber's length). The skeletal muscle is composed of: Extrafusal fibers (99%): innervated by alpha motor neurons . Intrafusal fibers (1%): innervated by gamma motor neurons . depend on the muscle spindle receptors Activating alpha motor neurons Directly through supraspinal centers: Descending motor pathways (UMN) Indirectly through Muscle spindles Stretch reflex: skeletal muscles are shorter than the distance between its origin and insertion Gamma loop Gamma fibers activate the muscle fibers indirectly, while alpha fibers do it directly.
    [Show full text]
  • Urinary Bladder – Proteinaceous Plug
    Urinary bladder – Proteinaceous Plug Figure Legend: Figure 1 An eosinophilic amorphous proteinaceous plug in the bladder lumen from a male B6C3F1 mouse in a chronic study. Figure 2 A proteinaceous plug associated with other flocculent, eosinophilic material, from a male F344/N rat in an acute study. Comment: Proteinaceous plugs are commonly noted as a postmortem change resulting from an agonal secretion of accessory sex gland fluids during euthanasia. Proteinaceous plugs vary in size but can be large, filling the urinary bladder (Figure 1 and Figure 2). Microscopically, the plug is composed of a mixture of an amorphous eosinophilic material, sometimes containing desquamated epithelial cells and spermatozoa. Proteinaceous plugs by themselves have no toxicologic importance and are not precursors of calculi. Plugs may be seen with obstructive syndromes associated with bacterial inflammation. They must be differentiated from calculi. Recommendation: Proteinaceous plugs occurring alone and not associated with any pathologic lesions should be recognized as an artifact and should not be diagnosed. Occasionally, proteinaceous plugs are recognized grossly, and the pathologist should use his or her judgment to correlate the gross lesion to an artifactual proteinaceous plug. 1 Urinary bladder – Proteinaceous Plug References: Gaillard ET. 1999. Ureter, urinary bladder and urethra. In: Pathology of the Mouse: Reference and Atlas (Maronpot RR, Boorman GA, Gaul BW, eds). Cache River Press, Vienna, IL, 235– 258. Abstract: http://www.cacheriverpress.com/books/pathmouse.htm Hard GC, Alden CL, Bruner RH, Frith CH, Lewis RM, Owen RA, Krieg K, Durchfeld-Meyer B. 1999. Non-proliferative lesions of the kidney and lower urinary tract in rats.
    [Show full text]
  • 1535190852 9 Medical Terminology Urinary.Pdf
    Syrian Private University Medical Faculty Medical Terminology M.A.Kubtan , MD – FRCS Lecture 9 M.A.Kubtan Objectives After studying this chapter, you will be able to: •Name the parts of the urinary system and discuss the function of each part •Define combining forms used in building words that relate to the urinary system •Identify the meaning of related abbreviations •Name the common diagnoses, clinical procedures, and laboratory tests used in treating disorders of the urinary system M.A.Kubtan 2 Objectives Part 2 •List and define the major pathological conditions of the urinary system •Explain the meaning of surgical terms related to the urinary system •Recognize common pharmacological agents used in treating the urinary system M.A.Kubtan 3 Structure and Function The Urinary System Bladder Kidneys •Also called the excretory system •Maintains water Urinary System balance •Removes waste products from the Urethra Ureters blood by excreting them in the urine Meatus M.A.Kubtan 4 Kidneys Kidneys The kidneys are bean-shaped organs located in the retroperitoneal portion of the abdominal cavity on either side of the vertebral column. Two Primary Functions •To form urine for excretion •To retain essential substances the body needs in the process called reabsorption M.A.Kubtan 5 Parts of the Kidney Kidneys filter about 1700 kidney liters of blood daily in the average adult. medulla Parts of the kidneys •Cortex hilum -outer protective portion •Medulla -inner soft portion •Hilum -a depression located in the middle of the concave side of the kidney where blood vessels, nerves, and the ureters enter and cortex exit the kidneys M.A.Kubtan 6 Urine Production Urine is produced by filtration of: •water •sugar •creatine •salts •urea •uric acid Each kidney contains more than 1 million nephrons which are the functional units of the kidneys.
    [Show full text]
  • 15-1040-Junu Oh-Neuronal.Key
    Neuronal Control of the Bladder Seung-June Oh, MD Department of urology, Seoul National University Hospital Seoul National University College of Medicine Contents Relevant end organs and nervous system Reflex pathways Implication in the sacral neuromodulation Urinary bladder ! body: detrusor ! trigone and bladder neck Urethral sphincters B Preprostatic S Smooth M. Sphincter Passive Prostatic S Skeletal M. Sphincter P Prostatic SS P-M Striated Sphincter Membraneous SS Periurethral Striated M. Pubococcygeous Spinal cord ! S2–S4 spinal cord ! primary parasympathetic micturition center ! bladder and distal urethral sphincter ! T11-L2 spinal cord ! sympathetic outflow ! bladder and proximal urethral sphincter Peripheral innervation ! The lower urinary tract is innervated by 3 principal sets of peripheral nerves: ! parasympathetic -pelvic n. ! sympathetic-hypogastric n. ! somatic nervous systems –pudendal n. ! Parasympathetic and sympathetic nervous systems form pelvic plexus at the lateral side of the rectum before reaching bladder and sphincter Sympathetic & parasympathetic systems ! Sympathetic pathways ! originate from the T11-L2 (sympathetic nucleus; intermediolateral column of gray matter) ! inhibiting the bladder body and excite the bladder base and proximal urethral sphincter ! Parasympathetic nerves ! emerge from the S2-4 (parasympathetic nucleus; intermediolateral column of gray matter) ! exciting the bladder and relax the urethra Sacral somatic system !emerge from the S2-4 (Onuf’s nucleus; ventral horn) !form pudendal nerve, providing
    [Show full text]
  • Anatomy and Physiology Male Reproductive System References
    DEWI PUSPITA ANATOMY AND PHYSIOLOGY MALE REPRODUCTIVE SYSTEM REFERENCES . Tortora and Derrickson, 2006, Principles of Anatomy and Physiology, 11th edition, John Wiley and Sons Inc. Medical Embryology Langeman, pdf. Moore and Persaud, The Developing Human (clinically oriented Embryologi), 8th edition, Saunders, Elsevier, . Van de Graff, Human anatomy, 6th ed, Mcgraw Hill, 2001,pdf . Van de Graff& Rhees,Shaum_s outline of human anatomy and physiology, Mcgraw Hill, 2001, pdf. WHAT IS REPRODUCTION SYSTEM? . Unlike other body systems, the reproductive system is not essential for the survival of the individual; it is, however, required for the survival of the species. The RS does not become functional until it is “turned on” at puberty by the actions of sex hormones sets the reproductive system apart. The male and female reproductive systems complement each other in their common purpose of producing offspring. THE TOPIC : . 1. Gamet Formation . 2. Primary and Secondary sex organ . 3. Male Reproductive system . 4. Female Reproductive system . 5. Female Hormonal Cycle GAMET FORMATION . Gamet or sex cells are the functional reproductive cells . Contain of haploid (23 chromosomes-single) . Fertilizationdiploid (23 paired chromosomes) . One out of the 23 pairs chromosomes is the determine sex sex chromosome X or Y . XXfemale, XYmale Gametogenesis Oocytes Gameto Spermatozoa genesis XY XX XX/XY MALE OR FEMALE....? Male Reproductive system . Introduction to the Male Reproductive System . Scrotum . Testes . Spermatic Ducts, Accessory Reproductive Glands,and the Urethra . Penis . Mechanisms of Erection, Emission, and Ejaculation The urogenital system . Functionally the urogenital system can be divided into two entirely different components: the urinary system and the genital system.
    [Show full text]
  • Reliability of Quantitative Sudomotor Axon Reflex Testing and Quantitative Sensory Testing in Neuropathy of Impaired Glucose Regulation
    ABSTRACT: Reproducible neurophysiologic testing paradigms are critical for multicenter studies of neuropathy associated with impaired glucose regulation (IGR), yet the best methodologies and endpoints remain to be established. This study evaluates the reproducibility of neurophysiologic tests within a multicenter research setting. Twenty-three participants with neuropathy and IGR were recruited from two study sites. The reproducibility of quantitative sudomotor axon reflex test (QSART) and quantitative sensory test (QST) (using the CASE IV system) was determined in a subset of patients at two sessions, and it was calculated from intraclass correlation coefficients (ICCs). QST (cold detection threshold: ICC ϭ 0.80; vibration detection threshold: ICC ϭ 0.75) was more reproducible than QSART (ICC foot ϭ 0.52). The performance of multiple tests in one setting did not improve reproducibility of QST. QST reproducibility in our IGR patients was similar to reports of other studies. QSART reproducibility was significantly lower than QST. In this group of patients, the reproducibility of QSART was unaccept- able for use as a secondary endpoint measure in clinical research trials. Muscle Nerve 39: 529–535, 2009 RELIABILITY OF QUANTITATIVE SUDOMOTOR AXON REFLEX TESTING AND QUANTITATIVE SENSORY TESTING IN NEUROPATHY OF IMPAIRED GLUCOSE REGULATION AMANDA PELTIER, MD,1 A. GORDON SMITH, MD,2,3 JAMES W. RUSSELL, MD, MS,4 KIRAN SHEIKH, MD,5 BILLIE BIXBY, BS,2 JAMES HOWARD, BS,2 JONATHAN GOLDSTEIN, MD,6 YANNA SONG, MS,7 LILY WANG, PhD,7 EVA L. FELDMAN, MD,
    [Show full text]
  • Journal of Biomechanical Science and Engineering Researches on Biomechanical Properties and Models of Peripheral Nerves
    Bulletin of the JSME Vol.12, No.1, 2017 Journal of Biomechanical Science and Engineering 【Review Paper】 Researches on biomechanical properties and models of peripheral nerves - a review Ming-Shaung JU*, Chou-Ching K. LIN** and Cheng-Tao CHANG* *Department of Mechanical Engineering, National Cheng Kung University 1 University Road, Tainan 701, Taiwan (R.O.C.) E-mail: [email protected] **Department of Neurology College of Medicine and University Hospital National Cheng Kung University 1 University Road, Tainan 701, Taiwan (R.O.C.) Received: 14 December 2016; Revised: 11 February 2017; Accepted: 6 March 2017 Abstract The biomechanics of peripheral nerve plays an important role in physiology of the healthy and pathology of the diseased such as the diabetic neuropathy, the cauda equine compression and the carpal tunnel syndrome. The other application is recent development of neural prostheses. The goal of this paper is to review researches done by members of Taiwanese Society of Biomechanics on the biomechanics of peripheral nerves in the past two decades. First, a brief introduction of the anatomy of peripheral nerve is given. Then experiment designs and mechanical models for testing the nerves are presented. The material properties ranged from linear elastic to nonlinear visco-elastic and scales ranged from organ level to tissue level are reviewed. Implications of these studies to clinical problems will be addressed and the challenges and future perspective on biomechanics of peripheral nerve are discussed. Key words: Biomechanics, Peripheral nerve, Review, Diabetic mellitus, Cauda equine 1. Introduction Nervous system plays an important role in the human body it can coordinate voluntary and involuntary actions of other tissues and sub-systems.
    [Show full text]
  • B-Afferents: a Fundamental Division of the Nervous System Mediating Hoxneostasis?
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1990 Dichotomic classification of sensory neurons: Elegant but problematic Neuhuber, W L DOI: https://doi.org/10.1017/s0140525x00078882 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154322 Journal Article Published Version Originally published at: Neuhuber, W L (1990). Dichotomic classification of sensory neurons: Elegant but problematic. Behav- ioral and Brain Sciences, 13(02):313-314. DOI: https://doi.org/10.1017/s0140525x00078882 BEHAVIORAL AND BRAIN SCIENCES (1990) 13, 289-331 Printed in the United States of America B-Afferents: A fundamental division of the nervous system mediating hoxneostasis? James C. Prechtl* Terry L* Powley Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907 Electronic mail: [email protected]@brazil.psych.edu *Reprint requests should be addressed to: James C. Prechtl, Department of Neuroscience, A-001, University of California, San Diego, La Jolla, CA 92093 Abstract? The peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the "autonomic nervous system" (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS.
    [Show full text]
  • The Effects of Sensory Denervation on the Responses of the Rabbit Eye to Prostaglandin E1, Bradykinin and Substance P J.M
    Br. J. Pharmac. (1980), 69, 495-502 THE EFFECTS OF SENSORY DENERVATION ON THE RESPONSES OF THE RABBIT EYE TO PROSTAGLANDIN E1, BRADYKININ AND SUBSTANCE P J.M. BUTLER & B.R. HAMMOND Department of Experimental Ophthalmology, Institute of Ophthalmology, Judd Street, London, WCIH 9QS 1 Six to eight days after diathermic destruction of the fifth cranial nerve in the rabbit, the ocular hypertensive and miotic responses to intracameral administration of capsaicin, bradykinin, and prostaglandin E1 were greatly reduced or completely abolished. The response to substance P was not abolished. 2 A response could still be obtained to chemical irritants 36 h after coagulation of the nerve and it is deduced that manifestation of the response is dependent upon functional sensory nerve terminals, and is independent of central connections. 3 It is suggested that prostaglandin E1 and bradykinin act directly upon the sensory nerve endings and that propagation of the response is augmented by axon reflex. 4 In view of the ability of substance P to induce miosis in the denervated eyes, it is presumed that its actions are not mediated via sensory nerves. 5 It is considered possible that the mediator(s) released from sensory nerve endings after chemical irritation or antidromic stimulation may act in the same way as substance P with regard to the miotic effect. 6 Synthetic substance P will only produce ocular hypertension in doses which induce a maximal miotic response. This may either be a question of access or a partial resemblance to the endogenous mediator. Introduction The anterior segment of the rabbit eye responds to nitrogen mustard were reduced after retrobulbar an- mechanical or chemical irritation by miosis, vasodila- aesthesia and abolished after postganglionic division tation and a breakdown of the blood-aqueous barrier.
    [Show full text]
  • The Syndrome of Acute Central Cervical Spinal Cord Injury by Richard C
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.21.3.216 on 1 August 1958. Downloaded from J. Neurol. Neurosurg. Psychiat., 1958, 21, 216. THE SYNDROME OF ACUTE CENTRAL CERVICAL SPINAL CORD INJURY BY RICHARD C. SCHNEIDER, JOHN M. THOMPSON, and JOSE BEBIN From the Departments of Surgery and Sections of Neurosurgery of the University of Michigan Hospital, U.S. Veterans Hospital, and St. Joseph's Mercy Hospital, Ann Arbor, Michigan, and the Wayne County General Hospital, Eloise, Michigan, and the Department ofNeuropathology, University Hospital, Ann Arbor Any discussion of the diagnosis and treatment of tissue. The lower extremities tend to recover motor spinal cord injuries inevitably involves controversial power first, bladder function returns next, and finally strength in the upper extremities reappears, with the matters. Among the foremost of these are the indica- finer finger movements coming back last. The varying tions for (Schneider, 1951, 1955) and the contra- degrees of sensory impairment do not follow any set indications for (Schneider, Cherry, and Pantek, 1954) pattern of recovery." surgical intervention. It seems highly important, therefore, to establish criteria which will assist in It was first thought that the acute central cervical determining whether an operation should or should spinal cord injury was found only in severe hyper- Protected by copyright. not be undertaken. In 1955, a paper was published extension injuries. The importance of suspecting on " The Syndrome of Acute Central Cervical such an injury of the cervical spine in the presence Spinal Cord Injury" (Schneider et al., 1954), a of facial lacerations or contusions of the forehead syndrome the presence of which contraindicated any has been emphasized by Taylor and Blackwood surgical procedure.
    [Show full text]