<<

A Conservation Assessment of the , Black backed

Woodpecker, Flammulated , and Pileated in the Northern

Region, USDA Service

Fred B. Samson, PhD Regional Wildlife Ecologist Northern Region USDA Forest Service

2

Table of Contents

1. Introduction 4

2. Summary - Methods and Background 4

3. The Northern Region 12

4. Northern Goshawk

Ecology, Behavior, and 18 Northern Region 26 Short-term Viability 36

5. Black-backed Woodpecker

Ecology, Behavior, and Habitat 40 Northern Region 42 Short-term Viability 50

6.

Ecology, Behavior, and Habitat 53 Northern Region 56 Short-term Viability 61

7.

Ecology, Behavior, and Habitat 63 Northern Region 64 Short-term Viability 68

8. Ecological Sustainability and Long-term Viability

Ecological Sustainability 70 Long-term Viability 72

9. Summary 74

10. Literature Cited 75

ThisSeptember242006versionreplacesallearlierversions. 3

Appendix 1. Estimating Minimum Viable Population Numbers 92

Appendix 2. Bootstrap Approach 101

Appendix 3. Bootstrap Results 104

Appendix 4. Methods to Estimate Forested Habitat 113

Appendix 5. Scientific Names 116

Appendix 6. Vegetation Council Report 117

Appendix 7. Northern Goshawk Well-distributed Habitat Map 124

Appendix 8. Black-backed Woodpecker Well-distributed Habitat Map 125

Appendix 9. Habitat Estimates for the Panhandle 126 National

Appendix 10. Revised habitat estimates for the northern goshawk and black- backed woodpecker 136

May becitedas:Samson,F.B.2006(amendedSeptember24,2006).AConservation assessmentofthenortherngoshawk,blackedbackedwoodpecker,flammulatedowl,and pileatedwoodpeckerintheNorthernRegion,USDAForestService.Unpublishedreportonfile, NorthernRegion,Missoula,,USA. Thecooperationandsupportindevelopingthisconservationassessmentanddetailedmodeling workbyReneeLundbergisgreatlyappreciated.JolynWigginsprovidedexceptionalhelpin compilingRegionwideinformationthatservesasonebaseforthisconservationassessment. JimBarber,WilliamTanke,andBillKirchhoffprovidedimportantandusefulanalyticaland GeographicInformationSystemsupport.DougBerglundprovidedfurtherassistanceinthe analysisofearlyforestinventoryinformationandthecomparisontocurrentforestinventories. TheConservationassessmentofthenortherngoshawk,blackedbackedwoodpecker, flammulatedowl,andpileatedwoodpeckerintheNorthernRegion,USDAForestServicewas mendedMarch6,2006foraslightchangeinthebootstrapapproachimplementedduringthe completionoftheassessment.Revisedhabitatestimatesforthenortherngoshawkandblack backedwoodpeckerareprovidedinAppendix10basedonrecommendationsdevelopedthrough theWildlifeCouncil.

ThisSeptember242006versionreplacesallearlierversions. 4

ThisSeptember242006versionreplacesallearlierversions. 5

1. Introduction

Thisdocumentisaconservationassessmentforthenortherngoshawk, blackedbacked woodpecker,flammulatedowl,andpileatedwoodpeckerintheNorthernRegionoftheUSDA ForestServicecompletedbetweenMarch15andJuly20,2005,withsubsequentmodifications. TheForestServiceisrequiredbytheNationalForestManagementAct(NFMA)to“providefor diversityofplantandcommunitiesbasedonthesuitabilityandcapabilityofthespecific landareaintomeetoverallmultipleuseobjectives.”16U.S.C.1604(g)(3)(B).To implementtheNFMA,theForestService’sregulations,implementedonJanuary5,2005,state “Theoverallgoaloftheecologicalelementofsustainabilityistoprovideaframeworkto contributetosustainingnativeecologicalsystemsbyprovidingecologicalconditionstosupport diversityofnativeplantananimalspeciesintheplanarea.Thiswillsatisfythestatutory requirementtoprovidefordiversityofplantananimalcommunitiesbasedonsuitabilityand capabilityofthespecificlandareatoinordertomeetoverallmultipleuseobjectives.”36 C.F.R.219.10(b).PriorForestServiceregulations,implementedin1982,providedthat“and wildlifehabitatshallbemanagedtomaintainviablepopulationsofexistingnativeanddesired nonnativespeciesintheplanningarea”36C.F.R.219.19(2000).TheForest Service’sfocusformeetingtherequirementofNFMAanditsimplementingregulationsison assessinghabitattoprovidefordiversityofspecies. Foreachspecies,thisconservationassessmentconsistsof: 1)abriefoverviewofecology,behavior,andhabitatuse; 2)abriefoverviewofthehabitatuseintheNorthernRegion; 3)estimatesofwelldistributedhabitatandhabitatamountbyNationalForest; 4)evaluationofshortterm(today’slandscape)viability;and 5)evaluationoflongtermviability(historiclandscape)andecosystemsustainability.

2. Summary - Methods and Background Thisconservationassessmentincludesconsiderationofthepeerreviewedliterature,nonpeer reviewedpublications,particularlyunpublishedmaster’sthesesandPhDdissertations,research reports,anddataaccumulatedbytheForestService.Wherepossible,thepeerreviewed professionalsocietyliteratureisemphasizedinthatitistheacceptedstandardinscience. Majorsearchenginesintheliteraturereviewincludeduseofthreeonlinelinesearchengines: CambridgeScientificAbstracts[i.e.,Agricola(3,651,000citationsasofOctober2001), BiologySciences(38,350citationsasofSeptember2003),andEnvironmentalSciences

ThisSeptember242006versionreplacesallearlierversions. 6

andPollutionManagement(1,607,700citationsasofJuly2004)]; WorldCat(52,000,000recordsasofNovember2004),acompilationofcatalogsfrom librariesworldwide;and WildlifeandEcologyStudiesWorldwide,acompilationofreferencesdatingto1935. Literaturepublishedsince2000wasemphasizedinthatsuchrecentpublicationsreviewthe previousliteratureandprovidethebestavailableandmostrecentscience.Unpublishedliterature withastrongfocusonunpublishedmaster’sthesesandPhDdissertationsprovidedinformation reflectingtwotothreeyearinvestigationsintoecology,behavior,andorhabitatrequirementsof thefourspecies.Suchunpublisheduniversitybasedinformationwasimportanttoprovide detailedinformationonspeciesgiventhepossiblelackofstudiespublishedintheprofessional peerreviewedliterature.WorldCatservedasthesearchenginetolocateunpublishedthesesand dissertations. Summary Thisconservationassessmentforthenortherngoshawk,blackbackedwoodpecker,flammulated owlandpileatedwoodpeckerisbasedonaprinciplebasedapproachtopopulationviability analysis(PVA).Themethodsandbackgroundforthisprinciplebasedapproachusingpoint observationdataandvegetationinventoryinformationbasedonForestInventoryandAnalysis (FIA)datawastobuildwildlifehabitatrelationshipmodelstoanalyzeshorttermviabilityis discussedbelow.Alsodiscussedbelowistheuseofdispersaldistancetoassessthedistribution ofhabitatandtheconsiderationoflongtermviabilityusingtheprinciplesofRepresentation, RedundancyandResiliency.Theprinciplebasedapproach,usingexistingharddata,todevelop thisconservationassessmentwasutilizedduetothelimitationsofpopulationviabilityanalysisin estimatingminimumviablepopulationnumbersthrougheithermodelsorrealnumbers (Appendix1).Asexplained,literature(Beissinger2002)supportsuseofaprinciplebased approachduetothelackoflongtermdemographicandenvironmentaldata.Thefocusshouldbe awayfromaquantitativeapproachtoPVAtoanapproachbasedonecologicalprincipleswidely agreedtointhepeerreviewedprofessionalsocietyscientificliterature.AsbackgroundPVA models,aswellas,theuseofrealdataisdiscussedbelowpriortoadiscussionoftheRegion1 principlebasedapproachtoPVA. PopulationViabilityAnalysis(PVA)Models Beissinger(2002)in Population Viability Analysis: Past, Present, and Future, abookthat summarizedtheresultsofaninternationalsymposiumtoaddresspopulationviabilityanalysis (PVA),describedthehistoryofthePVAfieldinfoursteps. First,in1981,Shaffer(1981)establishedanewdirectionforthefieldofPVA.Shaffer(1981) builtontheearlierworkbyMcCullough(1978),whichpredictedthefutureofthegrizzlybearin theGreaterYellowstoneEcosystem.Shaffer’s(1981)approachincorporatedchanceevents, bothdemographic(largelyvariationinbirthratesanddeathrates)andenvironmental

ThisSeptember242006versionreplacesallearlierversions. 7 stochasticity(effectsofweatherorotherchanceevent),whichledtoestimatingtheminimum viablepopulation(MVP)sizethatwouldpersistwithagivenprobabilityoveraparticularle lengthoftime(ShafferandSamson1985). Second,earlyapplicationoftheMVPconcept(Samson1983,Salwasseretal.1984)exploredthe useoftheconceptascriteriatodeterminewhetherspeciesshouldbelistedundertheEndangered SpeciesAct(1973)andtheconverse,whetherdelistingwaswarranted(Beissinger2002).The conceptofrisk(Salwasseretal.1984,Samsonetal.1985)alsowasintroducedtopermitthe relativeevaluationofmanagementactionsaswellastobegintoprioritizespeciesfor conservation. Third,in1981,FrankelandSoule’s(1981)book Conservation and Evolution suggesteda geneticbasedapproachtotheMVP.Fromthisbookemergedthe50/500(50individualinthe shortterm/500individualsinthelongterm)rulewhichhasbecomeetchedintothefabricof PVA(Beissinger2002).GilpinandSoule(1986)expandedthePVAconceptusinggeneticand relatedinformationdrawnfromcaptivepopulationsinzoologicalparks.ConcurrenttoGilpin andSoule(1986)wastheemergenceofnumerousandreadilyavailablesoftwarepackages (VORTEX,RAMAS,ALEXandothers)thatgreatlyexpandedtheuseofbasicconcepts(largely stochasticityandgenetics)intoPVA’s. Fourth,thereadyavailabilityofPVAsoftwarepackagesalsoillustratedtheAchillesheelof PVA—thelackoflongtermdatatopopulatequantitativePVAmodels.Boyce(1992),Rallsand Taylor(1997),BeissingerandWestphal(1998),GroomandPascal(1998),Reedetal.(1998) andothersdocumentthelackoflongtermdataandinabilitytoaccuratelypredictpopulation trendswithoutlongtermdemographicdata.Thelackorpoorqualityofdatahaveleadto difficultiesinparameterestimation,weakabilitytovalidateanymodel,littleunderstandingof theeffectsofalternativemodelstructuresinpredictingpopulationtrends,andaneedtoshiftto principlebased(BeissingerandWestphal1998)ratherthanaquantitativeapproachtoPVA. Longtermdemographicdataisdefinedbythevarianceindeath,birth,orotherratesthatdonot tendtostabilizewithout8to20yearsofdatacollection(BeissingerandWestphal1998,Morris etal.1999)ifatall(Pimm1991).Rareenvironmentalevents—e.g.,the100yeardroughtor flood,fires,storms,unusuallyseverewinters,andsoon—alsohavelargeeffectsonvariance estimatesrequiredintheuseofPVAmodels(Ludwig1996,1999). Shafferetal.(2002)couldfindnoexamplewhereaPVAmodelhadbeenusedtoforecastthe ofawildpopulationthatoccurredwithintheconfidencelimitsofthemodel.Shaffer etal.(2002)furtherfoundnoexperimentaltestsofthecommonlyavailablemodelsotherthan Belovskietal.(2002).Belovskietal.(2002)foundtheavailablemodelswereinaccuratein termsofexpectedlifetimes(basedonhislaboratorypopulationsofbrineshrimp),butthe underlyingassumptionthatpopulationlifetimesdodependonavailablehabitatwas,inessence, correct. Thelackoflongtermdemographicandenvironmentaldatahadraisedthequestionastowhether PVAwasvaluabletothefieldofspeciesconservation(Beissinger2002).Thegeneral conclusionwas“yes”butchangeinfocusandapproachwasrequired—awayfrom“quantitative”

ThisSeptember242006versionreplacesallearlierversions. 8 ormodelbasedapproachtoPVAtoanapproachbasedonecologicalprincipleswidelyagreedto inthepeerreviewedprofessionalsocietyscientificliterature. RealStudiestoDetermineMinimumViablePopulations: Estimatingthepopulationdensityletalonepopulationtrendformostanyvertebratespeciesisat bestproblematic(Bartetal.2004).Forexample,foursourcesofbiasinestimatingdensity are1)coverage,2)closure,3)surplus,and4)detectionrates. Coveragereferstowhetherthepopulationofinterestissampledinawaysuchthatdensity estimatesarepossible.Often,thebiasinsuchestimatesisthedifferenceinthetrendinthearea sampledandintheregionwidesurveyrequiredtoestimatetrend(Bartetal.2004).“Thebest approachforreducingbiasduetoincompletecoverageisprobablytodevelophabitatbased modelstoextrapolatefromsurveyedtothenonsurveyedareas”(page1244). Doublesamplingisanapproachtodealwithclosureorincompletecoverage.Doublesampling istoconductabroadscalesurveyfollowedbysmaller,morespecificsurveystoinsurethe accuracyoflargescalesurveysbutfurtherthe“applicationofdoublesamplingneedsfurther investigation”(Bartetal.2004:1245).Bartetal.(2004)“knowofnocasesinwhichthese assumptions(i.e.,allbirdsarerecordedandnosurplusbirdsarepresent)arenecessarilytrue,and urgetheseassumptionsbetested.” Detectabilityistherequirementinasurveyapproachtoestimatethenumbersofbirds(orother taxaunderconsideration)thateachobserverfailedtodetect.Thisisasignificantissue.Failure todetect10%ofthebirdsinanareabyanobserveryieldsaverydifferentdensityestimatethan iftheobserverfailedtodetect90%ofthebirds.Bartetal.(2004:1245)pointedoutmany surveysareconductedalongroads,dikes,trailsorothernonrandomlocationsandthereforeare often“notrepresentativeofthestudyregion.”Trainingofobserversmayhelpbutisno substitutetotheconsiderationofenvironmentalcharacteristicswhichcanvarysubstantially acrossthelandscape. Complicatingthedetectabilityofbirdsisthefactthatmalesofmanyspeciesceasetosingduring thenestingseason(GibbsandFaaborg1991).Fromanevolutionaryviewpoint,itis advantageoustothepairedmaletofeeditsprogenyandavoidattractingapredatortothe area.Habitatbasedonsingingmales(versusthatofanestsite)isjustthat,itmayormaynotbe representativeofhabitatrequiredtosuccessfullynestandraiseyoung. Region1PrincipleBasedApproachtoPVAUsingHardData : PointObservationDataUtilized InNovember2004(McAllister2004),aletterfromtheRegionalForesterrequestedeach Forest/toupdatetheirrespectivePointObservationData(POD)sothatitcanbe enteredintoFAUNA,theForestService’scorporatedatabaseforwildlifeinformation.This

ThisSeptember242006versionreplacesallearlierversions. 9 letterservedasafollowuptoaRegionalrequestforPODforthegoshawkinthesummerof 2004. Whereavailable,PODwereemphasizedasthebasistobuildwildlifehabitatrelationship models,particularlytoestimatetheamountanddistributionofhabitatforeachofthefour species.Threeofthefourremainingcriteriatoevaluatethefourspeciesinthisconservation assessment—humandisturbance,bioticinteractions,andmanagingforecologicalprocesses—are primarilybasedontherecentpeerreviewedscientificliterature. Inaddition,foreachNorthernRegionwildlifehabitatrelationshipmodeldevelopedforthis conservationassessment,abootstrapapproach(Appendix2)wasusedtoprovideanestimateof thestandarderror(SE).TheSEisarelativemeasureofvariabilityaroundthemean.A90% confidenceintervalwasselectedandestimatesofconfidencelimitsandSE’sfortheestimatesof eachmodelareprovidedinAppendix3. FAUNAprovidesanuptodatesourceofspeciesinformationbothtolocateanddescribehigh qualityhabitattobridgethegapbetweensinglespeciesmanagementandecosystem conservation.Currently,agreementsarebeingdevelopedtoinsureannualexchangeofPOD withtheMontanaNaturalHeritageProgram,TheNatureConservancy,Helena;Idaho ConservationDataCenter,IdahoDepartmentofFishandGame,Boise;USFishandWildlife Service;BureauofLandManagement;andothersfromuniversitiesandelsewherethatcollect POD. PODisregularlyusedtobuildwildlifehabitatrelationshipmodels(Petersonetal.2002).Sergio andNewton(2003:857)describehow1)“Occupancy(POD)maybeareliablemethodof (habitat)qualityassessment,especiallyforpopulationsinwhichnotallterritoriesareoccupied, orforspeciesinwhichcheckingoccupancyiseasierthanfinding;”2)“successful conservationshouldmaintainorimprovehighquality(occupied)sitesratherthanfocusingon poor(unoccupied)sites”(page863);3)occupancydataareoftenavailable,eitherbyspecificor amateurmonitoringschemes;and4)occupancythroughspaceandortimeisareliablemeasure ofquality,thuscanprovidekeyinformationforthedevelopmentofconservation strategies. Petersonetal.(2002:619)suggesttwoadditionaladvantagestouseofPODinthedevelopment ofmodelsandconservationstrategies,i.e.,whenupdatedfromtimetotime,PODprovide“fora continuouslyupdated,neveroutofdate,growingdatabasethatbuildsinrealtime,thustaking advantageofamaximumofinformationforeveryresult,”anduseofPODavoidstheelementof subjectivitywhenanexpert(s)providesarangemap,speciesaccount,oranecologicalsummary asthebasisforawildlifehabitatrelationshipmodel. VegetationInventoryInformationUsed–FIAData Vegetationinventoryinformationusedtobuildthewildlifehabitatrelationshipmodelsand describetoday’slandscapeisbasedonForestInventoryandAnalysis(FIA)data.FIAistheonly congressionallymandated,comprehensive,fieldbasedforestinventoryforeachofthe50States, PuertoRico,andTrustTerritories.TheMcSweeneyMcNaryForestResearchAct(1928)

ThisSeptember242006versionreplacesallearlierversions. 10 definestheFIAmission:"Makeandkeepcurrentacomprehensiveinventoryandanalysisofthe presentandprospectiveconditionsofandrequirementsfortherenewableresourcesoftheforest andrangelandsoftheUnitedStates." FIAproducesstatisticalreportsandanalyticalinformationonstatusandtrendsinforestareaand location;species,size,andhealthoftrees;totaltreegrowth,mortality,andremovalsby harvest;woodproductionandutilizationratesforvariousproducts;andforestlandownership. Asanexampleofitsscientificstature,FIAmaintainsabibliographicdatabaseofover1,400 reportsandscholarlypapersdealingwithFIAfieldsurveysfortheUnitedStatesandits territoriesfortheperiod1975throughJuly2001.Thesecitationsincludeintegratedassessments andmultidisciplinarysurveys,representativecitationsassociatedwithtimberresource assessments,andallknownthesesanddissertationsassociatedwithFIAdatasince1975, regardlessoftopic. InadditiontoFIA,estimatesofforestedhabitatforeachNationalForestintheUSDANorthern Regionweredeveloped.Theseestimatesweredevelopedusingremotesensing(Appendix4) andservedonlytoprovideestimatesofforest(versusnonforest)habitatinthatprovidingmore detailedinformation(treesize,treediameter,numberofcanopylayersandsoon)isnot obtainablethroughmostformsofremotesensing. DistributionofHabitat Dispersalabilityofyoungisthemeasureofwelldistributedhabitat(Thomasetal.1990, AppendixP).InthePresident’sPlantoconservetheoldgrowthforestsofthePacificNorthwest, Thomasetal.(1992:367)concludedforthespottedowlthat"thedistancesbetweenHabitat ConservationAreasshouldbewithintheknowndispersaldistancesofatleasttwothirds(67%) ofalljuveniles"inordertosatisfythe219.19requirementforwelldistributedhabitat. SubsequentmodificationsoftheoriginalHabitatConservationAreanetworkbythespottedowl recoveryteamalsomeetthiscriterion.The9 th CircuitCourthasupheldthePresident’sPlan. Dispersalofyoungisanimportantcomponentofpopulationviability,yetisdifficulttomeasure (Koenigetal.2000).Researchersrarelylookbeyondtheirrespectivestudyareastorelocate bandedbirdsortorecoverdeadbirds.Nobroadscalesurveysexisttorelocatebandedbirdsand fewtelemetrybasedstudiesareadequateinscopetoaddressdispersaldistances. Inanoverallreviewofdispersaldistanceinbirds,Bowman(2003:198)foundarelationship betweenmediandispersaldistanceandthesquarerootofterritorysizeforaspeciesthatcanbe describedasfollows. Mediandispersaldistance(inkm)=12timesthesquarerootoftheterritorysize(inha). TheapproachtodispersaldistanceinbirdsdevelopedbyBowman(2003)isusedinthis conservationassessmentforeachofthefourspecies. LongTermViability

ThisSeptember242006versionreplacesallearlierversions. 11

Shafferetal.(2002),giventhelackofprogressinthedemographicbasedapproachestoPVA, suggestedanewdirectiontomaintainMVP’soverthelongterm,onebasedonhabitatandthree ecologicalprinciples:1)Representation,2)Redundancy,and3)Resiliency(thethreeR’s). Representationistoproviderepresentativeexamplesofthenaturallandscape.Redundancyisto providemorethanoneexampleoftheelements/naturallandscape.Resiliencyistotakeinto accountenvironmentalvariationduetoecologicalprocesses.Employingthesethreeprinciples “wouldacknowledgebothwhatwedoknowaboutthedeterminantsoflongtermpersistenceand thelimitsofourforecastingability”(Shafferetal.2002)whetherintheshortorlongterm. ConservationofEcosystemDiversity(fulldistributionofecosystemcharacteristics)alongwitha comparisonofthecurrentconditionofecologicalprocessestotheirpreEuropeansettlement frequencyandextentinthe2005DraftDirectivestoimplementthe2005ForestServicePlanning RuleisbasedonthethreeR’s.ThethreeR’sformalongwithacomparisontothepreEuropean settlementcharacterofanecosystemformthebasistoevaluatelongtermviabilityand ecosystemsustainabilityinthisconservationassessment. AnunderstandingofthepreEuropeanlandscapeisessentialtounderstandtherequirementsfor thelongtermconservationofspecies(Haufleretal.2002)andecosystemsustainability(Holling 1992,AllenandHolling2002). Historicinventoriesareoneofseveralsourcesofinformationthatcanbeusedtoreconstructa landscape(Fosteretal.1996).Between1937and1948,detailedsurveysofforestedlandswere conductedinIdahoandwesternMontana(Berglund2005).Suchhistoricforestsurveysprovide informationofforestcompositionandstructureandprovideabasistocomparethoseforeststo thecompositionandstructureofforeststodayassampledbyFIA. AssumptionsandlimitationsofthisConservationAssessmentincludethefollowing. 1)Methodstoestimatecanopyclosure,foreststructure,anddominantforesttypemaydiffer amongthestudiesreferredtointhisassessmentandfromthoseusedbytheForestServiceto estimatethesehabitatcharacteristics. 2)Thisconservationassessmentfocusesonforestedhabitatandmayunderestimatehabitatfora speciessuchasthenortherngoshawkknowntouseopenshrublands. 3)FIAsamplepointsaffectedwithintheprior10yearsbyeithertimberharvestorfireare excludedintheestimatesofhabitatforthefourspecies. 4)FIAdoesnotadequatelysamplerare. ScientificnamesareprovidedinAppendix5. SummaryofResults Thisshorttermviabilityassessmentreflectsthoseeologicalfactorswhichnowimpactaspecies persistence(Appendix1).Thisconservationassessmentshowsthatshorttermviabilityisnotan issueinRegion1forthenortherngoshawk,blackbackedwoodpecker,flammulatedowlor

ThisSeptember242006versionreplacesallearlierversions. 12 pileatedwoodpecker.Viablepopulationsintheshorttermforthesespecieswillbemaintained asthereisnoscientificevidencethatthespeciesaredecreasinginnumber,therehavebeen substantialincreasesintheextentandconnectivityofforestedhabitatsinceEuropeansettlement, theleveloftimberharvestoftheforestedlandscapeintheNorthernRegionhasbeen insignificant,andwelldistributedandabundanthabitatexistsontoday’slandscapeforthese species. Inregardtolongtermviability,thisconservationassessmenthasfoundthatlongtermhabitat conditionsintermsofRepresentativeness,Redundancy,andResiliencyare“low”forallspecies. Theassessmentoflongtermviabilityrelatestothesustainabilityofhabitatconditionsinwhich thespecieshavepersistedforanextendedperiodoftime(>100years).Thereasonforthe“low” habitatassessmentinthelongtermisthathabitat(landscape)changeshaveoccurredandare occurringthataremovinghabitatawayfromhistorichabitats.Includedintheselandscape changesarelossofandtheincreasesinintermediateagedforestsandtheincreased connectivityofthelandscape.Theseincreasesinintermediateagedforestsandconnectivity threatenkeyremainingelementsof,suchasareasofoldgrowth,astheseareasno longerpersistinfireprotectedrefugiabutareembeddedinawellconnectedmatrixof intermediateagedforestthatpermitstherapidspreadoffireandoutbreakswithaspatial temporalpatternunlikethehistoriclandscape.Theresultisalowratingforhabitat Representativeness,RedundancyandResiliencyinthelongterm.

ThisSeptember242006versionreplacesallearlierversions. 13

3. The Northern Region TheNorthernRegionoftheUSDAForestServiceincludeslandinNorthDakota,SouthDakota, MontanaandnorthernIdaho.TheforestedportionsoftheNorthernRegionarelargelyin MontanaandnorthernIdahoandforestedareabyNationalForestasestimatedbyremotesensing (Appendix4)issummarizedTable1. TheNationalForestsintheNorthernRegionintermsoflandform,patterninprecipitation,and vegetationaredescribedbythreeEcologicalProvinces(Bailey1996):1)theNorthernRocky MountainSteppe–ConiferousForest–AlpineMeadowProvince(NRMEP)bylowrelief mountains,withcedarhemlock,sprucefir,andwesternponderosapineforests,and precipitation64250cm;2)theMiddleRockyMountainSteppe(MRMEP)–ConiferousForest –AlpineMeadowProvincebylowreliefmountains,Douglasfir,sprucefir,ponderosapine,and lodgepoleforests,foothillsprairie,sagebrushstep,andalpinemeadows,andprecipitation64to 115cm;and3)theSouthernRockyMountainRockyMountainSteppe(SRMEP)–Coniferous Forest–AlpineMeadowProvincebysteep,dissectedmountains,Douglasfir,sprucefir, ponderosa,andlodgepolepineforests,andprecipitation120to280cm. In1999,acoalitionofnationalconservationorganizationsleadbyT.H.Rickletts,World WildlifeFund,evaluatedandrankedtheconservationstatusofeachEcologicalProvince(Bailey 1996)inNorthAmerica.ThecriteriadevelopedbyRicklettsetal.(1999)toevaluatethe conservationstatusforeachEcologicalProvinceinNorthAmericawere1)GloballyOutstanding (mostimportant),2)RegionallyOutstanding,3)BioregionallyOutstanding,and4)Nationally Important.Inaddition,currentconditionsofeachEcologicalProvincewereratedbyRicklettset al.(1996)asCritical,Endangered,Vulnerable,andeitherRelativelyStableorRelativelyIntact. IntheNorthernRegion(Ricklettsetal1999,appendixE,pages135145),remnantcentraltall grassprairieinNorthDakotawasconsideredtobeGloballyOutstandingandCritical—the highestofbothratings.Montanevalleygrassland,northernmixedprairieandshortgrassprairie wereconsideredtobeNationallyImportantandVulnerableinNorthAmerica—avery significantrating.NorthernRockyMountainforestswereofBioregionalImportanceand Vulnerable,andrequiredeitherprotectionofremaininghabitatorextensiverestoration—a relativelylowconservationratingincomparisontothatonaglobalornationalbasis. Today,intheNorthernRegion,moreforestexiststhanatthetimesinceEuropeansettlement. Gallantetal.(2003:385)intheGreaterYellowstoneEcosystemfound“theprimaryforest dynamicinthestudyareaisnotthefragmentationofforestby,butthetransition fromafiredrivenmosaicofgrassland,shrubland,broadleafforest,andmixedforest communitiestoaconiferdominatedlandscape.”Areaofconiferdominatedlandscapes increasedfrom15%ofthestudyareainthemid1850’sto50%inthemid1950’s.Moreover, “substantialacreagepreviouslyoccupiedbyavarietyofageclasseshasgivenwaytoextensive tracksofmatureforest”intheGreaterYellowstoneEcosystem. In Before Lewis and Clark, Nasatir(1952)describedtheextensivenetworkoftradeestablished bytheFrench,SpanishandBritishwithNativeAmericansreachingfromtheupperMidwestinto theSouthwestbeforethe1800s.Laroque’sdailyjournal(1805)describestheplainsalongthe

ThisSeptember242006versionreplacesallearlierversions. 14

PowderRiveras“amazinghowverybarrenthegroundisbetweenthisandthelesser, nothingcanhardlybeseenbutthose Corne de Racquettes (pricklypear).Ourhorse nearlystarved.”BelowthemouthofthePowder,Laroquecommentedthatsmokefromprairie firesplaguedthemforthreedays(Laroque1934:13).LewisandClarkobserved(in1805)“The countryonbothsidesoftheMissourifromthetopsoftheriverhills,isonecontinuedfertile levelplainasfarastheeyecouldreach,inwhichthereisnotevenasolitarytreeorshrubtobe seen”(citedinCoues1893). OnNovember16,1803,inwestcentralMontana,Lewisobservedthefirstsagegrouse, suggestingthatmuchofthepreEuropeanlandscapeintheeasternpartofMontanawas grasslandandnot(ZwickelandSchroeder2003).InsouthwestMontana,Lesicaand Cooper(1992)suggestedalargeandirreversibleconversionofgrasslandtoshrublandoccurred inthe1850sand1860sasaresultofintensivegrazingbyintroduceddomesticlivestock(sheep andcattle).BotheasternandsouthwesternMontanaappeartohaveexperiencedrecentand Europeaninducedirreversibleecosystemchanges,fromgrasslandtoshrub/treedominated landscapes. Irreversiblechangesfromgrasslandtoshrub/treedominatedlandscapesaresignificant. “Grasslandconversiontoexcludedfiresbecausemanyhistoricalsurfacefiresindry forestsactuallybeganongrassybenches,ridgetops,orvalleybottomsadjacenttodryforests and,orinnearbyshrubsteppecommunities,andthenmigratedintodryforests” (Hessburgetal.2004:5).Firesensitivetreespecieshistoricallywererestrictedtorockyorless productiveareaswherefuelswereminimal(Gallantetal.2003).Extensionofinto grasslandandotheropenhabitatthroughouttheRockyMountainsduetofiresuppressionhas beendocumented(e.g.,Gruell1983). InnorthernMontana,Habeck(1994:69),usingGeneralLandOfficeRecords,foundwiththe reducedfrequencyandinfluenceoffireDouglasfir“hasmademajorgainsinstanddominance overponderosapineandwesternlarch,especiallyonnorthaspects:onsouthaspects,former andgrasslandcommunitieshaveexperiencedconiferinvasions”(seealsoArnoand Gruell1986). Rollinsetal.(2000),workingintheSelwayBitterrootWildernessAreaincentralMontanaand Idaho,alsodescribedhowfirereturnintervalsarelongerrelativetopreEuropeanestimatesand haveresultedinchangesinforestcompositionandstructure.Theseauthorsfurthersuggested thatactionisneededtoreturntheWildernessAreatoanaturalfireregimetoprevent catastrophicwildfire(seealsoMcCuneandAllen1985). Rockwell(1917),SmithandFischer(1997),Neuenschwanderetal.(1999),andZack(1994) provideacollectiveforesthistoryforthenorthernportionofIdahoandprovideestimatesof changesincompositionandstructureontheIdahoPanhandleNationalForests.Thehistoric landscapebypercentfortheIdahoPanhandleNationForestsisestimatedtohaveincluded15% to50%shrub,seedlingorsaplings,15%to50%poletomediumsizedtrees,15%to35%mature forest,and15%to35%oldgrowthforest.

ThisSeptember242006versionreplacesallearlierversions. 15

In2003,HessburgandAgee(2003:44)providedahistoricforestnarrative(1800topresent)in theinlandnorthwest(includingnorthernIdahoandwesternMontana).HessburgandAgee (2003)suggestseverallandscapelevelchangessinceEuropeansettlementthathavehad fundamentalimpactsontoday’sforestcompositionandstructure. First,HessburgandAgee(2003:44)note“AswiththenativeprairiesoftheGreatPlains,the demiseoftheInlandNorthwestgrasslandsrepresentedoneofthemostbiologicallydiverse biomesonthecontinent,andasignificantreductionofnativehabitats.” Second,HessburgandAgee(2003:44)notethere“wereimportantshiftsinlandcoverfrom earlytolateseralconiferousspecies.”Periodsofhighgradeloggingandselectioncuttingand firesuppressionthatfollowednotonlyreducedthedominanceofearlyseralspeciesbut increasedthedominanceofshadetolerantconiferslikeDouglasfir,grandfir,andwhitefirin multiple,oftendenseunderstories.Theoveralleffectwastomaketoday’slandscapemore structurallyandcompositionallyhomogeneous. Third,“ThemostwidelydistributedchangeinforeststructureacrosstheInteriorColumbiaBasin wassharplyincreasedareaandconnectivityofintermediate(notneworold)foreststructures” (HessburgandAgee2003:44). Theincreaseinconnectivityisathreattotheconservationofoldgrowthforestandriparianareas (HessburgandAgee2003:44).Historically,oldgrowthforestoccupiedsemipredictablefire refugia(Campetal.1997).Today,oldgrowthforestsnolongeroccupynaturalrefugiafromfire butexistinamatrixofwellconnectedforestintermediateinage.HessburgandAgee(2003:44) suggest“longtermplanstoreserveremaininglatesuccessionalandoldforestsareprobablyill fatedbecausetheseforestsaresusceptibletoburning.”HessburgandAgee(2003:50)further suggestcustodialmanagementofriparianareasbybufferswillhavelongtermeffectsonthe patternsofnaturalprocessesacrossthelandscape. HessburgandAgee(2003)describetwoadditionalrecentchangestoforeststructure.First,an increaseindeadtreeandabundancesforsmallandmediumsizedtrees(12.7to40.4cm diameter)isevidentintheinteriorPacificNorthwestforests.Thisincreaseinsmallandmedium sizedtreesisaninfluenceonboththefuelload(increases)andconnectivity(increases)ofthe landscape.Second,currentforestpatcheshavemoreunderstorylayers;historicforest understorieswerelargelyabsentand,ifpresent,werecomposedofshrubandherbaceousspecies (andnottrees). In2004,Schoennageletal.(2004)publishedanindepthreviewoftheinteractionoffire,fuels, andclimateacrosstheRockyMountainforests.Ofthethreemajorfireregimes—highseverity, mixedseverity,andlowseverity,onlylowseverityandlesssomixedseverityfireareconsidered tobebeyondthehistoricornaturalrangeofvariation. Highseverityorstandreplacingfiresarethosedefinedbydeathofcanopytrees(Schoennagelet al.2004).Highseverityfiresnormallyburnthetreetops,areinfrequent(every300to400 years)andmostoftenoccurinthesubalpinezone—frommesicsprucefirforeststodrier,dense lodgepolestands,andopenareasoflimberpine.Mosttreespeciesinthisecologicalzoneare

ThisSeptember242006versionreplacesallearlierversions. 16

Table1.Summaryofforestarea(ha)byNationalForestasestimatedbyremotesensing (Appendix4)intheUSDAForestServiceNorthernRegion. Ecological Forested Province/National Forest NRMEP 4,342,224 IdahoPanhandle 952,982 Kootenai 716,021 Flathead 775,598 Lolo 796,111 Bitterroot 458,030 Clearwater 643,482 MRMEP 2,555,245 Beaverhead 987,545 Deerlodge Helena 294,775 LewisandClark 510,198 NezPerce 762,727 SRMEP 668,624 Gallatin 465,054 Custer 203,570 Region 7,566,093

ThisSeptember242006versionreplacesallearlierversions. 17

Table2.Summaryofhabitat(ha)availabletothenortherngoshawk,blackbackedwoodpecker, flammulatedowl,andpileatedwoodpeckerbyNationalForestintheUSDANorthernRegion estimatedbyRedmondetal.(2001).Variablesincludedinthewildlifehabitatrelationship habitatmodelsforeachspeciesareincludedinthefootnotes. Ecological Northern Black Flammulated Pileated Province /National goshawk 1 backed owl 3 woodpecker 4 Forest woodpecker 2 NRMEP IdahoPanhandle 869,940 775,172 275,606 849,612 Kootenai 164,723 488,800 116,923 488,602 Flathead 167,516 316,155 51,810 316.027 Lolo 130,176 398,581 146,580 398,429 Bitterroot 212,130 280,137 163,923 280,020 Clearwater 58,787 587,954 201,329 587,716 MRMEP Beaverhead 267,701 134,377 100,399 134,323 Deerlodge Helena 51,484 121,605 146,518 121,556 LewisandClark 73,697 140.114 46,413 140,057 NezPerce 731,301 730,336 298,120 730,040 SRMEP Gallatin 85,914 11,519 11,431 Custer 25,779

ThisSeptember242006versionreplacesallearlierversions. 18

Table2continued 1Variablesincludedmixedbroadleafforest,lodgepolepine,ponderosapine,grandfir,westernredcedar,western hemlock,Douglasfir,westernlarch,mixedsubalpineforest,mixedmesicforest,mixedxericforest,mixed broadleafandconiferforest,<40%slope,andhighcanopycover. 2VariablesincludedDouglasfir/lodgepolepine,mixedsubalpineforest,standingburntforest;andmediumandhigh canopy 3 Variablesincludedmixedbroadleafforest,ponderosapine,Douglasfir,mixedxericforestlessthan2100min elevation. 4Variablesincludedmixedbroadleafforest,ponderosapine,grandfir,westernredcedar,westernhemlock, Douglasfir,westernlarch,Douglasfir/lodgepolepine,mixedxericforest,mixedbroadleafandconiferforest, coniferriparian,broadleafriparian,andmixedbroadleafandconiferriparian;andmediumorhighcanopy cover. thinbarkedandeasilykilledbyfire.Thehistoric/predictedrelationshipoffuelbuildupandfire frequencyismissinginhighelevationsubalpineforests. Manylowelevationponderosaexperiencelowintensity,groundlevelandfrequentfire (Schoennageletal.2004).Areviewoflowintensityfiresuggeststhehistoricalfireregime(or intervalbetweenfires)haschangedandisnowmoreinfrequent(ArnoandGruell1983).Spatial andtemporalvariationinfuelsisimportanttolowintensityfirefrequency. Mixedseverityfiresareintermediatebetweenhighintensityfiresandlowintensityfires (Schoennageletal.2004).Bothhighandlowintensityfirecanoccurindifferingfrequenciesin mixedseverityfire.Ponderosapine,Douglasfir,grandfir,andwesternlarch,dependingon theirlocation,aresubjecttomixedseverityfire.Forestsunderthehistoricinfluenceofmixed severityfiremaydevelopmorehomogeneousforeststructure,resultinginlargerpatchesof continuousanddenseforest. Table2providesasummaryofRedmondetal.’s(2001)estimatedhabitatforthefourspecies consideredinthisassessment.Estimatedhabitatforeachspeciesconsideredinthisassessment accordingtoRedmondetal.(2001)wasabundantandwidespread—35.5%oftheNorthern Regionprovideshabitatforthenortherngoshawk,41.5%oftheNorthernRegionprovides habitatfortheblackbackedwoodpecker,26.6%oftheNorthernRegionprovideshabitatforthe flammulatedowl,and41.5%oftheNorthernRegionprovideshabitatforthepileated woodpecker. ThewildlifehabitatrelationshipmodelsdevelopedbyRedmondetal.(2001)relyprimarilyon covertypesandLandSat(Satellite)imagery.BeissingerandWestphal(1998)describedlimitsto theusefulnessofGeographicInformationSystems(GIS)satelliteimageryinthedevelopmentof PVAbasedstrategiesforrarespecies.Forexample,itisreportednotpossibletousesatellite imagerytoidentifysitespecifichabitatattributessuchasforeststructureforthenorthern goshawk(McGrathetal.2003)asonevariableinthedevelopmentofaconservationstrategy. SamplebasedinformationasfromFIAcanprovidereliableestimatesofforeststructureaswell ascomposition.

ThisSeptember242006versionreplacesallearlierversions. 19

ItisimportanttokeepthefollowingfourpointsasbackgroundrelativetotheNorthernRegion andthefourspeciesconsideredinthisconservationassessment.

1)Forestedlandscapesareneitheranationalpriorityinconservationnoraretheya priorityinconservationattheecosystemlevelinthenorthernRockyMountainin comparisontoothermajorvegetationtypes(i.e.,tallgrassprairie,mixedprairie, shortgrassprairieandmontanevalleygrassland).Thatis,conservationorganizations haveidentifiedprairieandgrasslandlandscapestobemostatrisknotforested landscapes(Ricklettsetal.1999).Inforestedlandscapes,habitatmaintenanceandor restorationareimportantinthenorthernRockyMountains. 2)ForestshavechangedsinceEuropeansettlement(HessburgandAgee2003,Hessburg etal.2004andothers):theareaofforesthasincreased;fireregimeshavelengthenedin timeintervalandchangedinpattern(largerandmoreintenseatleastinlowerelevation forests);Douglasfir,grandfirandothershadetolerantspecieshaveincreasedin abundanceanddistribution;intermediatebutneitheryoungoroldforeststructureare abundantandwelldistributed;andincreasedconnectivityoftheforestsisplacing matureandlateseralforestatrisk.Thisisbecauseareassuchasoldgrowthnowno longerpersistinfireprotectedrefugiabutareembeddedinawellconnectedmatrixof intermediateagedforestthatpermitstherapidspreadoffireandinsectoutbreakswith aspatialtemporalpatternunlikethehistoriclandscape. 3)Amongthethreeprimarypatternsinfire,thenaturalregimeforlowseverityfirehas changed(longerinterval)inlowelevationprimarilyponderosapineforest,andsome change,particularlyinlowelevationmixedconiferforests,isreportedinthenatural regimeformixedseverityfire(combinationoflowseverityandhighseverityfire) (Schoennageletal.2004).Frequencyandpatternsinhighseverityfirecharacteristic tohighelevationsmaystillbewithintheirnaturalrangeofvariation. 4)Habitatforthefourspeciesconsideredinthisassessment,asestimatedbywildlife habitatrelationshipmodelsdevelopedbytheSpatialAnalysisLaboratory,University ofMontana,Missoula(Redmondetal.2001),iswidelydistributedandabundantby EcologicalProvince(Bailey1996)andNationalForest(Table2)intheUSDAForest ServiceNorthernRegion.

ThisSeptember242006versionreplacesallearlierversions. 20

4. Northern Goshawk

Ecology, Behavior and Habitat

Thenortherngoshawkisalargeforestraptoroccupyingborealandtemperateforeststhroughout theHolarctic(Penteriani2002).ThenortherngoshawkinNorthAmericabreedsinforested areasfromcentralAlaska,central,andsoutheastMacKenzieandsouthernKeewatin,east throughmuchinto,andNewfoundland;southfromcentralAlaska alongtheAlexanderArchipelagointoandwestintoMontanaandWyoming;and southintoArizona(ascitedSquiresandReynolds1997).InthemidwestandeasternUnited States,thenortherngoshawkbreedssouthfromintonorthernWisconsin,,and intoNewJersey,NewYork,,Massachusetts,andWest(ascited SquiresandReynolds1997).

NortherngoshawkmigrationbeginsinlateSeptemberandcontinuesthroughNovember(USDI FishandWildlifeService1998).Thenortherngoshawkisapartialmigrantwithsomebirds remainingyearroundinanareawhileothersmovetolowerelevationsortowinteringareas somedistancefromthebreedingarea(SquiresandReynolds1997).Irruptivemovements— largerthannormalnumbersmovingtoanewarea—areknownandarethoughttoreflectcycles inthenumbersofpreysuchasruffedgrouseorsnowshoehare(DoyleandSmith1994).

PairformationandnestbuildingusuallybeginsinearlyAprilandegglayingoccursinApriland May(SquireandReynolds1997).Thefemalenortherngoshawkislargerthanthemaleand defendsthenestwhilethemaleforagesforfood.Sizeofthetypicalhomerangeforthenorthern goshawkinNorthAmericavariesfrom500hato4,000hadependingonageandsexofthebird, thehabitat,andthemethodologyusedincollectingandanalyzingthedata(Kennedy2003). Fromonetofivealternatenestsareconstructedbythenortherngoshawkwithinthehomerange.

Basedonbandreturns,youngbirdsmaytravelconsiderabledistances(mean=181km,range52 to442km)withthedispersalbeginninginSeptember(Kennedy2003).Suchestimatesof dispersaldistancesareoftenbiasedandlessthanreality(Koenigetal.2000).Researchersrarely lookbeyondtheirrespectivestudyareastorelocatemarkedbirdsandbroadscalesurveysto relocatemarkedbirdsthatmaytravelsomedistancefromanindividualstudyareaarevirtually nonexistent.

Theunderstandingofwinterhabitatsislimited(SquiresandRuggiero1996,Good1998)but theyappeartouseagreatervarietyofhabitatsthaninsummer(Stephens2001).

SquiresandReynolds(1997)in The Birds of No. 298 providedetailed informationonbreedingrange,nonbreedingrange,migration,morphology,pairformation, courtshipandcopulation,nestingphenology,metabolismandtemperatureregulation,moltsand ,anddemographics.Asecondanddetailedsourceofinformationonnortherngoshawk habitat,effectofdisturbance,andcompetition,utilizationforscientificandcommercial purposes,anddiseaserelativetotheconservationandmanagementinthewesternUnitedStates isin The Northern Goshawk Status Review (USDIFishandWildlifeService1998).Includedin theFishandWildlifeServicedocumentisacompletereviewofthescientificliterature,habitat

ThisSeptember242006versionreplacesallearlierversions. 21 informationobtainedfromlandownersandfederalagencies,informationfrominternetwebsites, andtimberharvestrecordsfromtheForestService.ConclusionsfromtheUSDIFishand WildlifeService(1998)reviewincludedbutarenotlimitedto1)habitatshouldbeacollectedin astandardmanner,2)regionallevelstandardsandguidesshouldbedeveloped,and3)the northerngoshawkisnotappropriateforusebytheForestServiceasaMIS.

AthirdandrecentForestServicesponsoredreviewofnortherngoshawkecology,behaviorand conservationwasconductedthroughStateUniversity,FortCollins,Coloradoandfor thecentralRockyMountainsisbyKennedy(2003).Kennedy's(2003)reviewprovided comprehensiveinformationonnortherngoshawksystematics,distributionandabundance, activitypatterns,habitat,feedinghabits,breedingecology,threats,andviability.Insufficient informationwasavailabletoconductaPVAduetolackoflongtermdemographicinformation accordingtoKennedy(2003).BeissingerandWestphal(1998)andMorrisetal.(1999)provided criteriaastowhendemographicinformationissufficienttouseademographicmodelasa quantitativeapproachtoestimateviablepopulationsize. Severalinternetwebsitesprovidefurtherdetailedinformationonnortherngoshawkecology (e.g.,AccessedMarch20,2005;andAccessedMarch20,2005; ). Nesting TheunderstandingofhabitatrequirementsforthenortherngoshawkintheinteriorPacific Northwestandelsewhereishandicapped.Fewstudieshaveequallysampledallhabitatsand seralstages(SquiresandReynolds1997).Providingbroadandecologicallysoundhabitat recommendationsbasedonstudiesthatdifferinsamplingdesignrequireametaanalysis (Gurevitchetal.2001).Nometaanalysesareavailableforthenortherngoshawk(Kennedy 2003).Forthesereasons,habitatrecommendationsarenotavailableforthenortherngoshawk otherthaningeneralterms.

Studiesinthesouthwestprovidethemostcomprehensiveunderstandingofthenortherngoshawk inNorthAmerica.BeginningwithReynoldsetal.(1991),threespatialscalesareusedto describehowbreedingnortherngoshawksusesouthwesternlandscapes:1)a10to12hanest area,withonetofivealternativenestslocatedindifferentstandswithinthenestarea;2)a120to 240hapostfledgingarea(referredtoasthepfa),anareasurroundingthenestandusedbyyoung fromthetimeoffledgingtoindependence;and3)a500to2100haforagingareausedbythe breedingpairtoforageforprey.

In2000,HanauskaBrown(Table3)evaluatedanestsitemodelforthenortherngoshawkin centralIdaho(seealsoHanauskaBrownetal.2003).TheHanauskaBrown(2000)modelis pixelbased(usingForestServiceLandSatsatelliteimageryforvegetationandUSGeological Surveydigitalelevationmodels)andconsideredthreevariables:basalarea;treesize;andcanopy closure.

TheHanauskaBrown’s(2000)habitatrelationshipmodelwasvalidatedusinginformationfrom 39nestsincentralIdaho(nodataareprovidedthatdescribethe39nests).TheHanauskaBrown

ThisSeptember242006versionreplacesallearlierversions. 22

Table3.Summaryofkeycharacteristics(mean±SDunlessotherwisenoted,samplesizein parentheses)ofgoshawknesttreeandnestsiteinrecentstudiesintheUnitedStatesandoutside landsmanagedbytheUSDAForestServiceNorthernRegion.

Idaho Arizona Arizona Northwest Hanauska Joy(2002) Reichetal. McGrathetal. LaSorteetal. Brown (2004) (2003) (2004) (2000) Treesize 56.3±2.5 68.3±13.0 dbh(cm) (82) (120) Tree 29.5±.89 height(m) (82) Canopy >60 62.5±26.4 53.1±1.7 45.0±12. closure (39) cv47.2 (82) (120) (%) (454) Basalarea 598±35 2 29.3±18.7 29.27±18.67 40.6±1.3 12.5±46.0 (m 2/ha) 1 (39) (454) (454) (82) (120) Understory 56±.42 >8.0 Lowstem 10.7±9.2 4 (m 2/ ha) (454) (454) exclusion 3 (120) (82) Slope Lower1/3 9.6±6.9 (82) (120) Aspect 2369 (82) 1Basalareaistheareaofacrosssectionofatreemeasuredatdiameterbreastheigh t. 2 Standindexmeasuredbasedonaveragetreesizeanddensityandrepresentsthedensityoftreesthathavea quadraticmeandiameterof25cmandnotbasalarea. 3SeeMcGrathetal.(2003)fordetails. 4Measuredbyselfrightingsightingtube.

(2000)modelestimated558,185of1.5millionha(oraboutonethird)ofcentralIdahoprovided potentialnestinghabitatforthenortherngoshawk.

HanauskaBrownetal.(2003)intheirstudyofnortherngoshawksincentralIdahofound goshawkproductivityandsurvivalwerenegativelyaffectedbythepresenceofotherraptors, particularlybythebarredowl,arecentarrivertoIdahoandknowntobethecauseforthedecline

ThisSeptember242006versionreplacesallearlierversions. 23 ofotherspeciessuchasthespottedowl(Kellyetal.2003).Nospecifichabitat recommendationswereprovidedbyHanauskaBrownetal.(2003)toprotectthenorthern goshawkfromthebarredowlorotherspecies.

Miller(2001)comparedlandscapehistoryandnortherngoshawknestsonlandsmanagedbythe ForestServiceontheKaibabPlateau,northernArizona,andtheGrandCanyonNationalPark, managedbytheNationalParkService,northernArizona.Thesize,shapeandspatial distributionofforestpatchesonForestServicelands(smallerandmorefragmented)differed fromthoseontheNationalParklands(largerandmoreconnected).ForestServicetimberstands onaveragehad60%lessbasalareaand20%fewertreesthantimberstandsintheNationalPark. Nevertheless,asmallsamplesizeofnortherngoshawknestsontheNationalPark(n=1)lands preventedquantitativecomparisonofnortherngoshawkhabitatonForestServiceandNational Parklands.

DifferencesinthelandscapewereduetotimberharvestonForestServicelandsandtolarge “catastrophic”firesofNationalParklandsaccordingtoMiller(2001).Miller(2001:57) concluded“historicmanagementoftheNationalParkandNationalForesthasresultedintwo landscapesthatpossessdifferentlandscapescaleandcompositionanddifferentforeststructure attributes.Despitethesedifferences,itisnotclearwhetherecosystemfunctionor(northern goshawk)populationdynamicsonthePlateauiseffected”bythedifferentagencyspecific historiesinlandmanagement.

Joy(2002)(Table3)inastudyinnorthernArizonausedGibbsianpairwisepotentialmodel(a Markovpointprocessthatcansimulatebothregularandaggregatedpatterns)toexaminethe relationshipbetweenhabitatcompositionandstructureandnortherngoshawkdemographics. Habitatwasdefinedaslocalbiotic,climate,andedaphicconditionsthatmakeupthenorthern goshawk’senvironment.Joy(2002)foundterritorialbehaviorandnothabitatwaslimitingthe distributionandabundanceofnestingnortherngoshawks.

“Good”northerngoshawkhabitatwasdefinedbyJoy(2002)astreespecies,i.e.,ponderosapine andmixedconsider,particularlywhentheponderosapinehadhighcanopyclosure(regression coefficientof0.003),andflatterslopes(regressioncoefficientof–0.373).Steeperslopes (regressioncoefficientof–0.044)andeastfacingslopes(regressioncoefficientof0.041) improvednesthabitatinmixedconiferhabitats.Thepresenceofseedlingsandorsaplingswas importantandimprovedtheestimateforallnesthabitats(regressioncoefficientsrangedfrom 0.039to0.128).Most“good”habitatshadfewopeningsbut14%ofthe“good”nestsiteshad openingswithinthenestingterritory.

Reichetal.(2004)summarizedstudiesinnorthernArizonadatingtotheearly1990’s(Reynolds etal.1991).Northerngoshawkspreferredareasofponderosapine,mixedconifer,and dominatedforestfornesting.

Reichetal.(2004:111)(Table3)providesaGibbsianpairwisepotentialmodel“todescribethe spatialvariabilityamongnortherngoshawknestsandtheirassociationwithforeststructureon theKaibabNationalForest’sNorthKaibabRangerDistrictinnorthernArizona.”Theanalysis includedfourtopographicvariables(elevation,slope,aspectandlandform)andsevenstand

ThisSeptember242006versionreplacesallearlierversions. 24

Table4. Summaryoftreespeciesusedfornortherngoshawknestforrecent(>2000)studiesof northerngoshawkhabitatintheUnitedStatesoutsideoftheUSDAForestServiceNorthern Region. Nesttree Arizona Northwest Reichetal. McGrathetal. (2004) (2003) 1 Douglasfir 32 Ponderosa 116 27 pine Mixed 8 conifer Spruce 17 dominated Deciduous 6 dominated Lodgepole 7 Western 22 larch Grandfir 4 Whitefir 1 4 Sugarpine 1 1EstimatedfromFigure7inMcGrathetal.(2003). structurevariables:percentcanopyclosure;totalbasalarea;proportionsofponderosapine; spruce/fir;inthetotalbasalarea;maximumheightofunderstoryvegetation;andthe presenceofseedlingsorsamplings.

TheReichetal.(2003)(Table3)studyisanimportantsummaryoffindingsemergingfroma nearlytwodecadelongstudyinNorthernArizona.Variablesthatemergedimportanttonest sitesselectedbythenortherngoshawkincludeddominanttreespecies,totalbasalarea,and slope.ThemajorconclusionsofferedbyReichetal.(2004)aretwo.First,activenorthern goshawknestlocationswereabundantandrandomlydistributedacrosstheKaibabPlateauin northernArizona.“Thissupportsthesuppositionthattheavailabilityoflocationswithhigh potentialfornestingisnotlimitingthegoshawkpopulation”(Reich2004:109).Second, territorialbehaviorandnothabitatwassettingtheupperlimittonestingnortherngoshawk populations. McGrathetal.(2003)(Table3)usedauseversusavailabilitydesigntotestthenullhypothesis thatnortherngoshawknestinghabitatdidnotdifferfromavailablehabitat.McGrathetal. (2003)testedthishypothesisusingconcentriccirclesplacedaroundknownnestsitesand

ThisSeptember242006versionreplacesallearlierversions. 25 randomlylocatedsites.Thenineconcentriccirclesaroundanesttree(1ha)extendinginsizeto thatcorrespondingtoapfa(radius=736m).McGrathetal.(2003)reportedthreeimportant considerationsinevaluatingnortherngoshawkhabitat:1)habitatismultidimensional;2)certain habitatcharacteristicsarescalespecific;and3)somefactorsinteractwithinaparticularscale.

McGrathetal.(2003)foundnortherngoshawksnestsinseventreespecies(Table4).Goshawks placedtheirnestswithinareasofstemexclusion(P=<0.0002)andusedoldgrowthforestin proportiontoavailabilityfornestsites.Northerngoshawknestswerestronglyassociatedwith lowerslopes(P=<0.001),primarilyonnorthfacingslopes(P=<0.001),andwerecloserto areasofhumandisturbance(P=<0.0001)thanrandomsites.

The30hacirclesinMcGrath’sstudyofnortherngoshawknestsiteswereassociatedwithmid tolateforeststructurewithacanopyclosureof>50%,i.e.,highstemexclusionandhigh understoryreinitiating.Basalareaandlowtopographyinteractedinthemultivariateanalysis suggestionastronginteractionincharacterizinggoshawknestsiteselection(P=0.103).

LaSorteetal.(2004)(Table3)comparedhabitatusebysympatricredtailedhawksandnorthern goshawksontheKaibabPlateauinNorthernArizona.Encroachmentbytheredtailedhawkinto northerngoshawkterritoriesisconsideredtobeaconservationconcern.Thepatternthat emergedfromthisstudyisthathabitatusebytheredtailedhawkandnortherngoshawkwas distinctivelydifferentatthefineandmidscale.Theredtailedhawkdisplayedmorevariationin habitatusewithnonforestedareasandstepslopesimportanttotheirterritories.

Northerngoshawkterritorieswereobservedonmoregentleslopes(P=<0.001)andmore continuousforestcover(P=<0.001)ascomparedtotheredtailedhawk(LaSorteetal.2004). Overall,incomparisontotheredtailedhawk,variablesthatdescribedanortherngoshawknest siteincludednesttreeheight(P=<0.001),meancrownheight(P=<0.001)andtotalnumberof shrubs(P<=0.001).LaSorteetal.(2004:316)concluded“thatthehabitatassociationsof goshawksareregionallyconsistentwithinaparticularenvironment”and,that“animportant managementgoalshouldbetoretaingoshawkbreedinghabitatwithinthegoshawk’srangeof association.”

Post-fledging Area

Fewauthorshavedescribedhabitatsinthenortherngoshawkpfa(themidorlandscapearea aroundthenest)incomparisontothataroundanestsite.McGrathetal.(2003:29)compared vegetationinconcentriccircles(10to30.30to60,60to83,83to120,120to150,120to170m) placedaroundanest.McGrathetal.(2003)concludedstandinitiationwasimportantinthe10to 60mcircles;evennesswasgreaterin60to150mcircles,andhighstemexclusionwasof importanceinthe10to83mcircles.McGrathetal.(2003)concludedatthelandscape(pfa) scale,standinitiationwasimportantandhabitathadlesscontagion(i.e.,connectivity)suggesting goshawkswereselectingforgreaterdistancebetweenstandsofthesameseralstage.These resultsdoshow“thegoshawk’srelianceonspecifichabitatconditionsfornestingdecreasesas distancefromthenestincrease”(McGrathetal.2003:48).

ThisSeptember242006versionreplacesallearlierversions. 26

Joy(2002)establishedaseriesoffiveconcentriccircles[.15km,.3km,.6km.1.2km(asmall pfa),and2.4km]aroundanesttoevaluatenestsiteandpfahabitatincomparisontothatinthe concentricrings.Randomandequalsizedplotswereestablishedindependentofthenorthern goshawkterritories.Thecomparisonofhighqualityterritorytosurroundinghabitatinthe concentriccirclesshowedtheproportionofponderosapinetobesignificant(P=<0.011)within thefirsttwoornearbycircles.

Joy(2002)foundtheproportionofmixedconiferinnortherngoshawkpfa’sdidnotdifferinany concentriccirclefromthatmeasuredintherandomplots.Theproportionofdeciduous dominatedhabitatingoodterritorieswassignificantlydifferentineachofthefiveconcentric circles(P=<0.000to0.010),i.e.,toincludethepfa.Theproportionofopeningsforbothlow andhighqualityhabitatdifferedfromthatobservedinrandomsitesineachofthefiveconcentric circles(P=<0.000to0.011)whichsuggestedcanopyclosureisafactoringoshawkselectionof nestsitesandpfa’s.Thediversityoftreetypeswassignificantlydifferentinconcentriccircle2 orpfa(P=<0.025).

DawandDestefano(2001)inOregonconductedadetailedstudyofnortherngoshawkpfa’s centeredon22nests.Atthepfascale,DawandDestefano’s(2001)recommendationsareto “maintainforestconditionsintermediatebetweenthehighfoliagevolumeandcanopycoverof nestsitesandmoreopenforagingheights”(page59).Morespecifically,themostabundant structurewasdensecanopyandmiddleagedforest(37%)followedbydensecanopyandlate forest(29%).Theleastabundantpfahabitatwasearlyforest(3%).Themixofagestructures wasimportanttoprotectyoungagainstpredators,suchasthegreathornedowlandredtailed hawk.

LaSorteetal.(2004)examinedthevarianceinselectedtraitsimportanttonortherngoshawknest sitesandpfa’sasmeasuredin23concentriccirclescenteredonbothgoshawkandredtailed hawknestsites.Ingeneral,nestsiteandpfahabitatcharacteristics(nonforesthabitat,slope) remainedrelativelyconsistent(asmeasuredbyanoddsratio±SE)outtoadistanceextending about550mfromanortherngoshawknestsite.

Foraging Evenfewerstudiesareavailablethatdescribenortherngoshawkforaginghabitatincomparison toeithernestorpfahabitat.Hargisetal.(1994)duringathreeyearstudyofnortherngoshawks inCaliforniatrackedeightfemaleandtwomalenortherngoshawksequippedwithradio transmitters.TheintentoftheHargisetal.(1994)studywastodeterminethosefeaturesor landscapepatternsthatinfluencenortherngoshawkhomerangesizeandindividualuse.Hargis etal.(1994)concludedthatan“emphasisshouldbeplacedoncreatingormaintainingvegetation diversity”(ascomparedtorandomsites)(page66)and"thattimberharvestsbedesignedto createajuxtapositionofseralstages,includingmaturetimber,ratherthanlargetracksof homogeneous,midseralstages"(page73).

Joy(2002)suggestswithregardtohabitatassociatedwithnortherngoshawkterritoriesthat“the spatialarrangementofvegetationtypeswithintheforagingareadoeslittletodifferentiatefurther higherfromlowerqualityhabitat.Strongerrelationshipsareexpectedtoemerge,however,using

ThisSeptember242006versionreplacesallearlierversions. 27 variablesofforeststructure(includinghorizontalandverticalmeasures)duetotheirinfluenceon theaccesstoandresourceavailabilityforprey”(Joy2002:209).

Bloxton(2002)inwesternstudiedpreyabundanceandspaceuse(nineterritories) bythenortherngoshawk(17birdsequippedwithradiotelemetrypackages)from1996to2000. Northerngoshawkhuntingtechniqueswassuggestedtoreflectanadaptationtolandscapes composedofadiversityofhabitatstructureswhereawidevarietyofpreywouldbeavailable. Bloxton(2002:1)concludes“useoftelemetryallowedmetogainacomprehensive understandingoftheeffectsofweathercanhaveonspaceuseanddemographyofageneralist predator….and….weathereffectsmayoverridehabitateffects.”Significantvariationin goshawkoccupancy,reproduction,survivorship,andpopulationsizewithinanareamayreflect weatherandnothabitatcondition.

Bloxton(2002)foundnortherngoshawkforaginghabitattobesimilartothatreportedinother studies(Good1998,Hargisetal.1994,BierandDrennan1997andsoon),i.e.,largertreeswith welldevelopedcanopiesandwithadequateflightspacebeneaththecanopy.Theopenflight spaceunderthecanopyisrequiredinsearchingforandcapturingpreybythenortherngoshawk.

Inrecentyears,xericforeststhroughoutmuchoftheIntermountainWesthavebecome overstockedwithsmalldiametertreesduetosuppressionoffire(Agee1998).Bloxton(2002) suggeststhisconditionhaslikelyreducedtheabilityofnortherngoshawkstohuntinthese forests,particularlyinyoungerstands,wherelessspaceexistsbetweentheoverstorycanopyand theshadetolerantundertstoryconifers.

Sonsthagen(2002)examinednortherngoshawkannualmovements(36femaleswithradio transmitters)innorthernUtah.Thestudyofnortherngoshawkmovementswascoupledwithuse ofmicrosatelliteDNAtoestimategeneflow.Infall,juvenilebirdswereabletodisperseand successfullyfindnewterritoriesinotherareas(Sonsthagen2000).Sonsthagen(2002)foundthat residentnortherngoshawks(i.e.,thosethatdidnotmigrate)preferredhabitatsinwintersimilar tothoseusedinsummer.Migrantnortherngoshawkswereabletomovethroughoutthestate. Noconsistentpatternemergedinuseofforestedcorridorsbythenortherngoshawk,i.e.,some didandsomedidnotuseforestedcorridors.Distancestraveledinwinterbyresidentbirds ranged49.1to191.0kmandupwardsto618.3kmformigrants.

DrennanandBeier(2003)describednortherngoshawkhabitatuseinwinterinnorthernArizona ontheKaibabPlateau.Theseauthorssuggestedgoshawksthatleavetheirrespectiveterritories (moreoftenmales)andmovetolowerhabitatswhichhavelargerabundantpopulationsofprey. Thosegoshawksremainingwithintheterritoryselectsitesformoderatelydensematureforests wheretheirabilitytocapturepreyismaximized.DrennanandBeier(2003)concludedby quotingBraunetal.(1996:11)in The Wildlife Society Technical Review of the Northern Goshawk that“managementofsouthwesternforestsmustinvolveanecosystem/landscape approachandshouldnotbenarrowlyfocusedon1species”(page184),i.e.,thenorthern goshawk.

Northern Region

ThisSeptember242006versionreplacesallearlierversions. 28

Nest and Nest Sites NortherngoshawknestsitecharacteristicsinwesternMontanaandnorthernIdahomayinclude moderateslopes(1535%)withnortherlyaspects(HaywardandEscano1989)(Table5). Amongothernestsitecharacteristics,HaywardandEscano(1989)foundcanopyclosure (coefficientofvariationof7%)andbasalarea(coefficientofvariationof18%)werethemost consistent(Table6).About40%ofthenestswereonnorthfacingslopesandallnestswere withinonekmofalargeforestopening.Distancetoanopeningwas<0.5kmforhalfofall nests. Inthesummerof1989and1990,Whitford(1991)comparedoldgrowthDouglasfirstands(n= 50)withDouglasfirnortherngoshawkneststands(n=12)inordertoevaluatethe appropriatenessofthegoshawkasaMISforoldgrowthDouglasfirontheLewisandClark NationalForestincentralMontana.Overall,“oldgrowthforeststandssupportedolder,larger dbhlivetreeswithopencanopieswhilegoshawkstandshadyounger,smallerdbhlivetreeswith densecanopies”(page43).Inaddition,oldgrowthstandssupportedfewerbutlargersnags whiletheneststandshadmorebutsmallersnagsperha.Oldgrowthstandsalsocontainedlarger logsandmoretotaldownedlogvolumeperhathannortherngoshawkneststands. Patla(1997)examinednortherngoshawknestingecology(31territories)andhabitatin undisturbedandtimberharvestareasontheTargheeNationalForest,partoftheIntermountain Region,USForestService(Table5).Patla(1997)found1)nostatisticaldifferenceinthe proportionofmatureforestcoversampledwithinthenestarea,pfa,orforagingarea;2) importantnesttreecharacteristicstobeheight(P=0.004),diameter(P=0.001),elevation(P= 0.004),andslope(P=0.027);and3)occupancyofnestingterritorieswaspositivelycorrelatedto theamountofsage/shrubhabitatwithinthepostfledgingareaandintheoverallforagingarea. Clough(2000)studied19northerngoshawknestsinthenorthernhalfoftheFlintCreekrange, BeaverheadDeerlodgeNationalForest,ineastcentralMontana.Northerngoshawkselectionof treespecies(Table5)fornestingwasdependentonspecies(P=0.008).Size(P=<0.001)and height(P=<0.001)ofthenesttreewereimportantfactorsingoshawknestsiteselection(Table 6).Nestswerewithin1to5kmofthegrassland/timberinterface,onnorthfacingslopes (82.6%),independentindistancetowater,andsharedseveralenvironmentalcharacteristics.On average,nestsitesweredependentonaspect(P=<.0015)andneartheedgeoftheneststand(P =<0.001).All19nestshadcanopyclosure>=50%withsaplingdensity(P=<0.005)and densityoflargetrees(P=<0.005)important. MoserandGarton(2004)describedtheresultsofatelemetrybasednortherngoshawkstudy(n =18)innorthernIdaho.The18breedingareas(170haaroundthenest)studiedbyMoserand Garton(2004)includedareaswithtimberharvestwithaminimumof11%(range1138%)ofthe breedingareadisturbedbytimberharvest(5099%overstoryremovalwithinharvestboundary) andhabitatinnonharvestedcontrols(n=9).Breedingareaswereharvestedin2002(n=4) and2003(n=5).Northerngoshawksinallbreedingareassuccessfullyfledgedyoungtheyear priortotreatmentandproductivitywasthesamebetweentreatmentspriortotimberharvest.

ThisSeptember242006versionreplacesallearlierversions. 29

Table5.NumberofnestsbytreespeciesbythenortherngoshawkfornestsitesintheUSDA ForestServiceNorthernRegion. Treespecies Idaho Montana Montana Montana Montana Patla Clough NRMEP MRMEP SRMEP (1997) (2000) (2004) (2004) (2004) Douglasfir 38 11 56 74 10 Ponderosa 12 13 18 pine Lodgepole 9 8 1 30 2 Western 34 larch Whitepine 8 Grandfir 5 Paperbirch 3 Subalpinefir 1 Aspen 1 5 Western 11 hemlock Engelmann 1 spruce

TimberharvestintheMoserandGarton(2004)studyhadnoeffectonnortherngoshawk breedingareaoccupancy,nestsuccess,orproductivity1to2yearsaftertimberharvest. Occupancyofharvestedgoshawkbreedingareaswas89%and75%after1yearand2year, respectively,comparedto80%and78%ofthepairsafter1yearand2year,respectively. Northerngoshawknestsuccessandproductivitywereinfluencedbyspringweatherratherthan timberharvest.MoserandGarton(2004)concludedinnorthernIdahothattimberharvestdoes notappeartoaffectnortherngoshawkbreedingareaoccupancy,nestsuccess,orproductivity2 yearsafterharvestaslongassuitablenestinghabitatremainswithinthebreedingarea. PODforthenortherngoshawkonForestServicelandsintheNorthernRegionprovide informationon374nestlocationsintheNorthernRegion(Table6).Eitheranadult,pair,andor youngwereobservedeitherinorinverycloseproximitytoanestsite. NortherngoshawksintheNorthernRegionnestinDouglasfir(n=141),ponderosapine(n= 43),andlodgepolepine(n=39)(Table5).Selectionofthe10treespeciesasnestsitesinthe NorthernRegion(Table5)issimilartotreespeciesselectedinothernortherngoshawkstudies (Table4).

ThisSeptember242006versionreplacesallearlierversions. 30

Table6.Summaryofkeycharacteristics(mean±SDunlessnoted,samplesizeinparentheses)of northerngoshawknesttreesandnestsitesinorneartheUSDAForestServiceNorthernRegion. Haywardand Patla Clough NRMEP MRMEP SRMEP Escano (1997) (2000) (2004) (2004) (2004) (1986) Treesize Sawtimber 43.6±25.0 36.39±9.7 36.6±5.8 31.8±5.6 dbh(cm) 12%(<35cm (49) (23) (90) (9) dbh),mature 38%(>35but <50cmdbh), oldforest 50%(>50cm dbh) (17) Tree 25.0 ±1.0 height(m) (49) Canopy 80.0±2.71 79.0±3.0 66.7±1.73 79.8±12.2 52.4±18.2 70.0±10.3 closure (17) (49) (19) (23) (90) (9) (%) Basalarea 40.6±3.75 27.7±1.5 49.8±1.7 41.6±15.1 41.8±9.7 32.8±8.8 (m 2/ha) 1 (17) (49) (19) (23) (90) (9) 1Basalareaistheareaofacrosssectionofatreemeasuredatdiameterbreastheigh t andisameasureofdensity.

Thediameterbeastheight(dbh)oftreesusedasnestsitesbythenortherngoshawkvariesfrom 10to76cmwithameanof35cm(Table6).Theaveragedbhforagoshawknestsiteinthe PODiswithintherangeofdbhreportedforothernesttreesbyClough(1990),Whitford(1991), Patla(1997)andothers(Table4). ThenortherngoshawkPODcanopyclosureestimates(Table6)ingeneralalsoaresimilarto thosereportedinrecentstudies(Table4).

Post-fledging Area

Clough’s(2000)analysesshowedonly11.3 ± 5.1%ofthenortherngoshawkpfa’scontained oldgrowthormatureforest.Onaverage,77%ofthepfa’swerecoveredbyforestofwhich

ThisSeptember242006versionreplacesallearlierversions. 31

Table7.Nestsite,pfa,andforagingnortherngoshawkhabitatrelationshipmodelsfortheUSDA ForestServiceNorthernRegion. BA_WTD_DBH 1 Dominance Canopy Basalarea Structure (cm) group 2 coverage m2/ha 3 4 (%) Nest model Regional 25.445.7 ABGR, 3492 2459 1,2 ABGR1MIX, ABLA, ABLA1MIX, IMXS,LAOC, LAOC1MIX, PIMO,PIMO 1MIX,PICO, PICO1MIX, PIPO,PIPO 1MIX,PSME, PSME1MIX, TGCH,TSHE, TSHE1MIX, POTR5, POTR51MIX, BEPA,BEPA 1MIX NRMEP 5 25.445.7 ABGR, 6892 2657 1,2 ABGR1MIX, ABLA, ABLA1MIX, IMXS,LAOC, LAOC1MIX, PIMO, PIMO31MIX, PIPO,PIPO 1MIX,PSME, PSME1MIX, TGCH,TSHE, TSHE1MIX, POTR5, POTR51MIX, BEPA,BEPA 1MIX

ThisSeptember242006versionreplacesallearlierversions. 32

Table7continued MRMEP 33.045.7 PICO,PICO 3471 2759 1,2 1MIX,PIPO, PIPO1MIX, PSME,PSME 1MIX,IMXS, POTR5, POTR51MIX SRMEP 22.938.1 PICO,PICO 6080 2442 1,2 1MIX,PIPO, PIPO1MIX, IMXS,PSME, PSME1MIX, POTR5, POTR51MIX Pfa Regional >=17.8 ABGR, >=50%for 2459 1,2 NRMEP ABGR1MIX, Regional, MRMEP ABLA, MRMEP, SRMEP ABLA1MIX, andSRMEP IMXS,LAOC, models; LAOC1MIX, >=70%for PIMO, theNRMEP PIMO31MIX, model PICO,PICO 1MIX,PIPO, PIPO1MIX, PSME,PSME 1MIX,TGCH, TSHE,TSHE 1MIX,THPL, THPL1MIX, POTR5, POTR51MIX, BEPA,BEPA 1MIX Foraging Regional Asabove >=40 1,2 NRMEP Asabove >=40 1,2 MRMEP Asabove >=40 1,2

ThisSeptember242006versionreplacesallearlierversions. 33

Table7continued SRMEP Asabove >=40 1,2 1BA_WTD_DBHisthesumofthediameterofthetreetimesthenumberoftreesthetreerepresentstimesbasal areaofthetreedividedbytotalbasalarea. 2 Subalpinefir(ABLA) , Douglasfir(PSME),ponderosapine(PIPO),westernwhitepine(PIMO3),westernred cedar,(THPL),westernhemlock(TSME),larch(LOAC),grandfir(ABGR),lodgepolepine(PICO),birch (BEPA),aspen(POTR5),tolerantgrandfir,cedar,hemlockmix(TGCH),andnosingledominant(IMIX).1MIX referstothedominanceofonespecieswithinasample.SeeAppendix6fordetaileddefinitions. 3 Basalareaistheareaofacrosssectionofatreemeasuredatdiameterbreastheightandisameasureofdensity. 4Structureclass:singlestory(1),twostory(2),threestory(3),andcontinuous(C),andnone.SeeAppendix6for detaileddefinitions. 5North,Northeast,andNorthwestaspectincludedinthemodel(seeTable8andtext).

11.3%wasdominatedbymediumorlargesizedtrees,and65.7%bysmallsizedtrees.On average,68.9%ofthepfa’scontainedforestwith>50%canopyclosureand8.9%ofthepfa’s had25%to50%canopyclosure. Patla(1997)describedtherangeofmatureforestfoundinnortherngoshawkpfa’stobelarge(16 to100%)andamountofyoungforestdifferedbydominanttreespecies,15%inDouglasfirto 3%inlodgepoleforest.Overall,pfa’sexaminedbyPatla(1997)averaged66.0 ± 4%mature timber,5.0 ± 2%youngtrees,18.0 ± 3%seedlings,and7.0 ± 2%sagebrush. Habitat Estimates

Thewildlifehabitatrelationshipsnestsitemodel(Table7)usedtoestimatetheamountsof northerngoshawkhabitatintheNorthernRegionbyEcologicalProvinceandForestisbasedon fivevariablesdescribedinTable5(dominancegroup)andTable6(treesize,canopycover,basal area,andnumberofcanopylayers/structure).Wherepossible,thenestmodelisbasedonthe useofthemean±onestandarddeviation(thusshouldaccountfor68.3%oftheestimated availablehabitat).Useofthemeanplusorminusonestandarddeviationiscommoninthe scientificliteraturetodescribethevariationassociatedwithanenvironmentalvariable(Table4) andprovidesaconservativeestimateofhabitatamountforthegoshawk. Twogeographiclevelsofnortherngoshawkhabitatrelationshipmodelsareprovided:aRegion widemodelthatreflectsthefullvarianceevidentinhabitatusebythenortherngoshawk,and second,anEcologicalProvincemodelthatreflectsthevariationinhabitatacrosstheNorthern Region. AsexampleinaProvincespecificmodeladjustmentisintherelationshipofaspecttonestsite. Table8summarizesnestlocationbyaspectintheNorthernRegion.Northerngoshawksselected nestsintheNRMEPonnortheastnorthnorthwestaspects(P=<0.01)withnoapparentpattern innestsiteselectionbyaspectineithertheMRMEPorSRMEP.Aspectwasincludedinthe NRMEPwildlifehabitatrelationshipsmodel(Table7)butnotineithertheMRMEPorSRMEP nestmodel.

ThisSeptember242006versionreplacesallearlierversions. 34

Table8.NumberofgoshawknestlocationsonNationalForestSystemlandsbyaspectand EcologicalProvince(Bailey1996)intheUSDAForestServiceNorthernRegion. Aspect NRMEP MRMEP SRMEP Totals North 31 10 0 41 Northeast 25 1 2 28 Northwest 29 8 1 38 South 11 8 0 19 Southeast 19 3 1 23 Southwest 11 4 1 16 East 9 12 1 22 West 8 11 1 20 Totals 143 57 7 207 Thepfahabitatrelationshipmodelinthisassessmentforthenortherngoshawk(Table7)isbased ontherecentscientificliterature,bothpublishedandunpublished.Thescientificliteraturefor thegoshawkpfasuggests:1)asimilarityindominantspeciestothatinnestsites(Patla1997, McGrathetal.2003,LaSorteetal.2004);2)lesscanopyclosureandmoreyoungertreesin comparisontothenestsite(Patla1997,Clough2000,McGrathetal.2003);and3)lessstructure andmoredifferenceinstructureasdistanceincreasesfromthenestsite(DawandDestefano 2001,McGrathetal.2003). Theforaginghabitatrelationshipmodelforthenortherngoshawk(Table7)isbasedonthe scientificliterature.Thenortherngoshawkforagesin1)abroaddiversityofhabitattypes (Hargisetal.1994),2)areaswith40%ormoreforestcanopy(BeierandDrennan1997),3)an openunderstoryenvironment(Bloxton2002)althoughunderstorymaypermitgoshawksto approachpreyunseen(BeierandDrennan1997),and4)alandscaperepresentativeofregional ecologicalconditions(Joy2002,LaSorte2004). Thesizeofanareathatdescribesanortherngoshawknestsitevariesfrom10to12ha(Reynolds etal.1992).BasedontheappropriateProvincenestsitehabitatrelationshipmodel,estimatesof nestsitehabitat(Table9)intheNorthernRegionrangefrom407ha(orenoughnestsitehabitat forabout7to33pairs)ontheCusterNationalForestto19,751haontheBeaverheadDeerlodge NationalForest(orenoughnestsitehabitatforabout330to1646pairs)(assumingonetofive nestsareconstructedbythenortherngoshawkwithinthehomerange). Thesizeofanareathatdescribesanortherngoshawkpfavariesfrom120to240hapost fledgingarea(Reynoldsetal.1992).EstimatesofgoshawkpfahabitatintheNorthernRegion rangefromalowof13,167ha(orenoughpfahabitatforabout55to110pairs)(Table9)onthe FlatheadNationalForestto142,206ha(orenoughpfahabitatforabout592to1185pairs)onthe BeaverheadDeerlodgeNationalForest.

ThisSeptember242006versionreplacesallearlierversions. 35

Table9.Summaryofhabitatestimates(ha)forthenortherngoshawkbyNationalForestinthe USDAForestServiceNorthernRegionusingtheNorthernRegionnorthern goshawkhabitat relationshipmodels(Table7)andFIA.TheEcologicalProvincehabitatestimatesincludeonly NationalForestSystemlands. Model Forest Nest Postfledgingarea Foraging Regional Province Regional Province Region 829,526 110,149 933,145 555,830 2,744,925 NRMEP 519,167 52,267 528,488 164,052 1,571,697 IdahoPanhandle 137,420 16,201 145,225 58,132 381,193 Kootenai 84,755 9,184 91,737 28,641 265,644 Flathead 67,011 2,324 53,201 13,167 232,354 Lolo 92,276 7,876 100,723 23,629 295,001 Bitterroot 54,052 4,122 57,707 16,031 152,982 Clearwater 83,653 10,939 79,895 24,452 244,523 MRMEP 276,711 53,290 364,257 364,088 1,004,478 Beaverhead 103,307 19,751 142,206 142,206 398,968 Deerlodge Helena 36,475 8,843 47,925 47,754 127,638 LewisandClark 52,739 7,876 67,642 67,346 196,426 NezPerce 84,190 16,780 106,484 106,782 281,446 SRMEP 33,648 4,592 40,400 54,652 168,750 Gallatin 24,343 4,185 25,666 39,995 127,425 Custer 9,305 407 14,734 14,657 41,325

ThisSeptember242006versionreplacesallearlierversions. 36

Table10.Historic(193843)andcurrentestimates(%)ofhabitat(ponderosapine,Douglasfir, andlarchlarge/sawtimber)(Berglund2005)importanttothegoshawkbyEcoregion(Bailey 1996)andNationalForestintheUSDAForestServiceNorthernRegion. Provinceand Covertype 1 NationalForest 193842 Current NRMEP Idaho PIPO Panhandle 1.6 0.8 PSME 1.4 11.9 LAOC 3.7 7.8 Kootenai PIPO 5.9 4.0 PSME 0.3 13.3 LOAC 11.2 12.4 Flathead PIPO 1.5 0.6 PSME 1.6 7.7 LOAC 12.6 8.3 Lolo PIPO 7.9 5.9 PSME 0.9 15.1 LOAC 7.1 8.6 Bitterroot PIPO 8.9 7.2 PSME 4.3 26.5 LOAC 1.0 1.4 Clearwater PIPO 2.1 1.0 PSME 3.0 8.5 LOAC 2.9 2.0 MRMEP Beaverhead PIPO Deerlodge 2.0 0.0 PSME 2.1 9.5 LOAC 0.4 0.0 Helena PIPO 0.7 1.5 PSME 4.6 11.6 LOAC 1.0 0.0 Lewisand PIPO Clark 0.7 0.8 PSME 5.4 5.0 LOAC 0.0 0.0 NezPerce PIPO 3.7 4.9 PSME 5.6 7.9 ______

ThisSeptember242006versionreplacesallearlierversions. 37

Table10continued ______ 1 Ponderosapine(PIPO),Douglasfir(PSME),andlarch(LOAC). Asnotedbefore,estimatesofnortherngoshawkhomerangesizereportedbydifferentauthors varydependingonageandsexofthebird,thehabitat,andthemethodologyusedincollecting andanalyzingthedata(Kennedy2003).Neighboringpairsalsomayoverlapinuseofforaging areasbutnotinhabitatusedforanestorpfa(SquiresandReynolds1997). Anothercomponenttonortherngoshawkhabitatistoensureitiswelldistributedhabitat.The rangeinterritorysizeforthenortherngoshawkisfrom500to4,000hadependingonageand sexofthebird,thehabitat,andthemethodologyusedincollectingandanalyzingthedata (Kennedy2003). Thesefactors(variationinestimates,overlapinforagingareausebydifferentpairs,anduseof openhabitats)makeestimatesdifficultofthenumberofnortherngoshawkpairsthatforaging habitatintheNorthernRegioncansupport.Anestimateofforagingareabasedonnon overlappingpairs(1,758habasedontelemetry,BrightSmithandMannan1994)suggestsalow inforaginghabitatofthe41,325ha(orenoughforaginghabitatforabout24pairs)ontheCuster NationalForesttoahighof398,968ha(orenoughforaginghabitatforabout227pairs)onthe BeaverheadDeerlodgeNationalForest. Theestimatedmediandispersaldistance(Bowman2003)usingthesquarerootofaminimum territorysize(500ha)andmultiplyingby12forthenortherngoshawkis268km. Appendix7/Map1illustratesa268kmbufferplacedaroundtheknowngoshawknestsinthe NorthernRegion.Thebuffershowsyounggoshawkshavetheabilitytointeractwith neighboringnestssuchthatasinglegoshawkpopulationexistsintheNorthernRegionand habitatiswelldistributedbyNationalForest. Table10providesarelativecomparisonofforestcompositionandstructureasmeasuredin 19381942andthatrecentlysampledbyFIA.Thiscomparisonislimitedtotreespeciesmost importanttothenortherngoshawkfornesting(Table5)andthestructuralcategoryimportantto thegoshawk(Table6)andasmeasuredin19381942. Thecomparisonoftherelativeforestcompositionandstructurein19381942tocurrentinthe compositionandstructural(largetree)characteristicsimportanttothenortherngoshawk(Table2 and3)showamajortrend(orincrease)favorabletothegoshawk(Table10).Theseincreasesin amountsandsizesofDouglasfirtreesrangefromamodestincreaseontheNezPerceNational Forest(3.7%to4.9%)toasubstantialincreaseontheLoloNationalForest(0.9%to15.1%). OnlyoneForest,theLewisandClark,exhibitedasmalldecrease(sawtimber5.4%to5.0%)in Douglasfirhabitatfavorabletothegoshawk. Short-term Viability

ThisSeptember242006versionreplacesallearlierversions. 38

NoevidenceexiststhatthenortherngoshawkisdeclininginnumbersinthewesternUnited States(Kennedy1997). Thefourcriteriatoevaluateshorttermviabilityare1)distributionandamountsofhabitat,2) humandisturbance,3)bioticinteractions,and4)managingforecologicalprocesses. Distribution of habitat .HabitatforthegoshawkiswelldistributedacrosstheNorthernRegion andbyForest(Appendix7/Map1).Thismapsshowsthatutilizing2/3ofthemediandispersal distance,thateffectively,therearenotisolatedpopulationsofnortherngoshawkintheRegion1, ratheronepopulationexistsintheforestedportionoftheNorthernRegionthatinteract. WelldistributedhabitatforthenortherngoshawkintheNorthernRegionisnotanissue—nota singlenestsiteisisolatedbymorethan268kmtoanothernest. Amounts of habitat .Northerngoshawkhabitatestimates(Table9)intheNorthernRegionby Provincefor: 1)nestsitesrangefrom407ha(orenoughnestsitehabitatforabout7to33pairs)onthe CusterNationalForestto19,751haontheBeaverheadDeerlodgeNationalForest(or enoughnestsitehabitatforabout330to1646pairs)(assumingonetofivenestsare constructedbythenortherngoshawkwithinthehomerange). (2)pfa’sfromalowof13,167ha(orenoughpfahabitatforabout55to101pairs)(Table 9)ontheFlatheadNationalForestto142,206(orenoughpfahabitatforabout592to 1185pairs)ontheIdahoPanhandleNationalForests. 3)foragingarea(nonoverlapping)fromalowinforaginghabitatofthe41,325ha(or enoughforaginghabitatforabout24pairs)ontheCusterNationalForesttoahighof 398,968ha(orenoughforaginghabitatforabout227pairs)ontheBeaverhead DeerlodgeNationalForest. HabitatisabundantforthenortherngoshawkintheNorthernRegionandbyEcologicalProvince andbyNationalForest. Human disturbance .MoserandGarton(2004)foundtimberharvesthadnoeffectonbreeding areaoccupancy,nestsuccess,orproductivity1to2yearsaftertimberharvest.Occupancyof harvestedbreedingareaswas89%and75%after1yearand2year,respectively,comparedto 80%and78%ofthepairsafter1yearand2year,respectively. PenterianiandFaivre(2001)reportedsimilarfindingstoMoserandGarton(2004).Theirstudy incentralItalyandeasternFrance(thenortherngoshawkiswidelydistributedin)found nodifferenceintheproductivityofnortherngoshawkpairsreproducinginloggedversus unloggedareas. PenterianiandFaivre(2001)foundthat87.5%ofthenortherngoshawkpairsdidmovefrom loggedstandsonlywhentheoriginalneststandstructurewasmodifiedbymorethan30%.

ThisSeptember242006versionreplacesallearlierversions. 39

PenterianiandFaivre(2001)concludednortherngoshawkscouldtoleratetimberharvestaslong asthecoverreductiondoesnotexceed30%withintheneststand. PenterianiandFaivre(2001)suggestedinEuropeforconservationthatabufferof1to2ha aroundanortherngoshawknestbeestablishedinareasmanagedbyshelterwoodsystemsandthe distinctivehabitatfeaturesaroundthenestshouldbeprotectedinthe1habuffer.Forestry operationsnearanortherngoshawknestshouldbeavoidedaccordingtoPenterianiandFaivre (2001)fromFebruarytoJuly(inclusive). NortherngoshawksintheNorthwestoftheUnitedStatesarereportedtoselectareastonestnear humanactivities(McGrathetal.2003).Humandisturbanceisnotafactorforthenorthern goshawkaslongas70%oftheneststandstructureismaintainedandtimbermanagement operationsaretimerestricted. Biotic interactions . ThebarredowlisontheincreaseinthewesternUnitedStates,toincludein northernandcentralIdahoandnorthwestandnorthcentralMontana(AccessedMarch28,2005; http://www.mbrpwrc.usgs.gov/bbs)(19662003)ataratethatmayexceed1.5%peryearin someareas.Aswiththespottedowl(Kellyetal.2003),thebarredowlrepresentsasignificant influence(predationonyoung)onnortherngoshawkabundanceanddistributionandtherefore viability(HanauskaBrownetal.2003). Virtuallyallofthecurrentandhighlymodifiedandhighlyconnectedforestedlandscapeinthe NorthernRegionispotentialbarredowlhabitat(PetersonandRobins2003).Areasof particularlysuitablehabitatforthebarredowlareincentralIdahoandeastcentralMontana. Amajorandincreasingthreattonortherngoshawkabundanceanddistributionisthebarredowl.

Managing ecological processes .Fireandotherecologicalprocessesareimportanttomaintaina continuingsupplyofmaturetrees,eitheranunderstoryoropenunderstorydependingonneed— pfaversusforagingandtheheterogeneityrequiredinforaginghabitat.

SuppressionofnaturalprocessesintheNorthernRegionhasbenefitedthenortherngoshawkby: 1)increasingthedistributionandabundanceofforestedhabitats(Gallantetal.2003,Hessburg andAgee2003,Hessburgetal.2004);2)extensiveandwidespreadencroachmentbytreesinto openareasacrosstheNorthernRegion(Coues1893,ArnoandGruell1986andothers);and3) lossofgrasslandsinthatmany“historicalsurfacefiresindryforestsactuallybeganongrassy benches,ridgetops,orvalleybottomsadjacenttodryforestsandwoodlands,orinnearbyshrub steppecommunities,andthenmigratedintodryforests”(Hessburgetal.2004:5).

ShorttermviabilityofthegoshawkintheNorthernRegionisnotanissuegiventhefollowing.

•Noscientificevidenceexiststhatthenortherngoshawkisdecreasinginnumbers.

•Increasesintheextentandconnectivityofforestedhabitathaveoccurredsince Europeansettlement.

ThisSeptember242006versionreplacesallearlierversions. 40

•Welldistributedandabundantnortherngoshawkhabitatexistsontoday’slandscape.

•Leveloftimberharvest(in2004,8581haof9,045,255haor0.0009%)oftheforested landscapeintheNorthernRegion)acrossisinsignificant. •Suppressionofnaturalecologicalprocesseshasincreasedandcontinuestoincrease amountsofnortherngoshawkhabitat. Thebarredowlrepresentsasignificantthreattothenortherngoshawkintheshortandlongterm.

ThisSeptember242006versionreplacesallearlierversions. 41

5. Black-backed Woodpecker

Ecology, Behavior and Habitat TheblackbackedwoodpeckerisstrictlyaNorthAmericanspecies.Itsbreedingdistribution extendsacrosstheborealforestsofCanadaandAlaskaintoNewfoundland,dippingintothe Midwest,andintotheNewEnglandStates(ascitedinDixonandSaab2000andHoyt2000).In thewesternUnitedStates,therangeoftheblackbackedwoodpeckerextendssouthintocentral CaliforniaandstretcheseastintoMontana,Wyoming,andSouthDakota(ascitedinDixonand Saab2000andHoyt2000).

Theblackbackedwoodpeckerduringthebreedingseasonisfoundinadiversemixtureof coniferspecieswithnoonespeciesappearingtobeessential(DixonandSaab2000).Although foundinsprucedominatedforests,theblackbackedwoodpeckerismoreoftenreportedtobe associatedwithpine,fir,andlarchdominatedforests(BochandBoch1974,Goggans1986, Marshall1992).

Theblackbackedwoodpeckerisaprimarycavitynesterinthattheyexcavatetheirowncavities inAprilandMayandmostoftenindeadordyingconifertrees(Short1974,RaphaelandWhite 1984,Weinhagen1998,MartinandEadie1999).Territorysizearoundanestcavityvariesin size,e.g.,61hain,72hainsouthwestIdaho,and124hainOregon(DixonandSaab 2000).YoungdepartfromthenestfromearlyJunethroughearlyJuly. Inwinter,theblackbackedwoodpeckerisconsideredtobesedentary(DixonandSaab2000). Irruptivemovements,however,arewelldocumentedanddemonstratethebird’sabilitytotravel longdistances(Bangs1900,VanTyne1926,WestandSpiers1959,Yunick1985).Movements inwinterareknownasfarsouthasIowa,central,northernIndiana,andeastintoNew Jersey(AmericanOrnithologists’Union1998). DixonandSaab(2000)in The Birds of North America No. 298 provideddetailedinformationon breedingrange,nonbreedingrange,migration,morphology,pairformation,courtshipand copulation,nestingphenology,metabolismandtemperatureregulation,moltsandplumages,and demographics.Severalinternetwebsitesprovidefurtherdetailedinformationontheblack backedwoodpecker(e.g.,AccessedMarch20,2005;,and AccessedMarch20,2005;ttp://imn.isu.edu/digitalatlas>). UnderstandinghabitatrequirementsfortheblackbackedwoodpeckerinthenorthernRocky Mountainsandelsewhereislimitedduetostudydesign(Hoffman1997).Fewifanystudies haveequallysampledallhabitatsandseralstagesinproportiontotheiravailabilityonthe landscape. Studiestodateoftheblackbackedwoodpeckertendtofocusonasinglehabitattypeand therefore,sufferfrom“pseudoreplication”(Hoffman1997).Pseudoreplicationinastudyrefers tomultiplesamplesiteswithinasingleareaorhabitattype,thereforesuchsamplesitesare neitherspatiallynortemporallyindependent(Hurlbert1984).

ThisSeptember242006versionreplacesallearlierversions. 42

Ecologicallysoundhabitatrecommendationsbasedonstudiesthatdifferinsamplingdesign requireametaanalysis(Gurevitchetal.2001)thatisnotavailablefortheblackbacked woodpecker.Winterhabitatrequirementsandusebytheblackbackedwoodpeckerarevirtually unknown. Threepossiblecausesexisttoexplainblackbackedwoodpeckerdistributionandabundancein theNorthernRegion:1)useofpostburnareas;2)useofinsectoutbreakareas;and3)apattern expectedinalandscapewithanaturalrangeintheoccurrencesofnaturalprocessessuchasfire andinsectuse.Allthreepremisesassumeacloserelationtothespatialandtemporaldistribution andabundanceofbarkandorwoodboringbeetles. Boththeblackbackedwoodpeckerandthethreetoedwoodpecker,acloselyrelatedspecies (Short1971),aredescribedasopportunisticandrespondtooutbreaksofwoodboringbeetles (CerambycidaeandBuprestidae)andbarkbeetles[mountainpinebarkbeetles( Dendroctus spp.)]inconiferforestsfollowingwindfallordisease(WestandSpeirs1959,Baldwin1960, 1968,Wickman1965,Koplin1969,1972,CrocketandHansley1978,KrollandFleet1978,Bull 1980,1983,Yunick1985,AngelstamandMikusinski1994)aswellasimmediatelyfollowing fire(BourdoandHesterburg1951,Blackford1955,Mayfield1958,Heinselman1973,Bochand Lynch1970,Niemi1978,ApfelbaumandHaney1981,TaylorandBarmore1980,Taylor1979, VillardandBenninger1993,Villard1994,Hoffman1997,HejlandMcFadzen1998,Murphy andLehnhausen1998,SaabandDudley1998,Thompsonetal.1999,Setteringtonetal.2000, GirouxandSavard2003,andNappietal.2003).Irruptivemovementsalsoappeartobe opportunisticandexploitanabundanceofwoodboringbeetlesorareasblightedwithDutch disease(Yunick1985). Anexampleofabarkisthewesternpinebeetlewhichpreferentiallyattacksoldthick barkedponderosapine(McCulloughetal.1998). SanchezMartinezandWagner(2002)recently compared Dendroctus spp.inponderosapineforestsofnorthernArizonatoexploreifthespecies assemblagesandrelativeabundancedifferbetweenmanagedandunmanagedstands.Stand conditionsincludedinthestudywere:1)unmanagedstandswithhightreedensity;2)thinned stands;3)thinnedandburned(withprescribedfire)stands;and4)standsthathadbeenburnedby standreplacingwildfires.SanchezMartinezandWagner(2002)foundpopulationlevelsofall thebarkbeetlespecieswereendemicacrossallstandconditionsandtimbermanagementhad littleeffectsuggestingbothayearroundbeetlepresenceandavailability(seealsoMcHughand Kolb2003,McMillenandAllen2003,Wallinetal.2003). Inmanyothernorthernforestregions,outbreaksof D. ponderosae, D. psuedotsuga and D. rufipennis barkbeetleshavefollowedwildfire(Furnis1965andothers).Theresponseofatleast onewoodboringbeetle,thewhitespottedsawyerbeetle[alsoimportanttotheblackbacked woodpecker(Hoyt2000)]isknowntorespondtothepheromonesofbarkbeetles(i.e., D. rufipennis )(GrootandKnott2004).Bothcharredanduncharredareasofconifershavebeen reportedtobeinfestedwithspeciesof Monochamus (McCulloughetal.1998). ManyCerambycidae,suchas Monochamus spp.(alsoblackbackedwoodpeckerprey),are normallyassociatedwithtreesthatareinjured,windthrown,ordamagedbyiceand

ThisSeptember242006versionreplacesallearlierversions. 43

(McCulloughetal.1998).Theyalsomaybeattractedtorecentlyburnedareasandsomewood boringspecies,i.e., Melanophila spp.,haveinfraredsensorsontheirlegswhichpermitthe detectionoffireatdistancesofseveralkilometers. Thefavorableeffectsoffirearenotlonglastingforeitherthebarkbeetleorthewoodboring beetle.Partiallyburnedtrunksandrootsmayprovidehabitatforthebarkbeetleforupto10 yearsafterburning(Werner2002).ThelimitingfactorfortheCerambycidaeandBuprestidaeis themoisturecontentofthewood.Insectdevelopmentandsurvivaldecreasesastreesdryoutin fourtoeightyearsafterfiredependingonlocation(WernerandPost1985).Populationlevelsof bothCerambycidaeandBuprestidaedroptolevelsbelownearbyundisturbedsiteswhenpostfire areaschangeanddryovertime.Partiallyburnedareasneartheperimeterofintensivelyburned sitesprovidehabitatfordiverseassemblagesofwoodboringbeetles.

Northern Region Post-burn Areas

Lester(1980)examinedtherelationshipoffiveandanendemicpopulationof mountainpinebeetles.Woodpeckerswereobservedtobothfeedandnestinpostfireareas. Harris(1982)inastudyinapostfireareanearMissoula,Montanashowedtobe presentalthoughadeclineoccurredthreeyearspostfire.ThisconcentrationofPicoides woodpeckerswasinresponsetobarkbeetlesandwoodboringbeetlelarvaeinthefiredamaged trees.Inthisstudy,manylodgepolepineswereattackedbymountainpinebeetlesbuttheshort termnatureofthestudyprecludedestablishingconsistentpredictorsofwoodpeckerdensities.

Inthesummersof19921994,Caton(1996)surveyedbirdsintheRedBenchpostfireareain northwesternMontana.Mostoftheburnareaconsistedoflodgepolepreviouslykilledby mountainpinebeetlesbutincludedpatchesofDouglasfir,Engelmannspruce,subalpinefir, westernlarch,ponderosapineandothertreespecies.Additionaltransectsinbordering80year oldlodgepolepinebutunburnedstandswereestablishedforcomparativepurposes.

Caton(1996)found11blackbackednestsinthepostfireareawithcavitiesexcavatedintwo treespecies(Table11).Caton(1996)didnote(page31)thatlargefires,i.e.,theRedBenchin thestudyarea,werenotcommonhistoricallyinherstudyareaandthatfiresuppression“may haveseriousconsequencesfortheblackbackedwoodpecker”(page31).Caton’sstudyshowed thatfoodavailabilityandnotnestsiteavailabilitywaslimitinguseofpostfireareasbyboththe blackbackedwoodpeckerandthethreetoedwoodpecker.

Hutto(1995)estimatedbirdabundancein34burnsitesinthenorthernRockyMountains followingthe1988forestfires(onefirein1987).Thesedatawerecomparedtobirdcountdata inothervegetationtypes.Hutto(1995)foundanabundanceofblackbackedwoodpeckersand theyseemedtobenearlyrestrictedindistributiontopostburnhabitats.Murphyand Lehnhausen(1998)expandedonHutto’sobservations,andsuggestedrecentlyburnedforests represented“sourcehabitats,”i.e.,populationnumbersmayincreaseinpostfireanddecrease whenoccupyingotherandunburnedforests.

ThisSeptember242006versionreplacesallearlierversions. 44

Table11. Treespeciesusedbytheblackbackedwoodpeckerfornestcavitiesinthewestern UnitedStates. Nesttree Oregon Montana Montana South Montana Dakota Bulletal. Caton Hoffman Mohren Taylorand 1986 (1996) (1997) (2002) Schachtell (2002) Douglasfir 2 12 Ponderosa 10 7 pine Lodgepole 4 6 pine Western 1 9 larch

Table12.Summaryofkeycharacteristics(mean)fortreesblackbackedwoodpeckernestcavity treesintheWesternUnitedStates.

Oregon Montana Montana South Montana Dakota Bulletal. Caton Hoffman Mohren Taylorand (1986) (1996) (1997) (2002) Schachtell (2002) Treesize 37.0 40.0 27.0 24.89 >25.7 dbh(cm) Tree 19.0 28.0 32.7 10.23 height(m) Hoffman(1997)in1995and1996examinedhabitatusebytheblackbackedwoodpecker,three toedwoodpeckerandhairywoodpeckerintheGreaterYellowstoneEcosystem.Hoffman(1997) found12blackbackedwoodpeckernestsinponderosapine(Table11)andinareasthatwere recentlyburned.Hoffman(1997)foundnodifferenceexistedinthevegetationcharacteristicsof blackblackedwoodpeckernestsitesandinrandomplotsbuthighamountsoflargedownwoody materialdidappeartobeimportant.Hoffman(1997)interpretedthelargeamountsofdown

ThisSeptember242006versionreplacesallearlierversions. 45 woodymaterialtoreflectremnantsofthemountainpinebeetleinfestationoftheGreater YellowstoneEcosystemnearlytwodecadespriortoherstudy.

Powell(2000)studiedhabitatusebytheblackbackedwoodpeckerinrelationtopreydensityin twopostfireforestsintheSelwayBitterrootwildernessineasternIdaho.Powell’s(2000)study showedfoodavailabilityisimportant,and,atleastinrecentlyburnedforests,woodboring beetlesareanimportantfoodsource.Moreover,“themostvaluablehabitatcomponentmaybe woodborersratherthanaparticulartreespecies,becausenosingletreespeciesisconsistently preyrich”(page88).

Mohren(2002)intheBlackHillsofSouthDakotaduring2000and2001foundallblackbacked woodpeckernestsites(n=7)inponderosapine(Table11).Adirectdiscriminateanalysison significanthabitatvariables(nesttreediameter,nesttreeheight,andtreediameter)ina comparisontorandomsiteswasabletocorrectlyclassify85.7%ofthenestandrandomsites. Moorhen's(2002)studyisuniqueinthatvariableswereevaluatedtodetectautocorrelation.

Mohren(2002)evaluatedahabitatrelationshipsmodelfortheblackbackedwoodpeckerfor landsmanagedbytheBlackHillsNationalForestinSouthDakota.Themodelincludedthree habitattypes(ponderosapine,whitespruce,andaspen)andthreestructuralstagesforponderosa pineandtwoforwhitespruce.Themodel’seffectivenessinpredictinghabitatwastestedagainst blackbackedwoodpeckerobservations(n=39).Habitatselectionratiosbasedonblack backedwoodpeckerobservationsindicatedblackbackedwoodpeckersavoidareaswithlessthan 70%canopywithsomeselectionforsaplingpolestageswithanycanopycover.

Mohren(2002)foundtheblackbackedwoodpeckerforagedinhabitatswithcertain characteristics,i.e.,bareground(mean=84.4,p=0.041),greaterpercentageofcanopy(mean =68.9%,P=0.037),smallertrees(mean=24.1,P=0.015),highersnagbasalareas(mean= 3.52,P=0.002),highersnagdensities(mean=4.7/0.04ha,P=0.021),lowersnagsintermsof height(mean=5.03,P=0.013),andinponderosapine(>70%cover,P=0.001).

Insect Outbreaks

Hughes(2000)innortheasternCaliforniastudiedsnagdecayandblackbackedwoodpecker foraginginfour150haareasinnortheasternfromJunethroughOctober1999.LikeBulletal. (1986),Hughes(2000)foundtheblackbackedwoodpeckerusedtreesexperimentallyinfested withbarkbeetles,andinapatternsimilartoBulletal.(1986),preferredsnags(82%of observations,P=<0.001).Useofsnagsbeganwithinoneyearofbarkbeetleinfestation.Areas consideredbeingimportantformeetingblackbackedwoodpeckerforagingrequirements includedsick,injured,anddecliningtreesinadditiontorecentlydeadtreeskilledbymountain pinebeetles.

Mohren(2002:87)inhisstudyoftheblackbackedwoodpeckerintheBlackHillsofSouth Dakotaconcluded“Itisalsopossiblethesewoodpeckerspeciesarenotselectingforaging locationbasedonhabitatcharacteristics,butareselectingareaspopulatedwithwoodboring beetles.”Mohren(2002)criticizedmanagementrecommendationsintheBlackHillsForestplan (1996RevisedLandResourceManagementPlanFinalEnvironmentalStatementIII450)that

ThisSeptember242006versionreplacesallearlierversions. 46 callforthinninginthatsuchtimbermanagementwouldreducehabitatsuitableforinsect outbreaksand,therefore,habitatfortheblackbackedwoodpecker.

Mohren(2000:86,87)furthersuggestedaneedtocreate“standsthatwillbecomesusceptibleto woodboringbeetleswillprovideanabundanceofpreyforbothofthesespecies(blackbacked andthreetoedwoodpeckers)aspartofforestmanagementbytheBlackHillsNationalForest. Also,allowinglargeareastobecomeinfestedwithwoodboringbeetles(suchasBaerMountain area)issuggestedtoletblackbackedandthreetoedwoodpeckersincreaseinpopulationsize. Currentoutbreaksshouldbeexaminedtodeterminetheeffectswoodboringbeetleshaveon blackbackedandthreetoedwoodpecker.”

Winter/Natural Distribution

Fayt(2003)inastudyofthecloselyrelatedthreetoedwoodpeckersuggests:1)theneedtostudy woodpeckerecologyonboththelocalandlargerscales;2)threetoedbreedingpopulationis limitedbyfoodavailabilityoutsideofthebreedingseason(seealsoPerrins1966,Nilsson1987, Newton1998,andothers);3)oldgrowthhabitatswithacontinuousproductionofheterogeneity inforeststructure(i.e.,regulargapdynamicsthatcreateamosaicoftypes)allowforstable woodpeckerpopulations(versustheboom/bustpatternassociatedwithpostfirehabitats);4) breedingdensitywasinfluencebybarkbeetleabundanceswhilevariationinbroodsizewas influencedbytheabundanceofwoodboringbeetles;and5)regionalnetworksofolderforest withnaturalgapdynamicsweremostimportanttolongtermconservationofthespeciesandthe control/preventionoflargeoutbreaksofbarkbeetlesbywoodpeckerpredation.

Mohren(2002)suggestedthathistoricallysmallbutwidespreadoutbreaksofwoodboring beetlesinanaturallandscapecouldhavesupportedtheblackbackedwoodpecker.R.Dixon (2005,personalcommunication,IdahoFishandGame,Boise)alsosuggeststheblackbacked woodpeckermaybeneitherdependentoneitherpostfireorinsectoutbreaksbutmaybewell distributedbutrelativelyuncommoninthemorenaturallandscape.

AsnotedbyHoytandHannon(2002),fewstudieshaveconsideredallhabitatsinproportionto availabilitynorconsideredthecomparativedifficultyinobservingbirdsinopenpostfirehabitats versusthemoreclosedandstructurallycomplexliveforestenvironment.

HoytandHannon(2002)foundblackbackedwoodpeckersinstandsofoldspruce75to150km distantfromthepostfirestudy,suggestinganabilityfortheblackbackedwoodpeckertosurvive innonpostfireareas.Hoyt(2000:34)furthernotes“toassessthesourcesinkdynamicsof recentlyburnedandoldgrowthblacksprucehabitatsestimatesoffecundityandsurvivalwould berequired.”Hoyt’ssamplesize(n=22nests)wasinadequatetoestimateeitherfecundityor survivalratestoestimatesourcesinkdynamics.Hoyt(2000:34)continuedwith“Ibelievethat withanintensifiedsearcheffortitwouldbepossibletofindnestsinunburnedforests(see Weinhagen1998).Therefore,Ibelievethatoldgrowthblacksprucesitesembeddedinamatrix ofoldforestsneedtobeexaminedmorecloselybeforetheycanbeclassifiedassinkhabitat.”

Treemortalityduetothemountainpinebeetlecanoccurasscatteredindividualtreeswell distributedacrossthelandscapeormayimpactentiregroupsoftrees.Suchoutbreaksbythe

ThisSeptember242006versionreplacesallearlierversions. 47

Table13.Summaryofthenumberoffiresnearsixblackbackedwoodpeckernestsandrelative percentofforestvegetationandstructurewithina3.2kmcirclecenteredonthenestsonthe IdahoPanhandleNationalForests(TaylorandSchachtell2002).Medianfiresizeis1.1ha. Nests Saddle Murray CubanHill Mission CampNine Moyie Creek Creek Creek Creek Numberof 7 2 5 2 1 4 firesneara nest Treespecies Cedar 14 28 14 10 Douglasfir2 7 16 Grandfir 4 2 2 27 9 Larch 9 1 2 12 17 8 Lodgepole 9 2 3 10 9 pine Subalpine 52 2 8 1 1 fir Ponderosa 1 8 19 1 pine Western 8 8 6 8 hemlock Whitepine4 3 5 8 Nonforest 6 4 Birch 4 4 Nodata 3 48 77 11 12 58 Structure Multiple 2 5 1 3 7 sizes Pole 2 12 11 34 39 7 Sawtimber 76 26 4 31 31 24 Youngor 21 6 9 26 18 6 nonforest Nodata 53 77 6 12 58 mountainpinebeetleareknowntohaveoccurredhistoricallyandmaylast8to11years(Amman andCode1983).Woodboringbeetleshistoricallyhavealwaysbeenabundantinsmallpockets,

ThisSeptember242006versionreplacesallearlierversions. 48 andlargeoutbreakscanoccurapproximateevery11yearsandcanlastformorethanadecade (Mohren2002).

Anexampleofthe“natural”landscapemaybeontheIdahoPanhandleNationalForestsin northernIdaho(Table13).TaylorandSchachtell(2002)examinedthehabitatina3.2kmcircle surroundingsixblackbackednests.Twonestswereinlarchandfourinlodgepolepineandall wereintrees>25.7cm,similartonesttreesizereportedinotherstudies(Table12).

TaylorandSchachtell(2002)relatedaForestServiceOracledatabasethatdescribesstand characteristicstoGIStoconducttheanalyses.AnalysesbyTaylorandSchachtell(2002) showedagreatdegreeofheterogeneityinhabitatandstructureclassessurroundingthesixnest sites(Table13).

NospecificpatterninhabitatselectionwasevidentintheTaylorandSchachtell(2002)analyses otherthansizeoftreeselectedforanestcavity(seeTable13).Allblackbackedwoodpecker nestswereintrees>25.7cmandsimilartonesttreesizereportedinotherstudies.Afirstquery oftheUSForestServicedatabaseFSVEGshowed68.2%ofthe1506samplepointsontheIdaho PanhandleNationalForestshadtreesofsufficientsize(>25.7cm)tobeanestcavitytreeforthe blackbackedwoodpecker.Firehasimpacted8andharvest36ofthe1550totalsamplepoints buttheexactlocationisnotknownandareremovedfromtheestimate.

TaylorandSchachtell(2002)analyzedthenumberofsnags(averageddbhassmallas2.4cmper stand)inacircle(926mradius)aroundeachoftheblackbackednestsitesandadditionalblack backedobservations(totaln=16)usingtheTimberManagementReportingSystem.Taylorand Schachtell(2002)foundameanfornumberofsnags(>=2.4cm)aroundeitheranestor individualobservationtobe143.8 ± 77.3.Themeanof143.8reportedbyTaylorand Schachtell(2002)islessthanthatreportedbyBulletal.(1986:Table2,180.0± 180.9)in Oregonbutnosignificantdifferenceswouldexistgiventheoverlapinstandarddeviations.

Asecondquery(usingthemean± onestandarddeviationor66.5to221.1cmandlessthanfive yearssincetheirdeath,theperiodassumedtobefavorabletowoodboringbeetles) oftheUS ForestServicedatabaseFSVEGshowsnumberofsnagssuitableforblackbackedforagingtobe presenton30.6%ofthe1506samplepointsontheIdahoPanhandleNationalForests.Firehas impacted8andharvest36ofthe1550totalsamplepointsbuttheexactlocationisnotknown andareremovedfromtheestimate.

Sightingsofblackbackedwoodpecker(TaylorandSchachtell2002)ontheIdahoPanhandle NationalForestfollowasimilarpatterninuseofmanyhabitats,i.e.,inrecentlyburnedstands (8),unburnedstands(49),burnstatusunknownbutnotevident(27),loggedstands(15), unloggedstands(23),orlogginghistoryunknown(46).Noassociationwitheitherlargepost fireareasorlargeinsectinfestedareaswasevidentinthesightingsinformation.

Withinforestedecosystems,gapdynamics—theinfluenceof,lightningstrikes,ice, diseaseandotherfactors—createamosaicofstructureandageclassesatthestandleveland attractbarkandotherbeetles(HayesandDaterman2001).Saproxylicbeetles(Hammondetal. 2004),Douglasfirbeetle(McMillanandAllen(2003),andbarkbeetles(HayesandDaterman

ThisSeptember242006versionreplacesallearlierversions. 49

2001)areknowntoinfluencestandstructure.Areasaffectedbyoutbreaksofbarkbeetlesmay notbefollowedbyfire(Bebietal.2003).Suchareasprovideaninsectrichbutfirefree environmentandanaturalmosaicofbeetledistributions.

Habitat in the Northern Region

Hoffman(1997)suggestsaviabilitystrategyfortheblackbackedwoodpeckershouldbe regionalinscale.Bothdiseaseandfireasecologicalprocessesimportanttotheblackbacked woodpeckeroftenoperateatrelativelargescalebothintimeandspaceduetofactorssuchas climate(Schoennageletal.2004).

Theblackbackedwoodpeckerissomewhatunusualinthatitisnotthoughttobeamigrant (DixonandSaab2000)butalsoisknowntomake“irruptive”movementsmostofteninwinter (Yunick1985).Thereasonsforsuchirruptivemovementsbytheblackbackedwoodpeckerare speculative.Ingeneral,climateandfoodresourcesinteracttoinfluencethespatialsynchronyin movementsamongdifferentbirdspecies(Jonesetal.2003)andwellknownirruptivespecies [i.e.,theCarduelis(crossbills,bull,etc.)]tendtomoveinlargeflocks(Newton 1998).Suchcharacteristics(timingofmovementsharedamongspecies,largeflocksizeandso on)arenotsharedbytheblackbackedwoodpecker.

Theblackbackedwoodpeckerisfoundinpostfireareas[upto8yearsfollowingfire(Hoytand Hannon2002)]andinareasofinsectdamage(Bulletal.1986).Table14providesanestimate oftheareaimpactedbyfireorbyinsectsintwotimeintervals,19901993and20002003.

The20002003timeintervalwasselectedtorepresentthemostrecentavailableinformation. Thesevenyeartimeintervalwasselectedtoensurethe19901993areaseitherimpactedbyfire orinsectswerenolongersuitablefortheblackbackedwoodpecker.OnlyHoytandHannon (2002)notethatapostfireareamayremainsuitablefortheblackbackedwoodpeckeruptoan intervalof8yearspostfire.Mostauthorssuggestaroundfiveyearsisthetimeintervalwhen impactedhabitatsremainsuitabletotheblackbackedwoodpecker(thusthefouryearintervalis veryconservativeinthisassessmentasabasetoestimatehabitatamountsfortheblackbacked woodpecker).

Thesizeofanareathatdescribesablackbackedwoodpeckerterritoryvariesfrom72hato124 ha(ascitedinDixonandSaab2000andinHoyt2000).Estimatesofblackbackedwoodpecker habitatinburnareasin19901993rangesfrom0ha(onfiveNationalForests)to8,724ha[Nez PerceNationalForest(Table14)orpostfirehabitatfor70to121pairs]. Estimatesofblackbackedwoodpeckerhabitatinburnareasin20002003rangesfrom2,329ha (IdahoPanhandleNationalForests)to145,409ha(BitterrootNationalForest)(Table14)(or providinghabitatforupwardsto18to31pairsontheIdahoPanhandleNationalForestsinpost fireareastoupwardsto1,172to2,019pairsontheBitterrootNationalForest). Estimatesofblackbackedwoodpeckerhabitatininsectinfestedareasin19901993rangesfrom 389ha(HelenaNationalForest)to72,882ha(KootenaiNationalForest)(Table14)(or

ThisSeptember242006versionreplacesallearlierversions. 50

Table14.Summaryofblackbackedwoodpeckerpostfireandinsectinfestedhabitat(ha) estimatesbyNationalForestintheUSDAForestServiceNorthernRegionduring19901993 and20002003. NationalForest 19901993 20002003 Fire1 Insect 2 Fire Insect NRMEP IdahoPanhandle 4,014 2,239 123,067 Kootenai 6,237 72,582 17,362 18,390 Flathead 24.7 7,582 78,803 23,259 Lolo 8,738 55,608 70,273 Bitterroot 3,833 2,508 145,409 17,701 Clearwater 1,714 864 18,021 8,131 MRMEP BeaverheadDeerlodge 19,636 24,406 46,045 Helena 387 38,627 4,044 Lewis&Clark 2,042 1,119 8,231 6,223 NezPerce 8,724 6,479 27,767 125,016 SRMEP Custer 884 29,220 2,329 Gallatin 4436 32,615 15,471 15,667 1EstimatesoffireperimetersareavailablefromtheCohesiveFireProject,USForestService (http://www.fs.fed.us/r1/firegis/2003web/atozdata.htm). 2InsectoutbreakestimatesarebasedonannualsurveysconductedbytheUSForestService (ftp://.r1.fs.fed.us/pub/ads/appendall). providinghabitatfor3to5pairsontheHelenaNationalForestininsectinfestedareastoabout 585to1,008pairsontheKootenaiNationalForest). Estimatesofblackbackedwoodpeckerhabitatininsectinfestedareasin20002003rangefrom 9,992ha(HelenaNationalForest)to304,099ha(IdahoPanhandleNationalForests)(Table14) (orprovidinghabitatfor80to139pairsontheHelenaNationalForestininsectinfestedareasto about2,452to4,224pairsontheIdahoPanhandleNationalForest).

Howmanyblackbackedwoodpeckersbredineitherthepostfireortheinsectinfectedareas duringtheintervalsfrom19901993or20002003isunknown.Itisveryunlikelythattheblack

ThisSeptember242006versionreplacesallearlierversions. 51 backedwoodpeckerreachedthepotentialdensitiesasestimatedabove.Thiswouldrequirea (boomorbust)populationgrowthratecharacteristictoamicrobe.

Clearlyevidentisaconsistentandoftensubstantial increaseintheamounts(e.g.,from278%on theKootenaiNationalForesttoover300,000%ontheFlatheadNationalForest)ofpostfire habitatonall12NationalForestsintheNorthernRegion(Table14).OnlytwoNationalForests, theGallatinandKootenai,showadecreaseintheamountofinsectinfestedhabitat.The remaining10NationalForestsshowsubstantialincreases(e.g.,from4,014hato123,067haon theIdahoPanhandle)inamountsofinsectinfestedhabitat.

Asecondconsiderationistoprovidewelldistributedhabitat.Territorysizearoundanestcavity fortheblackbackedwoodpeckervaries,e.g.,61hainVermont,72hainsouthwestIdaho,and 124hainOregon(DixonandSaab2000)reflectingeitherdifferencesinhabitatorin methodologyorotherfactor. Appendix8/Map2illustratesa102kmbuffer[squarerootofthe72hahomerangerecordedin Idahotimes12,Bowman(2003)]placedaroundeachburnareaandinsectinfestedareainthe NorthernRegion.Thisestimate(102km)ofdispersaldistanceisalsosubstantiallylessthanthe distancestraveledintheirruptivemovementsbytheblackbackedwoodpeckerreportedby Yunick(1985).

Habitatfortheblackbackedwoodpeckerifdependentuponeitherpostfireorinsectinfested areasiswelldistributedacrosstheRegionandbyForest(Appendix8/Map2).Distances betweenneighboringpostfireorinsectinfestedareasareallwithin102km.

Fayt(2003)inastudyofthethreetoedwoodpeckersuggestsits(aspeciescloselyrelatedtothe blackbackedwoodpecker)breedingpopulationislimitedbyfoodavailabilityoutsideofthe breedingseasonandthatoldgrowthhabitatswithacontinuousproductionofheterogeneityin foreststructure(i.e.,regulargapdynamicsthatcreateamosaicoftypes)allowforstable woodpeckerpopulations.

Fayt(2003)furthersuggeststhatregionalnetworksofolderforestwithnaturalgapdynamicsare bothimportant(thekeyfactorinpopulationpersistence)tothelongtermconservationofthe speciesandtothecontrol/preventionoflargeoutbreaksofbarkbeetles.

Virtuallynothingisknownofthehabitatsrequirementsfortheblackbackedwoodpeckerin winterotherthaninthemostgeneralterms,e.g.,sedentary(DixonandSaab2000)andirruptive (Yunick1985).Itispossiblethattwocloselyrelatedspecies—theblackbackedwoodpecker andthreetoedwoodpecker—maysharestrategiesimportanttoyearroundsurvival,i.e.,useofa forestwherenaturalgapdynamics(lightningstrikes,ice/snowdamage,insectdamage,wind throw,andsoon)providetheheterogeneityrequiredforlongtermpersistence.Itisnotpossible toinventoryormapsuchhabitats.

Short-term Viability

ThisSeptember242006versionreplacesallearlierversions. 52

EvidencesuggeststheblackbackedwoodpeckerisincreasinginnumbersintheUnitedStates (ascitedinDixonandSaab2000).

Thefourcriteriatoevaluateviabilityare1)distributionandamounts,2)humandisturbance,3) bioticinteractions,and4)managingforecologicalprocesses. Distribution of habitat .Placinga102kmbufferaroundeitherburnareasorareasofhighinsect infestationshowsnogapbetweencurrentburnorinsectinfestedareasthatwouldlimitblack backedwoodpeckersfrominteracting(Appendix8/Map2).

HabitatfortheblackbackedwoodpeckeriswelldistributedacrosstheNorthernRegionandby Forest.

Amounts of habitat .Habitatisabundantfortheblackbackedwoodpecker(Table14).

Clearlyevidentisaconsistentandsubstantial increaseintheamounts(e.g.,from278%onthe KootenaiNationalForesttoover300,000%ontheFlatheadNationalForest)ofpostfirehabitat onall12NationalForestsintheNorthernRegion(Table14).OnlytwoNationalForests,the GallatinandKootenai,showadecreaseintheamountofinsectinfestedhabitat.Theremaining 10NationalForestsshowsubstantialincreases(e.g.,from4,014hato123,067haontheIdaho Panhandle)inamountsofinsectinfestedhabitat.

Human disturbance .Timbermanagementisafactorsuggestedtoaffecttheblackbacked woodpecker,particularlyinpostfireareasorsiteswithhighinsectinfestation. Timbermanagement(shelterwood,selection,salvage,andintermediate)intheNorthern Regionin2004amountedintotalto8,581haof9,045,255forestedhaintheNorthernRegionor 0.0009%ofthelandscape.Leveloftimbermanagementinprecedingyearswas10,542hain 2003,8516hain2002,5283hain2001andsoon.Salvagetimbermanagementin2004was 1210haor0.0005%oftheareaaffectedbyfireorinsects(Table14)(seealsoGallantetal.2003 whomconcludedtimbermanagementintheGYEisnotanissuecomparedtootherlandscape changes). Biotic interactions . Noneknown.

Managing ecological processes .Habitatfortheblackbackedwoodpeckerhasrecently increased(Table14),andamountstodayareexpectedtoincreaseasfiresandinsectsoutbreaks continuetoincreaseinsizeandinapatterndistinctlydifferentfromthatevidenthistorically (Zack1997,Gallant2003,HessburgandAgee2003,Hessburgetal.2004andothers).

ShorttermviabilityoftheblackbackedwoodpeckerintheNorthernRegionisnotanissue giventhefollowing.

•Noscientificevidenceexiststhattheblackbackedwoodpeckerisdecreasingin numbers.

ThisSeptember242006versionreplacesallearlierversions. 53

•IncreasesintheextentandconnectivityofforestedhabitatsinceEuropeansettlement.

•IncreasesinamountsofsmallandmidsizedtreeshaveincreasedsinceEuropean settlement. •Welldistributedandabundantblackbackedwoodpeckerhabitatexistsontoday’s landscape. •Levelofsalvagetimberharvest(in2004,1210haof2,276,588haor0.0005%)or overalltimberharvest(8581haof9,045,255or0.0009%oftheforested landscapeintheNorthernRegion)isinsignificant.

ThisSeptember242006versionreplacesallearlierversions. 54

6. Flammulated Owl

Ecology, Behavior and Habitat

Theflammulatedowl“isperhapsthemostcommonraptorofthemontaneforestsofthewestern UnitedStates”(McCallum1994a:1).Thebreedingrangeoftheflammulatedowlextendssouth fromsouthernBritishColumbia(ChristieandWoudenberg1997)intoCalifornia(Small1994), Idaho(Grovesetal.1997),Nevada(Dunhametal.1996),westernWyoming(Oakleafetal. 1992),Colorado(ReynoldsandLinkhart1987),Arizona(Baldaetal.1975),New (McCallum1994b),andwellintoMexico(AmericanOrnithologists’Union1998). Thefemaleflammulatedowlselectsthenestsitethatismostoftenanoldpileatedwoodpeckeror northernflickernestcavity(McCallum1994a).Thenestcavityisusedyearafteryearbythe flammulatedowlpair.Linkhartetal.(1998)reportedameansizeterritory(fourmalesequipped withradiotransmitters)of11.1±1.9hain1982and18.3±5.1hain1983. Onetofourareas(0.5±0.4hainsize)nearthenestcavityareimportantforagingareastothe flammulatedowl(Linkhartetal.1998).Theflammulatedowlsubsistsnearlyexclusivelyon insects,especiallymothsandbeetles,andforagesinthetreecanopy,betweentrees,andonthe ground. Youngflammulatedremainwithin100mofthenestsiteforaweekafterleavingthenest cavity(McCallum1994a).Youngflammulatedowlsgainindependencefromtheparentsin foragingforpreyinabout25to32days. FlammulatedowlsleavetheirbreedingareasbeginninginAugustandoverwinterinmiddle AmericaandreturntobreedingareasinlateAprilandearlyMay(McCallum1994b).About 50%oftheflammulatedowlsreturntothesameareawithmalesshowingeitherahigherfidelity tonestareaandorsurvivalrate. McCallum(1994a)summarizedthestudiesofMcCallumandGehlbach(1988)andGoggans (1986)(Table15).Ingeneral,flammulatedowlsnestedinrelativelylargetreesinrelatively openareas.McCallumandGehlbach(1988)reportowlsselectedareaswiththemostabundant poolofwoodpeckercavitiesandneitherMcCallumandGehlbach(1988)norGoggans(1986) demonstrateddifferencesinoccupiedandunoccupiedhabitat. Bulletal.(1990)described33flammulatedowlnests(Table15)innortheasternOregonduring 19871988.Largediametertrees(average=72cm)withflickercavitieswereusedfornesting. Nesttreeswerelocatedonridgesandupperslopeswitheastorsouthaspectsandinstandsof ponderosapineandDouglasfirorgrandfirwithponderosapineintheoverstory(seealsoBull andAnderson1978). InColorado,ReynoldsandLinkhart(1992)(Table15)reportednearlyallnestrecordsatthat timefortheflammulatedowlwerelocatedeitherinponderosapineorJeffreypine.Linkhart (2001)(Table15)summarizedastudyextendingnearlytwodecadesonhabitatuseand demographicsoftheflammulatedowl.Asinearlierstudies(ReynoldsandLinkhart1987,

ThisSeptember242006versionreplacesallearlierversions. 55

Table15.Summaryofkeycharacteristics(mean±SDunlessnoted,samplesizeinparentheses) offlammulatedowlhabitatreportedinstudiesconductedinareasotherthantheUSDAForest ServiceNorthernRegion. Oregon New Oregon Colorado Mexico Goggans McCallum Bulletal. Linkhart (1986) and (1990) (2001) Gehlbach (1988) Nest Treesize 53.3±11.9 46.2±10.7 72.0±14.4 33.0±42.2 (dbh,cm) (20) (17) (33) (14) Treeheight 26.6±12.0 10.6±3.9 24.0±0.1 (m) (20) (17) (33) Habitat Tree 589±451 504±416 330±146 density/ha (20) (17) (33) Treesize 35.0±2.5 (bdh,cm) (33) Shrubdensity 442±619 40.0±296 (17) (33) Canopy 55.0±20.1 closure (33) 1992),flammulatedowlspreferredopenareasofponderosapineorponderosapine/Douglasfir (Table18).HowieandRitcey(1987)inBritishColumbiareporteduseofDouglasfirstandsas nestsites. TheflammulatedowlisalsoknowntonestinJefferypinestandsmixedwithfir,quakingaspen, cottonwood(Marshall1939,JohnsonandRussell1962,McCallum1994a)andwhite(Bent 1938).InnorthernUtah,nestboxesplacedinnearlypureandopenstandsofaspenwerequickly usedbytheflammulatedowl(Marti1997).

ThisSeptember242006versionreplacesallearlierversions. 56

Linkhart(2001)emphasizestheimportanceofdistinguishingsingingmatesversusmaleswith mates.Bachelor(andsinging)malesoccupied70%ofterritoriesinthenonpreferredhabitat, i.e.,inareaswithmoreandyoungerDouglasfirhabitat.McCallum(1994a:23)echoedthe importancetodistinguishbreeding/oftensilentversusnonbreeding/singingmalesinthe developmentofconservationstrategiesfortheflammulatedowl. Linkhart(2001)reportedthatdensityofcavitytreesisnotrelatedtoreproductionbut fundamentallyimportanttoterritoryestablishmentbymaleflammulatedowls.Linkhart suggestednostrongevidenceexiststhatflammulatedowlsnestincoloniesassuggestedby Winter(1974).Rather,flammulatedowlsaggregatearoundclustersofnestcavities. Linkhart(2001)concludedtheassociationofflammulatedowlproductivitywithhigherdensities oflargerdiametertreessuggeststhatflammulatedowlsareadaptedtoforeststhatwere historicallymaintainedbyfire.Firesuppressioninmanywesternforests,whichwere historicallycharacterizedbyopenstandsoflargediametertreespriortoEuropeansettlement, hasresultedinhighertreedensitiesespeciallyinthesmallerdiameterclasses.Firesuppression hasresultedinconversionofmanypineforeststoshadetolerantfirforestsandhightree densitiesinsmallerdiameterclasses.Overall“firesuppressionmayberesultinginsuboptimal habitatforflammulatedowls”(page168). InOregon,homerangesexhibitedbytheflammulatedowlweresmaller(10.3±6.3ha) (Goggans1986)thenthosereportedbyLinkhart(2001).Goggans(1986)suggestedthemore brokencanopywithmoreopeningsmayhaveresultedinhigherlevelsofpreyavailability. Understandingforagingbehaviorandpreydiversityinflammulatedowldietsisdifficultdueto theirforagingatnightorinlateevening/earlymorning.Goggans(1986)recordedthathome rangeswereonupperslopesandplateauswithponderosapineandDouglasfirthedominanttree cover. McCallumandGehlbach(1988)(Table15)foundflammulatedowlsinNewMexicopreferred open,maturevegetationfornestsites.McCallumandGehlbach(1988)furthernotedthat flammulatedowlsmaychoosesiteswithlowshrubcoverinfrontofanestsuchthatanopen flightpathisavailable.McCallumandGerhard(1988)aswellasGoggans(1986)describeda needforroostsites,particularlyimportantjustbeforefledging,anddistancesfromthenestsiteto roostsitesmayvaryanddecrease(<100to<20m)justpriortofledging. AstudyinCanada(HowieandRitcey1987)isimportantforitsuggestedthatstructureand floristicsareimportanttotheflammulatedowlinselectingbreedingterritories.Flammulated owlsinBritishColumbiaselectedareaswithmodestcanopy(35to65%,anocularestimate)in areaswithmatureforest(140to200years)andwithtwocanopylayers. Moredetailedinformationfortheflammulatedowl forthebreedingrange,nonbreedingrange, migration,morphology,pairformation,courtshipandcopulation,nestingphenology,metabolism andtemperatureregulation,moltsandplumages,anddemographicsarefoundin The Birds of North America No. 93 (McCalllum1994a)andinHaywardandVerner(1994).Severalinternet

ThisSeptember242006versionreplacesallearlierversions. 57

Table16.Summaryofkeycharacteristics(mean±SDunlessnoted,samplesizeinparentheses) offlammulatedowlhabitatinstudiesconductedinIdahoandMontanaandwithintheNorthern Region.MeanvaluesareprovidedforGrovesetal.(1997).Numberofflammulatedowlnestsis includedinparentheses. Montana Idaho Wright(1996) Grovesetal.(1997) Nest Treesize(dbh) 31 (cm) (27) Surrounding habitat Treedensity/ha 494 (27) Treesize(bdh) >23cm 31 (cm) (27) Shrubdensity Meadow/mesic3.95± 21 (%) 3.74,grassland/xeric (27) 17.92±12.51 Canopyclosure Ponderosapine<40to 52 (%) <70inponderosa (27) pine/Douglasfir websitesprovidefurtherdetailedinformationontheflammulatedowl(e.g.,AccessedMarch20, 2005;,andAccessedMarch20,2005; ). Northern Region Wright(1996)establishedthreestudyareasthatwerelargelymanagedbytheBitterrootNational ForestbutwithportionsintheLoloNationalForestandDeerlodgeNationalForest.Wright (1996)conductedsurveysatpointsalong67transects480minlengthplacenearForestService secondaryroads.Adjustmentsweremadetothesurveyprocedureinyear2toaccountfor unoccupiedareas. CallingflammulatedowlsinWright’sstudy(1996)werecorrelatedwithnumberofponderosa pinetrees>38cm(P=0.043)andlivebasalarea(P=0.001)(Table16).Onalandscapelevel,

ThisSeptember242006versionreplacesallearlierversions. 58

Table17.RegionalandEcologicalProvincehabitatrelationshipsmodelfortheflammulatedowl intheUSDAForestServiceNorthernRegion. Model Dominance Canopy Aspect 2 Structure BA Snag group 1 coverage class 3 WT_DBH 4 (%) (cm) Regional PIPO,PIPO 35to85 SE,S, 1or2 >=30.5cm >=1/ha,>= NRMEP 1MIX;PSME, SW,W, forthe 25cm MRMEP PSME1MIX LRfor Regionand PSMEand MRMEP, PSME >=35.5for 1MIX theNRMEP 1 Douglasfir(PSME);andponderosapine(PIPO);andnosingledominant(IMIX).SeeAppendix6fordetailed definitions. 2 Southeast(SE),South(S),Southwest(SW),West(W),andlevelrolling(LR). 3Structureclass:singlestory(1),andtwostory(2).SeeAppendix6fordetaileddefinitions. 4 BA_WTD_DBHisthesumofthediameterofthetreetimesthenumberoftreesthetreerepresentstimesbasal areaofthetreedividedbytotalbasalarea. callingflammulatedowlswereassociatedwithlowcanopy(<40%)inponderosapine(P= 0.0091)andmoderatecanopy(<70%)inponderosapine/Douglasfir(P=.0237). HabitatanalysisbyGrovesetal.(1997:120)ontheNezPerceNationalForestincentralIdaho showedflammulatedowlsused“standswithmaturetooldponderosapineandDouglasfir, multiplecanopylayers,lowtreedensities,moderatetolowcanopyclosure,andmoderateground cover”(Table16).Grovesetal.(1997)concludedthat“firesuppressionandtimberharvest” maythreatenthelongtermpersistenceoftheflammulatedowl. ModelingtopredicthabitatfortheflammulatedowlatthebroadscaleinBritishColumbia CanadabyChristieandWoudenberg(1997)usedtwovariables:1)percentcover(55to100% forDouglasfirand3to45%forlodgepolepine);and2)ageclasscategories. TheNorthernRegionflammulatedowl(Table17)wildlifehabitatrelationshipsmodelisbased onvariablesreportedbyWright(1996)andGrovesetal.(1997):1)dominancegroupsto describethevegetationcomposition;2)rangeincanopycover;3)structureclass(numberof vegetationlayers);4)basalareatoreflectsizeoftree;and5)asnag.Treesizeismodeledby> =meanminusonestandarddeviationwiththeassumptionnoupperlimitexistsinsizeoftree usedbytheflammulatedowl.

ThisSeptember242006versionreplacesallearlierversions. 59

Table18.Summaryofhabitatestimates(ha)fortheflammulatedowlbyNationalForestinthe USDAForestServiceNorthernRegionusingtheNorthernRegionflammulatedowlhabitat relationshipmodels(Table17)andFIA. EcologicalProvince Forest Habitat NRMEP 39,253 IdahoPanhandle 13,342 Kootenai 4,296 Flathead 2,324 Lolo 6,444 Bitterroot 6,412 Clearwater 6,435

MRMEP 21,235

Beaverhead 1,975 Deerlodge Helena 3,243

NezPerce 16,017

SRMEP 5,841

Gallatin 5,581

Twogeographiclevelsofflammulatedowlhabitatrelationshipmodelsareprovided:aRegion widemodelthatreflectsthefullvarianceevidentinhabitatusebytheflammulatedowl,and second,anEcologicalProvincemodelthatreflectsthevariationinhabitatacrosstheNorthern Region(Table17). AttheRegionwideandEcologicalProvince,habitatfortheflammulatedowlisabundantand widespreadintheNorthernRegion(Table18).Linkhart(2001)reportsameansizeterritory (fourmalesequippedwithradiotransmitters)of11.1±1.9hain1982and18.3±5.1hain1983.

ThisSeptember242006versionreplacesallearlierversions. 60

Table19.Historic(193843)andcurrentestimatesofhabitat(percentofForest)importanttothe flammulatedowlbyEcoregion(Bailey1996)andbyNationalForestintheUSDAForest ServiceNorthernRegion.SeeBerglund(2005)fordetailsonhistoricestimatesofhabitat. Ecological Covertype1 Sizeclass 2 193842 Current Province/ (%) (%) NationalForest NRMEP Idaho PIPO Saw 1.6 0.8 Panhandle Pole 1.4 0.5 Seedling/sapling 0.6 0.0 PSME Saw 1.4 11.9 Pole 2.0 2.8 Seedling/sapling 0.6 2.0 Kootenai PIPO Saw 5.9 4.0 Pole 2.1 0.3 Seedling/sapling 1.3 0.3 PSME Saw 0.3 13.3 Pole 1.0 8.9 Seedling/sapling 0.2 3.8 Flathead PIPO Saw 1.5 0.6 Pole 0.5 0.3 Seedling/sapling 0.2 0.0 PSME Saw 1.6 7.7 Pole 1.2 8.9 Seedling/sapling 0.2 5.0 Lolo PIPO Saw 7.9 5.9 Pole 3.4 0.9 Seedling/sapling 3.1 1.2 PSME Saw 0.9 15.1 Pole 3.4 15.4 Seedling/sapling Bitterroot PIPO Saw 8.9 1.2 Pole 0.8 0.5 Seedling/sapling 0.9 0.5 PSME Saw 4.3 26.5 Clearwater PIPO Saw 2.1 1.0 Pole 0.4 0.0 Seedling/sapling 0.3 0.0 PSME Saw 3.0 8.5 Pole 2.0 3.7 Seedling/sapling 1.2 1.7

ThisSeptember242006versionreplacesallearlierversions. 61

Table19continued MRMEP Beaverhead PIPO Saw 2.0 0.0 Deerlodge Pole 0.3 0.0 Seedling/sapling 0.1 0.0 PSME Saw 2.1 9.5 Pole 13.5 14.7 Seedling/sapling 0.9 1.4 Helena PIPO Saw 0.7 1.5 Pole 0.1 1.5 Seedling/sapling 0.0 0.0 PSME Saw 4.6 11.6 Pole 7.7 28.3 Seedling/sapling 0.5 5.1 NezPerce PIPO Saw 3.7 4.9 Pole 0.7 0.3 PSME Saw 5.6 7.9 Pole 3.8 4.9 Seedling/sapling 2.2 4.6 1 Douglasfir(PSME),ponderosapine(PIPO);andnosingledominant(IMIX). 2 Sizeclass(seeBerglund2005). BasedonEcologicalProvincemodels,habitatamountsfortheflammulatedowlrangefroma lowof1,975ha(orenoughnesthabitatforabout108pairs)ontheBeaverheadDeerlodge NationalForestto16,017ha(orenoughnesthabitatforabout875pairs)ontheNezPerce NationalForest. Asecondconsiderationistoprovidewelldistributedhabitat.Fewestimatesofterritorysizeare availablefortheflammulatedowl.Multiplyingthesquarerootofthehomerange[11.1ha (Linkhart2001)]times12providesanestimateofthemediandispersaldistanceof40km. Nestinghabitatfortheflammulatedowlshouldbewithin40kmofeachother.Thisdistanceof 40kmmayormaynotbeanunderestimategiventheabilityoftheflammulatedowltowinterin easternMexicoandreturntobreedasfarnorthasBritishColumbia. Grovesetal.(1997),Wrightetal.(1997),Linkhart(2001),andWoudenberg(2003)andothers suggesthabitatfortheflammulatedowlhasandwilldeclineduetofiresuppression.Fire suppressionpermitsyoungDouglasfirtreestosuppresstherecruitmentofshadeintolerantand largediametertreesimportanttotheflammulatedowlandtoreducetheamountofopen understoryneededbytheowlasforagingareas.

ThisSeptember242006versionreplacesallearlierversions. 62

Table19displaysacomparisonofrelativeforestcompositionandstructurein1938to1942to currentassampledbyFIA(Berglund2005).Thecomparisonofthe1938to1942inventoryto FIAinTable19showsthattheopenunderstoryimportanttotheflammulatedowlhascloseddue togeneralandwidespreadincreasesintherelativeabundanceofDouglasfirandthe accompanyingincreasesintheseedling/saplingseralstageon11of12NationalForests. Second,duringthesameinterval(1938to1943topresent),therelativepercentoflarge (sawtimber)ponderosapinetrees(importanttotheflammulatedowl)declinedon9National ForestswhileveryslightincreasesoccurredonthreeNationalForests,theHelena,Lewisand Clark,andtheNezPerce(Table19). Ontheotherhand,Douglasfirinsawtimbersizeincreasedinabundanceon9of10National Forests,theexceptionbeingtheLewisandClark(Table19),andoftendramatically,e.g.,4.3to 26.5%ontheBitterrootNationalForest,suggestinganoverallincreaseinhabitatforthe flammulatedowl. Short-term Viability

Thefourcriteriatoevaluateviabilityare1)distributionandamountsofhabitat,2)human disturbance,3)bioticinteractions,and4)managingforecologicalprocesses. Distribution of habitat . Amounts of habitat .HabitatfortheflammulatedowlisabundantandwidespreadintheNorthern Region(Table18)supportingMcCallum's(1994a:1)statementthattheflammulatedowl“is perhapsthemostcommonraptorofthemontaneforestsofthewesternUnitedStates.” Habitatamountsfortheflammulatedowlrangefromalowof1,975ha(orenoughnesthabitat forabout108pairs)ontheBeaverheadDeerlodgeNationalForestto16,017ha(orenoughnest habitatforabout875pairs)ontheNezPerceNationalForest. Human disturbance .Timbermanagement(seedshelterwood,selection,salvage,and intermediate)intheNorthernRegionin2004amountedintotalto8581haof7,375,840forested haintheNorthernRegionor0.0001%ofthelandscape.Leveloftimbermanagementin precedingyearswas10,542hain2003,8516hain2002,5283hain2001andsoon.Timber managementisaninsignificantinfluenceonthelandscapeincomparisontosuppressionoffire. [seealsoGallantetal.(2003)whoconcludedtimbermanagementintheGYEisnotanissue comparedtolandscapechanges]. Twoadditionalhumanrelatedthreatsareuseofplaybackofrecordedcallsduringthebreeding seasonthatmaydisruptcourtship(Clark1988)anduseofpesticidesnearnestsitesthatreduce importantinsectprey(Reynoldsetal.1989).

ThisSeptember242006versionreplacesallearlierversions. 63

Biotic interactions . Largerowls,,longtailedaredirectthreatstothe flammulatedowlandotherwoodpeckersmaycompetewiththeflammulatedowlfornest cavities(McCallum1994a,1994b). InBritishColumbia,thebarredowlisknowntoharasstheflammulatedowlcausingnest abandonmentandprobablelossoffledglings(WoudenbergandChristie1997,Woudenberg 2003).ThebarredowlisontheincreaseinnumbersinthewesternUnitedStates,including northernandcentralIdahoandnorthwestandnorthcentralMontana(AccessedMarch28,2005; http://www.mbrpwrc.usgs.gov/bbs)(19662003)ataratethatmayexceed1.5%peryearin someareas. Aswiththespottedowl(Kellyetal.2003)andgoshawk(HanauskaBrownetal.2003),the barredowlrepresentsasignificantinfluenceonflammulatedowlabundanceanddistribution. VirtuallyallofthecurrentandhighlymodifiedforestedlandscapeintheNorthernRegionis potentialbarredowlhabitat(PetersonandRobins2003).Areasofparticularlysuitablehabitat forthebarredowlareincentralIdahoandeastcentralMontana.

Thebarredowlprovidesabioticinteractionwithnegativeconsequencestotheflammulatedowl.

Managing ecological processes .Virtuallyeveryauthorworkingwiththeflammulatedowl (Grovesetal.1997,Linkhart2001andothers)suggestsfiresuppressionhasbeenanegative influenceonhabitat.Whetherenoughfirecanbeintroducedisunknown,andmechanical removalofunderstory,particularlyinrelativelylargeareas,mayserveasaneffectivealternative tofire.Sizeofareatoberestoredisimportant(largerisbetter)toslowsubsequentperipheral encroachmentofunderstory,particularlybyshadetoleranttreespecies.

ShorttermviabilityoftheflammulatedowlintheNorthernRegionisnotanissuegiventhe following.

•Noscientificevidenceexiststhattheflammulatedowlisindecreasingin numbers. •Increasesintheextentandconnectivityofforestedhabitathaveoccurredsince Europeansettlement.

•Welldistributedandabundantflammulatedowlhabitatexistsontoday’slandscape.

•Leveloftimberharvest(8581haof9,045,255haor0.0009%oftheforested landscapeintheNorthernRegion)isinsignificant. Thebarredowlrepresentsasignificantthreat(predation)totheflammulatedowl.

ThisSeptember242006versionreplacesallearlierversions. 64

7. Pileated Woodpecker

Ecology, Behavior and Habitat

ThepileatedwoodpeckerinNorthAmericaisonlyexceededinsizebytheivorybilled woodpeckerinthesoutheasternUnitedStatesandtheimperialwoodpeckerinwesternMexico. Thepileatedwoodpecker’srangeextendsfromcentralBritishColumbiasouthintoNorthern California,eastfromIdahoacrossNorthDakota(Dechant2001,withthecolonizationbytreesof anhistoricopenNorthDakotalandscape)andeastfromagenerallinedescendingsouthfrom toeasternTexas(ascitedinBullandJackson1995). Thepileatedwoodpeckerisnotconsideredtobemigratory(BullandJackson1995).The pileatedwoodpeckerismostoftenassociatedwithmatureforests(Conneretal.1976,Conner 1980,ShackelfordandConner1997)althoughthepresenceoflargetreesfornestingisreported tobemoreimportantthanforestage(KirkandNaylor1996,GieseandCuthbert2000).The pileatedwoodpeckerisabletodowellinyoungandfragmentedforestswithabundantremnant (older)structure(Mellonetal.1992). Manytreespeciesareusedbythepileatedwoodpeckertoexcavatenestcavitiesandselectionof thetreeappearstodependmainlyontheavailabilityofsuitabletrees(KirkandNaylor1996). Thepileatedcanexcavateacavityinsolidwood(Bull1987)butmostoftenusestreespartially softenedbyfungaldecay(Conneretal.1976,Bull1987).Pileatedwoodpeckersexcavateanew cavityeachyearandreuseofoldcavitiesisrare(BullandJackson1995). Territorysizevariesconsiderably,rangingfrom321to630ha[(mean=407±110.3ha(SE)]for sevenpairsradiotracked,andameanof597±338.1hafornineindividualswhohadlostamate (BullandHolthausen1993).Basedonelevenbirdsfittedwithradiotransmitters,Mellonetal. (1992)inwesternOregonreportedpileatedwoodpeckershadterritoriessomewhatlarger(mean =478±219ha)thanineasternOregon(BullandHolthausen1993).Elevenbirdsfittedwith radiotransmittersinMissourihadmuchsmallerterritorieswithamean=87.5±31.6ha(Renkin andWiggins1989). PileatedwoodpeckersaretheonlyNorthAmericanwoodpeckerthatmakesdeepexcavationsin undecayedwoodinsearchoffood(Conner1979,Bulletal.1992,BullandJackson1995,Bull andHolthausen1993,Flemmingetal.1999).Insummer,ants,particularlycarpenterants(Hoyt 1950),andotherinsects(includinglarvaeofwoodboringbeetles)areobtainedonornearthe surfaceofliveanddeadtreesorbyextensiveexcavationintopartiallydecayedwood(Bulletal. 1986,1992).

Asayearroundresident,winterroostsareimportantandappeartobeinhabitatssimilartothat usedduringthebreedingseason(BullandJackson1995).Inwinter,thepileatedwoodpecker excavatesrelativelysoundwoodaroundthebaseofatreeinsearchofcarpenterants(Hoyt1950, Conner1981,1989,Bulletal.1986,Flemmingetal.1999).Thepileatedwoodpecker’sterritory appearstobedefendedallyear(BullandJackson1995).

ThisSeptember242006versionreplacesallearlierversions. 65

Table20.Summaryofkeyhabitatcharacteristics(mean±SDunlessnoted,samplesizein parentheses)forthepileatedwoodpeckerinrecentstudies. Montana Washington McClelland Bonar AubreyandRaley and (2001) (2002) McClelland (1999) Treesize 53.3±11.9 45.6±3.5 72.0±14.4 (cm) (20) (14) (33) Treeheight 26.6±12.0 43.1±14.7%had 24.0±0.1 (m) (20) tallstands(14) (33) Predationisreportedtobethemaincauseofmortality(Bonar2001).Predatorsincludethe goshawk,Cooper’shawk,redtailedhawk,greathornedowl,Americanmarten,andgrayfox. DetailedinformationofthebehaviorandecologyofthePileatedwoodpeckerisprovidedbyBull andJackson(1995)in The Birds of North America No. 146. Severalinternetwebsiteprovide furtherdetailedinformationonthepileatedwoodpecker(e.g.,AccessedMarch20,2005; ,andAccessedMarch20,2005; ).

Northern Region

AtCoramExperimentalForestinnorthwesternMontana,McClellandandMcClelland(1999) foundthatthepileatedwoodpeckerpreferredwesternlarch(n=51)asanesttreebutalsoused ponderosapine(n=18),blackcottonwood(n=15),aspen(n=7),westernwhitepine(n=3), grandfir(n=1)andDouglasfir(n=1). Nesttreesweresimilarinsizetoroosttreesandbothweretypicallysnags(81%and78% respectively)andwithbrokentops(McCellandandMcClelland1999).Treesusedbythe pileatedwoodpeckerwerelargerandtallerthaninrandomsites.Hutto(1995)reportedhabitat usebythepileatedwoodpeckersimilartoMcCellandandMcClelland(1999)intheNorthern RockyMountains,i.e.,maturecottonwoodbottoms,ponderosapine,andlarchstandsbutalso reporteduseofmixedconiferandcedarhemlock. Bonar(2001)conductedafiveyearstudyofthepileatedwoodpeckerintheborealforestinthe RockyMountainfoothillsinwestcentralAlberta(Table20).Bonar(2001)usedinformation basedon158totalnests,collectedfrom19821998,and14territoriesbyfollowing32birds equippedwithradiotransmitters.

ThisSeptember242006versionreplacesallearlierversions. 66

Bonnar(2001)foundthepileatedwoodpeckerusedallavailablehabitatsatallscalesexamined toselectnestcavitytreesandforforaging.Significantvariablesinpredictinghabitat characteristicsofpileatedwoodpeckerterritoriesincludedstands=>7minheight(P=0.011), potentialnesttreedensity(P=0.001),winterforaginghabitat(P=0.06),andpercentupland forest(P=0.003). ThepileatedwoodpeckerinBonar’s(2001)studydidselectsubstrateswithcarpenterantsand cavitytreeswithstemdecay,specificallyaspeninfectedwith Phellinus fungus.This“suggests thatpileatedwoodpeckersselectnestcavitytreesprimarilybecauseoftreecharacteristicsand thatselectionatotherscalesrelatestotheavailabilityofpotentialnestcavitytrees”(page65). Bonar(2001)found22.3%oftheavailablecavitieswereemptywheninspectedandempty cavitieswerepresentthroughouttheyear From1990to1995,AubreyandRaleyexaminedhabitatusebythepileatedwoodpeckerin westernWashington(Table20).Theseauthorsusedbothplaybackofcallsandtelemetryto locate25nests.Overall,thepileatedwoodpeckerpreferredlargetreesbutthesecavitytreeshad lessdecaythanroostsites,and0.4haplotsaroundnestsiteshadahigherdensityofbothtree speciesandsnags.ResultsofAubreyandRaley(2002)aresimilartothatreportedinOregonby Bull(1987)intermsofuseoflargetreesandsnags. TheRegionalnestsitehabitatrelationshipsmodelforthepileatedwoodpecker(Table21)andfor thebreedingseasonisbasedontwovariablesconsideredtobethemostsignificantinthe scientificliterature.First,thedominancegroupisthosetreespecieswherethepileatedis reportedtohavenestedisincludedinthenestsitemodel.Second,treesizeisincludedusingthe meanminusonestandarddeviationastheminimumsize(i.e.,fromMcClellandandMcClelland 1997:Table2,aspen).Theassumptionisthatnoupperlimitexistsintreesizeselectedasanest cavitytreebythepileatedwoodpecker.Thenesttreeisthemostimportantvariabletoestimate breedinghabitatusebythepileatedwoodpecker(KirkandNaylor1996,GieseandCuthbert 2003). CoverisnotincludedintheRegionalnestsitehabitatrelationshipsmodel.Thepileated woodpeckerisreportedtouseareaswith10%forestcover(Bonar2001).TheForestService's definitionofforestcoverincludesthoseareaswith=>10%treecover. Theforagingmodelforthepileatedwoodpecker(Table21)isbasedonhabitatrequirementsto forageinwinter(Bonar2001).Winteristhecriticalperiodforthepileatedwoodpecker(Bonar 2001)asitisformanybirdspecies(Perrins1966,Nilsson1987,Newton1998,andothers). Inwinter,thepileatedwoodpeckerforageslargelyonstubsandlogsassmallas7.4cmbut25to 50cmsubstratesareusedingreaterproportionthanavailable(Bonar2001).Themodelassumes nouppersizelimitexiststosizeofwinterforagingsubstrateforthepileatedwoodpecker. HabitatestimatesforthepileatedwoodpeckerbasedontheRegionalnesttreehabitatmodel (Table21)shownestsitehabitatisabundantandwelldistributedacrosstheNorthernRegionby NationalForest(Table22).Estimatesofnesttreeavailabilityrangefromalowof5,601haon theHelenaNationalForesttoahighof170,584haontheIdahoPanhandleNationalForests.

ThisSeptember242006versionreplacesallearlierversions. 67

Table21.Pileatedwoodpeckernestandwinterforaginghabitatrelationshipsmodelforthe NorthernRegionandEcologicalProvinces(Bailey1996). Model Dominancegroup 1 Nestmodel Winterforagingsubstrate (treesizecm) model(cm) Regional ABGR,ABGR >=39 >=25 NRMEP 1MIX,IMXS, MRMEP LAOC,LAOC SRMEP 1MIX,PSME, PSME1MIX, PIPO,PIPO1MIX. TSHE,TSHE 1MIX,THPL, THPL1MIX, POPUL,POPUL 1MIX,BEPA, BEPA1MIX, TGCH,POTR5, POTR1MIX, PIEN,PIEN1MIX 1 Douglasfir(PSME),ponderosapine(PIPO),westernwhitepine(PIMO3),westernredcedar,(THPL),western hemlock(TSME),larch(LOAC),grandfir(ABGR),lodgepolepine(PICO),birch(BEPA),aspen(POTR5), cottonwood(POPUL),tolerantgrandfir,cedar,andhemlock(TGCH),POTR(cottonwood),tolerantgrandfir westernhemlock(TGCH),andnosingledominant(IMIX).1MIXreferstothedominanceofonespecieswithin asample.SeeAppendix6fordetaileddefinitions.

WinterforaginghabitatestimatesforthepileatedwoodpeckerbasedontheRegionalforaging habitatmodel(Table22)showwinterforaginghabitatisabundantandwelldistributedacrossthe NorthernRegionbyEcologicalProvinceandForest(Table22).Estimatesofwinterforaging habitatforthepileatedwoodpeckerrangefromalowof14,444haontheHelenaNationForest toahighof287,801haontheIdahoPanhandleNationalForests.Bonar(2001)estimatesabout 40haarerequiredperpileatedwoodpeckerpairinwinter(orwinterhabitatadequatefromalow of361pairsontheHelenaNationalForesttoahighof7,195pairsontheIdahoPanhandle NationalForests).

Asecondconsiderationistoprovidewelldistributedhabitat.Fewestimatesoftheterritorysize areavailableforthepileatedwoodpecker.Territorysizevariesconsiderably,rangingfrom321 hato630ha(mean=407±110.3ha)innortheasternOregon(Bulletal.1992)toBonar’sstudy of23territories(mean=1,360±762.2ha).

ThisSeptember242006versionreplacesallearlierversions. 68

Table22.Summaryofhabitatestimates(ha)forthepileatedwoodpeckerbyRegion,Ecological Province(Bailey1996)(onlypileatedwoodpeckerhabitatofForestServicelandsisincludedin EcologicalProvinceestimates)andNationalForestintheUSDAForestServiceNorthern Region. RegionandEcological Forest Model Province Nest Winterforaging Regional 550,007 859,782 NRMEP 400,889 640,409 IdahoPanhandle 170,584 287,801 Kootenai 45,825 86,638 Flathead 22,461 38,726 Lolo 40,097 63,726 Bitterroot 18,321 31,604

Clearwater 103,601 131,914

MRMEP 135,156 214,260

Beaverhead 12,838 19,751 Deerlodge Helena 5,601 14,444

LewisandClark 6,122 18,367

NezPerce 110,595 161,698

SRMEP 13,952 25,113

Gallatin 13,952 25,113

Amediandispersaldistance(squarerootof407ha,thesmallestmeanhomerangereportedin thewest,times12)(Bowman2003)isestimatedtobe240km.Providingaspatiallyexplicit

ThisSeptember242006versionreplacesallearlierversions. 69 mapofwelldistributedbreedinghabitatcenteredonanesttreeorwintersubstratehabitatis technicallyimpossible.A240kmbufferplacedaroundanysnag>=41cmorarounda>=21cm snaglocatedanywhereonanindividualNationalForestintheNorthernRegionwouldinclude theentireownershiponthatparticularNationalForest. Short-term Viability

Thefourcriteriatoevaluateviabilityare1)distributionandamountsofhabitat,2)human disturbance,3)bioticinteractions,and4)managingforecologicalprocesses. Distribution of habitat .Themediandispersaldistanceof240kmforthepileatedwoodpecker extendsfartherthanthemostextremedistance,pointtopoint,withintheboundariesofany NationalForestintheNorthernRegion. WelldistributedhabitatisnotanissueforthepileatedwoodpeckerintheNorthernRegion. Amounts of habitat .HabitatestimatesforthepileatedwoodpeckerbasedontheRegionalnest treehabitatrelationshipsmodel(Table21)shownestsitehabitatisabundantandwelldistributed acrosstheNorthernRegionbyandNationalForest(Table22).Estimatesofnesttreeavailability Estimatesofnesttreeavailabilityrangefromalowof5,601haontheLewisandClarkNational Foresttoahighof170,584haontheIdahoPanhandleNationalForests.

Winterforaginghabitatestimatesforthepileatedwoodpeckershowwinterforaginghabitat basedontheRegionalwinterforagingsubstratemodel(Table21)isabundantacrossthe NorthernRegionbyEcologicalProvinceandForest(Table22).Bonar(2001)estimatesabout 40haarerequiredperpileatedwoodpeckerpairinwinter(orwinterhabitatadequatefromalow of361pairsontheHelenaNationalForesttoahighof7,195pairsontheIdahoPanhandle NationalForests).

Habitatontoday’slandscapeisveryabundantforthepileatedwoodpecker.

Human disturbance .Timberharvestmayaffecttheavailabilityofnesttrees(KirkandNaylor 1996,GieseandCuthbert2003)andwinterforaginghabitat(Bonar2001).Timbermanagement (seedshelterwood,selection,salvage,andintermediate)intheNorthernRegionin2004 amountedintotalto8581ha(of9,045,255forestedhaintheNorthernRegionor0.0009%ofthe landscape).Leveloftimbermanagementisinsignificantgiventhechangesonthelandscapedue tofiresuppression(Gallantetal.2003,HessburgandAgee2003andothers). Biotic interactions . Nobioticinteractionsthatnegativelyaffectthepileatedwoodpeckerare reportedintheliterature.

Managing ecological processes .Today’slandscapewithhighnumbersofintermediatesized trees(Hessburgetal.2003)provideincreasedmountsofforagesubstrateswithintherange reportedbyBonnar(2001).Pileatedwoodpeckersareknowntofeedonwoodboringbeetles(as citedinBonar2001)andbenefitfromthesubstantialincreasesinextentofpostfireandinsect outbreakhabitats(Table14).

ThisSeptember242006versionreplacesallearlierversions. 70

ShorttermviabilityofthepileatedwoodpeckerintheNorthernRegionisnotanissuegiventhe following.

•Noscientificevidenceexiststhatthepileatedwoodpeckerisdecreasingin numbers. •Increasesintheextentandconnectivityofforestedhabitathaveoccurredsince Europeansettlement.

•Welldistributedandabundantpileatedwoodpeckerhabitatexistsontoday’slandscape.

•Leveloftimberharvest(8581haof9,045,255or0.0009%oftheforested landscapeintheNorthernRegion)isinsignificant.

ThisSeptember242006versionreplacesallearlierversions. 71

8. Ecosystem Sustainability and Long-term Species Viability

Ecosystem Sustainability

Holling(1992)describesfourphasestoanecosystem:1)reorganizationwheretheamountsof nutrients,carbon,andmineralsandtheintensityandtypeofecologicalprocessinteracttoshape thefuture(bysuccession)ecosystem;2)exploitationwheresuccessionbeginsandaccessible nutrientsareadsorbed;3)conservationwhereclimaxspeciesstorecarbonandotherimportant resources;and4)releaseofenergy,nutrients,carbon,andmineralsduetofire,windthrough, diseaseorotherfactorcausingthedeathofvegetation(SamsonandKnopf1996)(Figure1).

Understandinganecosystemcycleisessentialtounderstandingthesystemsabilitytofunction andprovideessentialservicesandtoconservebiodiversityelementsuchasspeciesthatdepend onaparticularecosystem(AllenandHolling2002).

Alteringoneofthefourstagescanleadtoanewecosystemwithselfreinforcingproperties.An exampleistheinvasionofnativesagebrushsystemsoftheGreatBasininthewesternUnited Statesbyanexoticspecies—cheatgrass(AndersonandInouye2001).Cheatgrassoutcompetes nativespecies(reorganization),increasesinabundance(exploitation),altersthereleaseofenergy (increasingthefirefrequency)(conservation)and,ratherthanreturningtothenaturalecosystem, existstheecosystemcycle. Figure1.Flowofeventsincludingexploitation,conservation,release,andreorganizationthat describeanecosystemcycle(afterHolling1992),ecosystemconservationisanaturalfigure8. Exitfromthecycleattheleftleadstoecosystemchangeandincreasesincoststomanagement (SamsonandKnopf1996a).

ThisSeptember242006versionreplacesallearlierversions. 72

Table23.Representativeness,RedundancyandResiliencyastheevaluationcriteriaforlong termpopulationviability(afterShafferetal.2002). Principle Effect Advantage Concerns Representative Ecological/evolutionary Promotespopulation Coststorestore habitatforallnative stabilityandreduces nativelandscapesare speciesandreduces oreliminatesnegative highandincreases factorsrelatedto bioticinteractions. withtime. humandisturbance. Redundancy Providesmultiple Promotesstabilityin Morehomogeneous examplesofnative populationsthat andwellconnected habitatensuring existsas landscapesfollow opportunitiesfor subpopulationsand suppressionofnatural geneticvariationand ensureshabitatis processes. “backup”intermsof distributedacrossthe habitatincaseofnative landscape. predationordisease. Resiliency Ensureafullrangeof Promoteshabitatfor Ecosystemsareno seralstagesarepresent allspeciesnativetoa longerresilient onalandscapewhere landscapeinapattern causinglossof allnaturalprocesses— consistentwithlife ecosystemelements largeandsmall— historyrequirements andmoreextensive operatewithintheir forallnativespecies. andinvasive naturalrange. ecologicalprocesses.

Anexitfromtheecosystemcycleisevidentinchanges,mostoftenirreversible,inecosystem composition,structure,function,andinpatternsinecologicalprocesses(Figure1).Cheatgrass intheGreatBasinoftheUnitedStateshascreatedanannualbasedecosystemversusthehistoric andrelativelylonglivedshrubbasedecosystem(AndersonandInouye2001).Withoutvery largeinvestmentstorestorenativespeciesandecologicalprocesses,cheatgrasswillbecome moreextensiveandwillcontinuetofurthercreateaselfreinforcingecosystem(oranew“figure 8”).Thisnewecosystemwillhavehabitatsunlikeanysuitableforspeciesthatevolvedwithin thehistoricGreatBasin.

ManyforestsoftheRockyMountainsareeitheratthetransitionfromecosystemconservationto ecosystemchange(Figure1)orhaveshiftedtoanewandselfreinforcingpatternofecological processes.Ascomparedtohistoric,largefiresleadtolargepatchesofsimilarlyagedtrees,that

ThisSeptember242006versionreplacesallearlierversions. 73

Table24.HabitatconditionsonthebasisforlongtermviabilityintheUSDAForestinthe USDAForestServiceNorthernRegionforthegoshawk,blackbackedwoodpecker,flammulated owl,andpileatedwoodpeckerusingthethreeR’s. Principle Goshawk Blackbacked Flammulated Pileated woodpecker owl woodpecker Representativeness Low Low Low Low Redundancy Low Low Low Low Resiliency Low Low Low Low atsomepoint,collectivelyarevulnerabletofire.Largeinsectoutbreakscreatestandssimilarin age,whichinturn,reachafuturepointwhenstandsduetoagecollectivelywillbevulnerableto anotherlargeinsectoutbreak,aselfreinforcingpattern.

Table24summarizeshabitatconditionsusingthethreeR’s(Table23)asthebasisfor long-term viabilityforthegoshawk,blackbackedwoodpecker,flammulatedowl,andpileated woodpecker. Restoringwesternforeststoapatternmorecharacteristicofhistoricisexpensive,asindicatedby theHealthyForestInitiative.

Long-term Viability

Longtermviabilityiscloselyassociatedwiththehabitatinwhichthespeciesevolved(Hunteret al.1988).Shafferetal.(2002)describesthispreferredhabitatforlongtermviabilitybythree ecologicalandnonstatisticalconcepts—thethreeR’s(Table23).Theexpectationisthateachof thethreeR’swouldberatedas“high”inordertoensurelongtermpopulationviability. Foreachspecies(Table24),thethreeR’sarelowduetothefollowing. •AlackofRepresentativeness.MajorchangessinceEuropeansettlementin grasslands(losses),(increases)andforestlandscapestructure(increasesin midagedforests)andcomposition(increasesinshadetolerantspecies).Today’s landscapeisnolongerrepresentativeinvirtuallyanywaytothatinwhichthespecies evolved. •AlackofRedundancy.Fewexamplesofthefullnaturallandscapeexistand increasedareasofintermediateagedforestandincreasedconnectivityofthelandscape threatenskeyremainingelementsofbiodiversitysuchasareasofoldgrowththatno longerpersistinfireprotectedrefugiabutareembeddedinawellconnectedmatrixof

ThisSeptember242006versionreplacesallearlierversions. 74

intermediateagedforestthatpermitstherapidspreadoffireandinsectoutbreakswitha spatialtemporalpatternunlikehistoriclandscape. •AlackorResiliency.Massivelandscapechangesduetotheirreversiblehistoric lossofopengrasslandsbecauseoftheconversionofgrasslandstocroplandsandanddue totheincreaseinintermediateagedforestsbecauseofpriorfiresuppressioninforested systemsisleadingtofurtherchanges(largerandmoreintense)inecologicalprocesses, which,inturneliminatestheResiliencyofasystemoperatingwithinitsnaturalrangeof variation. Providingforecosystemsustainability(Figure1)andthelongtermviabilityforthefourspecies underconsiderationinthisassessmentrequiresamuchlarger,morewidespreadandactive vegetationmanagementprogramthanevidenttoday. Theneedtomanagethecurrent(andsoontobeirreversibleifsimilartootherecosystems) changesintheecosystemsoftheNorthernRockyMountainsisurgentinthatcoststodosowill onlyincrease.Environmentsinwhichatleast426andaverylargenumberoflesser knowntaxawillcontinuetodepartfromthatwhichinfluencedtheirevolution(seeArnaiz Villenaetal.2001forhowevolutionatthesubspecificlevelispossiblesincethelastglacial advancesuggestinghistorichabitatsalthoughvariableareimportant).

ThisSeptember242006versionreplacesallearlierversions. 75

9. Summary 1 •EcosystemspartiallyunderthemanagementoftheNorthernRegionoftheForestServicehave undergoneprofoundchangessinceEuropeansettlement.NativeprairiesinNorthDakota,South DakotaandMontanahavedeclinedinarea(SamsonandKnopf1996b)andarehighly fragmentedandexistinamatrixofagriculturalandotherlands(Samsonetal.2004).Insharp contrast,areaofforestinNorthDakota,SouthDakota,MontanaandIdahohasincreasedinarea andconnectivityisatanalltimehighatleastsince1800(HessburgandAgree2003,Hessburget al.2004).Theprairiesandforestsdosharethreecharacteristics:1)arelativedeclineinrelative extentofearlyandlatestagesofvegetationsuccession;2)sharpincreasesinthemid successionalstagevegetation(KnopfandSamson1997,HessburgandAgee2003);and3) increasingthreatsduetospeciesnotnativetoanecosystem(KnopfandSamson1997, HanauskaBrownetal.2003andothers). •Viabilityisnotyetamaturescience(Samson2002)andshouldbeprinciplebased(Beissinger andWestphal1998,Beissinger2002,Rallsetal.2002,Shaffer2002)untillongterm demographicinformationisavailablepermittingmorequantitativeapproaches. •TheNationalForestManagementAct(1976)requiresthatadiversityofplantandbe maintained.Thefourspeciesconsideredinthisconservationassessmentarenotatriskand habitatforeachhasincreasedsincethearrivalofEuropeans—shorttermviabilityisneitheran issueorconcern. •Themosturgentissueistorestorethesustainabilityofthegrasslandandforestedecosystemsto aconditionmorelikehistoric(PreEuropean)—thereforeprovideforthelongtermviabilityof thefourspeciesconsideredinthisassessmentaswellasall426vertebrates.Thiswillrequirea veryaggressiveprograminvegetationmanagement. 1 AdetailedassessmentofshortandlongtermviabilityfortheIdahoPanhandleNational ForestsisincludedinAppendix9.

ThisSeptember242006versionreplacesallearlierversions. 76

10. Literature Cited Agee,J.K.1998.Thelandscapeecologyofwesternforestfireregimes.NorthwestScience72: 2434. Allen,C.R.,andC.S.Holling.2002.Crossscalestructureandscalebreaksinecosystemsand othercomplexsystems.Ecosystems5:315318. AmericanOrnithologists’Union.1998.ChecklistofNorthAmericanbirds.7 th ed.American Ornithologists’Union,WashingtonDC,USA. Amman,G.W.,andW.E.Cole.1983.Mountainpinebeetledynamicsinlodgepolepine forestspartII:populationdynamics.USDAForestServiceGeneralTechnicalReportINT145. Ogden,Utah,USA. Angelstam,P.,andG.Mikusinski.1994.Woodpeckerassemblagesinnaturalandmanaged borealandhemiborealforestareview.AnnualsZoologicaFennici31:157172. Apfelbaum,S.,andA.Haney.1981.BirdpopulationsbeforeandafterwildlifeinaGreatLakes pineforest.Condor83:347354. Anderson,J.E.,andR.S.Inouye.2001.Landscapescalechangesinplantspeciesabundance andbiodiversityofasagebrushsteppeover45years.EcologicalMonographs71:531556. ArnaizVillena,A.,J.Guillen,V.RuizDelValle,E.Lowy,J.Zamora,P.Varela,D.Stefani, andL.M.Allende.2001.Phylogeographyofcrossbills,bullfinches,grosbeaks,androsefinches. CellularandMolecularLifeSciences8:11591166. Arno,S.F.,andG.E.Gruell.1986.Douglasfirencroachmentintomountaingrasslandsin southwesternMontana.JournalofRangeManagement39:272275.

Aubrey,K.B.,andC.M.Raley.2002.Selectionofnestandroosttreesbypileated woodpeckersincoastalforestsofWashington.JournalofWildlifeManagement66:392406. Bailey,R.G.1996.Ecosystemgeography.SpringerVerlag,NewYork,NewYork,USA. Balda,R.,B.C.McKnight,andC.D.Johnson.1975.Flammulatedowlmigrationinthe southwesternUnitedStates.WilsonBulletin87:520533. Baldwin,P.1960.Overwinteringofwoodpeckersinbarkbeetleinfestedspruceforestsin Colorado.InternationalOrnithologicalCongress12:7184. Baldwin,P.1968.WoodpeckerfeedingonEngelmannsprucebeetleinwindthrowntrees. USDAForestServiceResearchNoteRM105,FortCollins,Colorado,USA. Bangs,O.1900.TheAmericanthreetoedwoodpeckers.Auk17:127142.

ThisSeptember242006versionreplacesallearlierversions. 77

Bart,J.,S.Droege,P.Geissler,B.Peterjohn,andC.J.Ralph.2004.Densityestimationin wildlifesurveys.WildlifeSocietyBulletin32:12421247. Bebi,P.,D.Kulakowski,andT.T.Veblin.2003.Interactionsbetweenfireandsprucebeetlesin asubalpineRockyMountainforestlandscape.Ecology84:362371. Beier,P.,andJ.E.Drennen.1997.Foreststructureandpreyabundanceinforagingareasof northerngoshawks.EcologicalApplications7:564571. Beissinger,S.R.2002.Populationviabilityanalysis:past,presentandfuture.Pages517 in Populationviabilityanalysis.S.R.Beissinger,andD.R.McCullough,editors.Universityof ChicagoPress,Chicago,Illinois,USA. Beissinger,S.R.,andM.I.Westfall.1998.Ontheuseofdemographicmodelsofpopulation viabilityinendangeredspeciesmanagement.JournalofWildlifeManagement62:821841. Belovsky,G.F.,C.Mellison,C.Larson,andP.A.VanZandt.2002.HowgoodarePVA models?Restingtheirpredictionswithexperimentaldataonthebrineshrimp.Pages257283 in Populationviabilityanalysis.S.R.Beissinger,andD.R.McCullough,editors.Universityof ChicagoPress,Chicago,Illinois,USA. Bent,A.C.1938.Flammulatedscreechowl.Pages291295 in LifehistoriesofNorth Americanbirdsofprey.USNationalMuseumBulletin170,Part2,Washington,DC,USA. Berglund,D.2005.Comparisonof19371948timberinventoriesandcurrentFIAdata. Unpublishedmimeoonfile,FlatheadNationalForest,Kalispell,Montana,USA. Blackford,J.L.1955.Woodpeckerconcentrationsinburnedforest.Condor57:2830. Bloxton,T.D.,Jr.2002.Preyabundance,spaceuse,demography,andforginghabitatof northerngoshawksinwesternWashington.Master’sthesis,UniversityofWashington,Seattle, Washington,USA. Boch,C.E.,andJ.H.Boch.1974.Onthegeographicalecologyandevolutionofthreetoed woodpeckers, Picoides tridactylus and P. arcticus .AmericanMidlandNaturalist92:397405. Boch,C.E.,andJ.F.Lynch.1970.Breedingbirdpopulationsofburnedandunburnedconifer forestintheSierraNevada.Condor72:182189. Bonar,R.L.2001.PileatedwoodpeckerhabitatecologyintheAlbertafoothills.Dissertation, UniversityofAlberta,Edmonton,Canada. Bourdo,E.A.andG.A.Hesterburg.1951.Observationsonthearcticthreetoedwoodpecker. JackPineWarbler29:7881.

ThisSeptember242006versionreplacesallearlierversions. 78

Bowman,J.2003.Isdispersaldistanceofbirdsproportionaltoterritorysize?Canadian JournalofZoology81:195202. Boyce,M.S.1992.Populationviabilityanalysis.AnnualReviewofEcologyandSystematics 23:481506. Braun,C.E.,J.H.Henderson,M.R.Fuller,Y.B.Linhart,andC.D.Marti.1996.Northern goshawkandforestmanagementinthesouthwesternUnitedStates.TheWildlifeSociety TechnicalReview962.

BrightSmith,D.J.,andR.W.Mannan.1994.Habitatusebybreedingmalenorthern goshawksinnorthernArizona.StudiesinAvianBiology16:5865.

Bull,E.L.1980.Birdresponsestobeetlekilledlodgepolepine.TheMurrelet64:9496. Bull,E.L.1983.Longevityofsnagsandtheirusebywoodpeckers.Pages6468 in Snaghabitat management. J.W.Davis,G.A.GoodwinandR.A.Ockenfels,editors.USDAForestService GeneralTechnicalReportRM99,FortCollins,Colorado,USA. Bull,E.L.1987.EcologyofthepileatedwoodpeckerinnortheasternOregon.Journalof WildlifeManagement51:472481. Bull,E.L.,andR.G.Anderson.1978.NotesofflammulatedowlinnortheasternOregon. Murrelet59:2628. Bull,E.L.,S.R.Peterson,andJ.W.Thomas.1986.Resourcepartitioningamongwoodpeckers innortheasternOregon.USDAForestServiceResearchNotePNW444. Bull,E.L.,A.L.Wright,andM.G.Henjum.1990.Nestinghabitatsofflammulatedowlsin Oregon.JournalofRaptorResearch24:5255. Bull,E.,R.S.Holthausen,andM.G.Henjum.1992.Roosttreesusedbypileatedwoodpeckers innortheasternOregon.JournalofWildlifeManagement56:786793. Bull,E.L.,andR.S.Holthausen.1993.Habitatuseandmanagementofpileatedwoodpeckers innortheasternOregon.JournalofWildlifeManagement57:335345. Bull,E.L.,andJ.A.Jackson.1995.Pileatedwoodpecker( pileatus ).No.148.A. Poole,andF.Gill,editors.TheAcademyofNaturalSciences,,Pennsylvania,and TheAmericanOrnithologists’Union,Washington,DC,USA. Camp ,A.,C.Oliver,P.Hessburg,andR.Everett.1997.Predictinglatesuccessionalfire refugiapredatingEuropeansettlementintheWenatcheeMountains.ForestEcologyand Management95:677.

ThisSeptember242006versionreplacesallearlierversions. 79

Caton,E.L.1996.Effectsoffireandsalvageloggingonthecavitynestingbirdcommunityin northwesternMontana.Dissertation,UniversityofMontana,Missoula,Montana,USA. Christie,D.A.,andA.M.vanWoudenberg.1997.Modelingcriticalhabitatforflammulated owls( Otus flammeolus ).Pages97106 in Biologyandconservationofowlsofthenorthern hemisphere.J.R.Duncan,D.H.Johnson,andT.H.Nichols,editors.USDAForestService GeneralTechnicalReportNC190,St.Paul,Minnesota,USA. Clark,R.J.1988.Surveytechniquesforowlspeciesinthenortheast.Pages318327 in NationalWildlifeFederationProceedingsofthenortheastraptormanagementsymposiumand workshop.NationalWildlifeFederationTechnicalSeriesNo.13. Clough,L.2000.Nestinghabitatselectionandproductivityofnortherngoshawksinwest centralMontana.Master’sthesis,UniversityofMontana,Missoula,Montana,USA. Connor,R.N.1979.Seasonalchangesinwoodpeckerforagingmethods:strategiesforwinter survival.Pages95105 in Theroleofinsectivorousbirdsinforestecosystems.J.C.Dicks,R. N.Conner,R.R.Fleet,J.C.Kroll,andJ.A.Jackson,editors.AcademicPress,NewYork,New York,USA. Connor,R.N.1980.ForaginghabitatsofwoodpeckersinsouthwesternVirginia.Journalof Field51:119127. Connor,R.N.1981.Seasonalchangesinwoodpeckerforagingpatterns.Auk98:562570. Connor,R.N.1989.ForaginghabitatsofwoodpeckersinsoutheasternVirginia.Journalof FieldOrnithology51:119127. Connor,R.N.,O.K.Miller,Jr.,andC.S.Atkinson.1976.Woodpeckerdependenceontrees infectedbyfungalheartrots.WilsonBulletin88:575581. Coues,E.1893.ThehistoryoftheLewisandClarkExpedition.FrancisP.Harper,NewYork, NewYork,USA. Crocket,A.B.,andP.L.Hansley.1978.ApparentresponseofPicoideswoodpeckersto outbreaksofthepinebarkbeetle.WesternBirds:6770. Daw,S.K.,andS.Destafano.2001.Forestcharacteristicsofnortherngoshawkstandsandpost fledgingareasinOregon.JournalofWildlifeManagement65:5965. Dechant,J.A.2001.RangeexpansionofthepileatedwoodpeckerinNorthDakota.Prairie Naturalist33:163182. Dixon,R.D.,andV.A.Saab.2000.Blackbackedwoodpecker( Picoides arcticus ).No.509. InBirdsofNorthAmerica.A.Poole,andF.Gill,editors.TheAcademyofNaturalSciences, Philadelphia,Pennsylvania,andTheAmericanOrnithologists’Union,Washington,DC,USA.

ThisSeptember242006versionreplacesallearlierversions. 80

Doyle,F.I.,andJ.N.M.Smith.1994.Populationresponsesofnortherngoshawkstothe10 yearcycleinnumbersofsnowshoehares.StudiesinAvianBiology16:12229. Drennen,J.E.,andP.Beier.2003.Foreststructureandpreyabundanceinwinterhabitatof northerngoshawks.JournalofWildlifeManagement67:177185. Dunham,S.,L.Butcher,D.A.Charlet,andJ.M.Reed.1996.Breedingrangeandconservation offlammulatedowls( Otus flammeolus )inNevada.JournalofRaptorResearch30:189193. Fayt,P.2003.Insectpreypopulationchangesinhabitatswithdecliningvs.stablethreetoed woodpecker( Picoides tridactylus )populations.OrnisFennica80:182192. Flemming,S.P.,G.L.Holloway,E.J.Watts,andP.S.Lawrence.1999.Characteristicsof foragingtreesselectedbypileatedwoodpeckersinNewBrunswick.JournalofWildlife Management63:461469. Foster,D.R.,D.A.Orwig,andJ.S.McLachlan.1996.Ecologicalandconservationinsights fromreconstructivestudiesoftemperateoldgrowthforests.TrendsinEcologyandEvolution 11:419424. Frankel,O.H.,andM.E.Soule.1981.Conservationandevolution.CambridgeUniversity Press,Cambridge,UnitedKingdom. Furniss,R.L.1965.SusceptibilityoffireinjuredDouglasfirtobarkbeetleattackinsouthern Idaho.JournalofForestry63:1113. Gallant,A.,A.J.Hansen,J.S.Councilman,D.K.Monte,andD.W.Betz.2003.Vegetation dynamicsunderfireexclusionandlogginginaRockyMountainwatershed.Ecological Applications13:385403. Gibbs,J.,andJ.Faaborg.1991.Estimatingtheviabilityofandwarbler populationsinforestfragments.ConservationBiology4:193196. Giese,C.L.A,andF.J.Cuthbert.2000.Influenceofsurroundingvegetationonwoodpecker nesttreeselectioninoakforestsoftheupperMidwest.ForestEcologyandManagement179: 523534. Gilpin,M.E.,andM.E.Soule.1986.Minimumviablepopulations:processesofspecies extinction.Pages1934 in Conservationbiology:thescienceofscarcityanddiversity.M.E. Soule,editor.SinauerAssociates,Sunderland,Massachusetts,USA. Giroux,J.F.,andJ.P.Savard.2003.Snagusebyforagingblackbackedwoodpeckers (Picoides arcticus )inarecentlyburnedeasternborealforest.Auk120:505511.

ThisSeptember242006versionreplacesallearlierversions. 81

Good,R.E.1998.Factorsaffectingtherelativeuseofnortherngoshawk( gentilis )kill areasinsouthcentralWyoming.Master’sthesis,UniversityofWyoming,Laramie,Wyoming, USA. Goggans,R.1986.HabitatusebyflammulatedowlsinnortheasternOregon.Master’sthesis, OregonStateUniversity,Corvallis,Oregon,USA. Groom,M.J.,andM.A.Pascal.1998.Theanalysisofpopulationpersistence:anoutlookon thepracticeofviabilityanalysis.Pages227 in Conservationbiologyforthecomingdecade.P. L.Fiedler,andP.M.Kareiva,editors.ChapmanandHall,NewYork,NewYork,USA. Groot,P.,andR.W.Nott.2004.Responseofthewhitespottedsawyerbeetle, Monochamus s. scutellatus ,andassociatedbeetlestopheromesofsome and Dendroctonus barkbeetles. JournalofAppliedEntomology128:483488. Groves,C.,T.Fredrick,G.Frederick,E.Atkinson,M.Atkinson,J.Shepard,andG.Servheen. 1997.Density,distribution,andhabitatofflammulatedowlsinIdaho.GreatBasinNaturalist 57:116123. Gruell,G.E.1983.FireandvegetationtrendsintheNorthernRockies:interpretationsfrom 18711892photographs.USDAForestServiceGeneralTechnicalReportINT158,Ogden, Utah,USA. Gurevitch,J.,P.S.Curtis,andM.H.Jones.2001.Metaanalysisinecology.Advancesin EcologicalResearch32:200241. Habeck,J.R.1994.UsingGeneralOfficerecordstoassessforestsuccessioninponderosapine DouglasfirforestsinwesternMontana.NorthwestScience68:6978. Hammond,H.E.J.,D.W.Langor,andJ.R.Spence.2004.Saproxylicbeetles(Coleoptera) usinginborealaspenstandsofwesternCanada:spatiotemporalvariationand conservationofassemblages.CanadianJournalofForestResearch34:119. HanauskaBrown,L.A.2000.Evaluationofnortherngoshawk( Accipiter gentilis )productivity, nestlinggrowth,andadulthealthinrelationtoacentralIdahohabitatpotentialmodel.Master’s thesis,BoiseStateUniversity,Boise,Idaho,USA. HanauskiBrown,L.A.,M.J.Bechard,andG.J.Roloff.2003.Northerngoshawkbreeding ecologyandnestlinggrowthinmixedconiferforestsofwestcentralIdaho.NorthwestScience 77:331339. Hargis,C.D.,C.McCarthy,andR.D.Perloff.1994.HomerangesandhabitatsofNorthern GoshawksineasternCalifornia.StudiesinAvianBiology16:6674. Harris,M.A.1982.Habitatuseamongwoodpeckersinforestburns.Master’sthesis,University ofMontana,Missoula,Montana,USA.

ThisSeptember242006versionreplacesallearlierversions. 82

Haufler,J.B.,R.K.Baydack,H.Campa,H.III,B.J.Kernohan,C.Miller,L.J.O’Neil,andL. Waits.2002.Performancemeasuresforecosystemmanagementandecologicalsustainability. TheWildlifeSocietyTechnicalReview021. Hayes,J.L.,andG.E.Daterman.2001.Barkbeetles(Scolytidae)ineasternOregonand Washington.NorthwestScience75:2130. Hayward,G.D.,andR.E.Escano.1989.GoshawknestsitecharacteristicsinwesternMontana andnorthernIdaho.Condor91:476479. Hayward,G.D.,andJ.Verner.1994.Flammulated,boreal,andgreatgrayowlsintheUnited States:Atechnicalconservationassessment.USDAForestServiceGeneralTechnicalReport RM253,FortCollins,Colorado,USA. Heinselman,M.L.1973.FireinthevirginforestsoftheBoundaryWatersCanoeArea, Minnesota.QuaternaryResearch3:329382. Hejl,S.,andM.McFadzen.1998.Maintainingfireassociatedbirdspeciesacrossforest landscapesintheNorthernRockies.1998interimreport.USDAForestServiceRocky MountainResearchStation,Missoula,Montana,USA. Hessburg,P.F.,andJ.K.Agee.2003.AnenvironmentalnarrativeofinlandnorthwestUnited StatesForest.ForestEcologyandManagement178:2359. Hessburg,P.F.,J.K.Agee,andJ.F.Franklin.2004.Dryforestsandwildlifefiresintheinland NorthwestUSA:contrastinglandscapeecologyofthepresettlementandmoderneras.Forest EcologyandManagement.Inpress. Higgens,K.F.1986.Interpretationandcompendiumofhistoricalfireaccountsinthenorthern GreatPlains.USDIFishandWildlifeResearchPublication161,Washington,DC,USA. Hoffman,N.J.1997.DistributionofPicoideswoodpeckersinrelationtohabitatdisturbance withintheYellowstonearea.Master’sthesis,MontanaStateUniversity,Bozeman,Montana, USA. Holling,C.S.1992.Crossscalemorphology,geometry,anddynamicsofecosystems. EcologicalMonographs62:447502. Howie,R.R.,andR.andRitcey.1987.Distribution,habitatselection,anddensitiesof flammulatedowlsinBritishColumbia.Pages249254 in BiologyandConservationofOwls.R. W.Nero,R.J.Clark,R.J.Knapton,andR.H.Hamre,editors.USDAForestServiceGeneral TechnicalReportRM142,FortCollins,Colorado,USA.

ThisSeptember242006versionreplacesallearlierversions. 83

Hoyt,J.S.2000.Habitatassociationsofblackbacked Picoides arcticus andthreetoed P. tridactylus woodpeckersinthenortheasternborealforestofAlberta.Dissertation,Universityof Alberta,Edmonton,Alberta,Canada. Hoyt,J.S,andS.J.Hannon.2002.Habitatassociationsofblackbackedandthreetoed woodpeckersintheborealforestofAlberta.CanadianJournalofForestResearch32:1881 1888. Hoyt,S.Y.1950.Thefeedingecologyofthepileatedwoodpecker.Bulletinofthe Massachusetts’sAudubonSociety34:99103. Hughes,K.K.2000.ForagingecologyofPicoideswoodpeckersinrelationtoponderosapine decaydynamics.Master’sthesis,UniversityofIdaho,Moscow,Idaho,USA. HunterM.L.Jr.;G.L.Jacobson,Jr.;andT.WebbIII.1988.Paleoecologyandthecoarsefilter approachtomaintainingbiologicaldiversity.ConservationBiology2:375385. Hurlbert,S.H.1984.Pseudoreplicationandthedesignofecologicalfieldexperiments. EcologicalMonographs54:187211. Hutto,R.L.1995.Compositionofbirdcommunitiesfollowingstandreplacementfiresin NorthernRockyMountain(U.S.A.)coniferforests.ConservationBiology9:10411058. Johnson,N.K.,andW.C.Russell.1962.DistributiondataoncertainowlsinthewesternGreat Basin.Condor64:513514. Jones,J.,P.J.Doran,andR.T.Holmes.2003.Climateandfoodsynchronizeregionalbird abundances.Ecology84:30243032. Joy,S.M.2002.NortherngoshawkhabitatontheKaibabNationalForestinArizona:factors affectingnestlocationsandterritorialquality.Dissertation,ColoradoStateUniversity,Fort Collins,Colorado,USA. Kelly,E.G.,E.D.Forsman,andR.G.Anthony.2003.Arebarredowlsdisplacingspotted owls?Condor105:4553. Kennedy,P.L.1997.Thenortherngoshawk( Accipter gentilis atricapillus ):isthereevidenceof apopulationdecline.RaptorResearch31:95106. Kennedy,P.L.2003.Northerngoshawk( Accipiter gentilis atricapillus ):atechnical conservationassessment.Unpublishedreport,USDAForestService,RockyMountainRegion, SpeciesConservationProject,Denver,Colorado,USA. Kirk,D.A.,andB.J.Naylor.1996.Habitatrequirementsofthepileatedwoodpecker (Dryocopus pileatus )withspecialreferencetoOntario.OntarioMinistryofEnvironment,South CentralScienceandTechnologyReport46,Toronto,Ontario,Canada.

ThisSeptember242006versionreplacesallearlierversions. 84

Knopf,F.L.,andF.B.Samson.1997.EcologicalStudies125.Ecologyand conservationofgreatplainsvertebrates.SpringerVerlag,NewYork,NewYork,USA. Koenig,W.D.,P.N.Hooge,M.T.Stanback,andJ.Haydock.2000.Nataldispersalinthe cooperativelybreedingwoodpecker.Condor102:492502. Koplin,J.R.1969.Thenumericalresponseofwoodpeckerstoinsectpreyinasubalpineforestin Colorado.Condor71:436438. Koplin,J.R.1972.Measuringpredatorimpactofwoodpeckersonsprucebeetles.Journalof WildlifeManagement36:308320. Kroll,J.C.,andR.R.Fleet.1978.Impactofwoodpeckerpredationonoverwinteringwithin treepopulationsofthesouthernpinebeetle.Pages269281 in Theroleofinsectivorousbirdsin forestecosystems.J.G.Dickson,R.N.Conner,R.R.Fleet,J.A.Jackson,andJ.C.Froll, editors.AcademicPress,SanFrancisco,California,USA. LaSorte,F.A.,R.W.Mannan,R.T.Reynolds,andT.G.Grubb.2004.Habitatassociationsof sympatricredtailedhawksandnortherngoshawksontheKaibabPlateau.JournalofWildlife Management68:307317. Larocque,F.A.1934.ThejournalsofFrancoisAntoineLarocquefromtheAssiniboineRiver toYellowstone1805.R.Hazlitt,translatorandeditor.TheFrontier14:241247,332339,15: 6775,88. Lesica,P.,andS.V.Cooper.1992.PresettlementvegetationofsouthernBeaverheadCounty, Montana.Unpublishedreport,NaturalHeritageProgram,Helena,Montana,USA. Lester,A.M.1980.Numericalresponseofwoodpeckersandtheireffectonmortalityof mountainpinebeetlesinlodgepolepineinnorthwesternMontana.Master’sthesis,Universityof Montana,Missoula,Montana,USA. Linkhart,B.D.2001.Lifehistorycharacteristicsandhabitatqualityofflammulatedowls( Otus flammeolus )inColorado.Dissertation,UniversityofColorado,Boulder,Colorado,USA. Linkhart,B.D.,R.T.Reynolds,andR.A.Ryder.1998.Homerangeandhabitatofbreeding flammulatedowlsinColorado.WilsonBulletin110:342351. Ludwig,D.1996.Uncertaintyandtheassessmentofextinctionprobabilities.Ecological Applications6:10671076. Ludwig,D.1999.Isitmeaningfultoestimatetheprobabilityofextinction?Ecology80:298 310. Marshal,J.T.1939.Territorialbehavioroftheflammulatedowl.Condor1:7178.

ThisSeptember242006versionreplacesallearlierversions. 85

Marshall,D.B.1992.StatusoftheblackbackedwoodpeckerinOregonandWashington.In Bibliographyofselectedliteratureregardingthemanagementofcavityexcavatorsineastside habitats:OregonandWashington.USDAForestService,LaGrande,Oregon,USA. Marti,C.D.1997.Flammulatedowls( Otus flammeolus )breedingindeciduousforests.Pages 262266in1997Biologyandconservationofowlsofthenorthernhemisphere.J.R.Duncan,D. H.Johnson,andT.H.Nichols,editors.USDAForestServiceGeneralTechnicalReportNC 190,St.Paul,Minnesota,USA. Martin,K.,andJ.M.Eadie.1999.Nestwebs:Acommunitywideapproachtothemanagement andconservationofcavitynestingbirds.ForestEcologyandManagement115:243257. Mayfield,H.1958.NestingofblackbackedandthreetoedwoodpeckersinMichigan.Wilson Bulletin2:195196. McAllister,K.2004.LettertotheNationalForestsandGrassland,onfile,NorthernRegion, USDAForestService,Missoula,Montana,USA. McCallum,D.A.1994a.Flammulatedowl( Otus flammeolus ).InBirdsofNorthAmerica.No. 93.A.Poole,andF.Gill,editors.TheAcademyofNaturalSciences,Philadelphia, Pennsylvania,andTheAmericanOrnithologists’Union,Washington,DC,USA. McCallum,D.A.1994b.Reviewoftechnicalknowledge:flammulatedowls.Pages1446 in Flammulated,boreal,andgreatgrayowlsintheUnitedStates:atechnicalconservation assessment.USDAForestServiceGeneralTechnicalReportRM253,St.Paul,Minnesota, USA. McCallum,D.A.,andF.R.Gehlback.1988.Nestsitepreferencesofflammulatedowlsin westernNewMexico.Condor90:653661. McClelland,B.R.,andP.T.McClelland.1999.Pileatedwoodpeckernestandroosttreesin Montana:linkswitholdgrowthandforest"health."WildlifeSocietyBulletin27:846857. McCullough,D.G.,R.A.Werner,andD.Neuman.1998.Fireandinsectsinnorthernand borealecosystemsonNorthAmerica.AnnualReviewofEntomology43:107127. McCullough,D.R.1978.PopulationdynamicsoftheYellowstonegrizzlybear.Pages173196 in Dynamicsoflargepopulations.C.W.Fowler,andT.D.Smith,editors.JohnWiley andSons,NewYork,NewYork,USA. McCune,B.,andT.F.H.Allen.1985.Willsimilarforestsdeveloponsimilarsites? CanadianJournalofBotany63:367376.

ThisSeptember242006versionreplacesallearlierversions. 86

McGrath,M.T.,S.Destefano,R.A.Riggs,L.L.Irwin,andG.J.Roloff.2003.Spatially explicitinfluencesonnortherngoshawknestinghabitatintheinteriorPacificNorthwest. WildlifeSocietyMonograph154.

McHugh,C.W.,andT.E.Kolb.2003.Barkbeetleattacksonponderosapinefollowingfirein northernArizona.EnvironmentalEntomology2003:510522.

McMillin,J.D.,andK.K.Allen.2003.EffectsofDouglasfirbeetle(Coleoptera:Scolytidae) infestationonforestoverstoryandunderstoryconditionsinwesternWyoming.WesternNorth AmericaNaturalist63:498506. Mellon,T.K.,C.E.Meslow,andR.W.Mannan.1992.Summertimehomerangeandhabitat useofpileatedwoodpeckersinwesternOregon.JournalofWildlifeManagement56:96103. Miller,R.S.2001.Determiningdifferencesinthespatialdistributionofforeststructureonthe KaibabPlateau:implicationsforforestmanagementandthenortherngoshawk.Master’sthesis, ColoradoStateUniversity,FortCollins,Colorado,USA. Mohren,S.R.2002.Habitatevaluationanddensityestimatesfortheblackbackedwoodpecker (Picoides arcticus )andthreetoedwoodpecker( Picoides tridactylus )intheBlackHillsNational Forest.Master’sthesis,UniversityofWyoming,Laramie,Wyoming,USA. Morris,W.,D.Doak,M.Groom,P.Kareiva,J.Fieberg,L.Gerber,P.Murphy,andD.Thomson. 1999.Apracticalhandbookforpopulationviabilityanalysis.TheNatureConservancy, Arlington,Virginia,USA. Moser,B.W.,andE.O.Garton.2004.Shorttermeffectsoftimberharvestonnorthern goshawk( Accipiter gentilis )breedingareaoccupancy,nestsuccess,andproductivity.Abstract, RaptorResearchFoundationAnnualMeeting,Bakersfield,California,USA. Murphy,E.C.,andW.A.Lehnhausen.1998.Densityandforagingecologyofwoodpeckers followingastandreplacementfire.JournalofWildlifeManagement62:13591372. Nappi,A.,P.Drapeau,J.Giroux,andJ.L.Savard.2003.Snagusebyforagingblackbacked woodpeckers( Picoides arcticus )inarecentlyburnedeasternborealforests.Auk120:505511. Nasatir,A.P.1952.BeforeLewisandClark.Volumes1&2.St.LouisHistoricalDocuments Foundation,St.Louis,Missouri,USA. Neuenschwander,L.F.,J.W.Byler,A.E.Harvey,G.I.McDonald,D.S.Ortiz,H.L.Osborne, G.C.Snyder,andA.Zack.1999.WhitepineintheAmericanwest:avanishingspeciescanwe saveit?USDAForestServiceGeneralTechnicalReportRMRS35,Ogden,Utah,USA. . Newton,I.1998.Finches.AcademicPress,SanDiego,California,USA.

ThisSeptember242006versionreplacesallearlierversions. 87

Niemi,G.J.1978.BreedingbirdsofburnedandunburnedareasinnorthernMinnesota. Loon 50:7384. Nilsson,S.G.1987.Limitationandregulationofpopulationdensityinthe Sitta europaea (Aves)breedinginnaturalcavities.JournalofAnimalEcology56:921937. Oakleaf,B.,B.Luce,S.Ritter,andA.Cerovski.1992.Wyomingbirdandmammalatlas. WyomingGameandFishDepartment,Lander,Wyoming,USA. Patla,S.M.1997.Nestingecologyandhabitatofthenortherngoshawkinundisturbedand timberharvestareasontheTargheeNationalForest,GreaterYellowstoneEcosystem.Master’s thesis,IdahoStateUniversity,Pocatello,Idaho,USA. Penteriani,V.2002.GoshawknestinghabitatinEuropeandNorthAmerica:areview.Ornis Fennica79:149163. Penteriani,V.,andB.Faivre.2001.Effectsofharvestingtimberstandsongoshawksintwo Europeanareas.BiologicalConservation101:211216. Perrins,C.M.1966.Theeffectofcropsongreatpopulationsandmovements.British Birds59:419432. Peterson,A.T.,andC.R.Robins.2003.Usingecologicalnichemodelingtopredictbarredowl invasionswithimplicationsforspottedowlconservation.ConservationBiology17:11611165. Peterson,T.A.,D.R.B.Stockwell,andD.A.Kluza.2002.Distributionalpredictionbasedon ecologicalnichemodelingofprimaryoccurrencedata.Pages617624 in Predictingspecies occurrences:issuesofaccuracyandscale.J.M.Scott,P.J.Heglund,M.L.Morrison,J.B. Haufler,M.G.Raphael,W.A.Wall,andF.B.Samson,editors.Press,Covelo, California,USA. Pimm,S.L.1991.Thebalanceofnature?UniversityofChicagoPress,Chicago,Illinois,USA. Powell,H.D.W.2000.Theinfluenceofpreydensityonpostfirehabitatuseoftheblack backedwoodpecker.Master’sthesis,UniversityofMontana,Missoula,Montana,USA. Ralls,K.,andB.L.Taylor.1997.Howviableispopulationviabilityanalysis?Pages228235 in Theecologicalbasisofconservation.S.T.A.Pickett,R.S.Ostfield,M.Shachak,andG.E. Likens,editors.ChapmanandHall,NewYork,NewYork,USA. Ralls,K.,S.R.Beissinger,andJ.F.Cochrane.2002.Guidelinesforusingpopulationviability analysisinendangeredspeciesmanagement.Pages521550 in Populationviabilityanalysis.S. R.Beissinger,andD.R.McCullough,editors.UniversityofChicagoPress,Chicago,Illinois, USA.

ThisSeptember242006versionreplacesallearlierversions. 88

Raphael,MG.,andM.White.1984.UseifsnagsbycavitynestingbirdsintheSierraNevada. WildlifeSocietyMonograph86. Redmond,R.L.,M.M.Hart,J.C.Winne,W.A.Williams,P.C.Thornton,Z.Ma,C.M. Tobalske,M.M.Thornton,K.P.McLaughlin,T.P.Tady,F.B.,andS.W.Running. 1998.TheMontanaGapAnalysisProject:finalreport.MontanaCooperativeWildlifeResearch Unit,UniversityofMontana,Missoula,USA. Redmond,R.L.,M.Hart,andR.Gerrard.2001.Representingpotentialhabitatfornative terrestrialvetyebratesinIdahoandMontana:minmumsetsof7.5quadrangles.TheMontana GapAnalysisProject:unpublishedreport.MontanaCooperativeWildlifeResearchUnit, UniversityofMontana,Missoula,USA. Reed,J.M.,D.D.Murphy,andR.F.Brussard.1998.Efficacyofpopulationviabilityanalysis. WildlifeSocietyBulletin26:244251. Reich,R.M.,S.M.Joy,andR.T.Reynolds.2004.Predictingthelocationofnortherngoshawk nests:modelingthespatialdependencybetweenlocationsandforeststructure.Ecological Modeling176:109133. Renkin,R.B.,andE.P.Wiggins.1989.Forestcharacteristicsrelatedtopileatedwoodpecker territorysizeinMissouri.Condor91:642652. Reynolds,R.T.,andB.D.Linkhart.1987.Thenestingecologyofflammulatedowlsin Colorado.Pages234to238 in Biologyandconservationofnorthernforestowls.R.W.Nero, R.J.Clark,R.J.Knapton,andR.H.Hamre,editors.USDAForestServiceGeneralTechnical ReportRM142,FortCollins,Colorado,USA. Reynolds,J.T.,R.T.Graham,M.H.Reiser,R.L.Bassett,P.L.Kennedy,D.A.Boyce,Jr.,G. Goodwin,R.Smith,andE.L.Fisher.1991.Managementrecommendationsforthenorthern goshawkinthesouthwesternUnitedStates.USDAForestServiceGeneralTechnicalReport RM217,FortCollins,Colorado,USA. Reynolds,R.T.,andB.D.Linkhart.1992.Flammulatedowlsinponderosapine:evidenceof preferenceforoldgrowth.Pages166169 in OldgrowthforestsinthesouthwestandRocky MountainsRegions:proceedingsofaworkshop.USDAForestServiceGeneralTechnicalReport RM213,FortCollins,Colorado,USA. Rickletts,T.H.,E.Dinnerstein,D.M.Olsen,C.J.Louks,W.Eichbaum,D.DellaSalla,K. Kavanagh,P.Hedo,P.T.Hurley,K.M.Carney,R.Abell,andS.Waters.1999.Terrestrial ecoregionsofNorthAmerica.IslandPress,Covelo,California,andWashington,DC,USA. Rockwell,F.J.1917.Westernwhitepine.Part1.Thetreeandthestand.Unpublished inventoryonfile.IdahoPanhandleNationalForests,Coeurd'Alene,Idaho,USA.

ThisSeptember242006versionreplacesallearlierversions. 89

Rollins,M.andT.W.Swetnam,andP.Morgan.2000.Pages283287 in Twentiethcenturyfire patternsintheGila/AldoLeopoldWildernessComplexNewMexicoandtheSelwayBitterroot WildernessAreaIdaho/Montana.D.N.Cole,S.F.McCool,W.T.Borrie,andJ.O'Loughlin, compilers.WildernessscienceinatimeofchangeconferenceVolume5:wilderness ecosystems,threatsandmanagement.USDAForestServiceRockyMountainResearchStation, ProceedingsRMRSP15VOL5. Saab,V.A.,andJ.G.Dudley.1998.Responsesofcavitynestingbirdstostandreplacementfire andsalvagelogginginponderosapine/DouglasfirforestsofSouthwesternIdaho.USDAForest ServiceResearchPaperRP11,Boise,Idaho,USA. Salwasser,H.,S.P.Mealey,andK.Johnson.1984.Wildlifeviability:aquestionofrisk. TransactionsoftheNorthAmericanWildlifeandNaturalResourcesConference.49:421421. Samson,F.B.1983.Minimumviablepopulations:areview.NaturalAreasJournal3:1523. Samson,F.B.2002.Populationviabilityanalysis:management,andconservationplanningat largescales.Pages425441 in Populationviabilityanalysis.S.R.Beissinger,andD.R. McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Samson,F.B.,F.PerezTrejo,H.Salwasser,L.F.Ruggiero,andM.L.Shaffer.1985.On determiningandmanagingminimumpopulationsize.WildlifeSocietyBulletin13:425433. Samson,F.B.,andF.L.Knopf.1996a.Putting“ecosystem”intonaturalresourcemanagement. JournalofandWaterConservationJulyAugust:288291. Samson,F.B.,andF.L.Knopf.1996b.PrairieConservation:PreservingNorthAmerica'smost endangeredecosystem.IslandPress,Washington,DC,USA. Samson,F.B.,F.L.Knopf,C.L.McCarthy;W.R.Ostlie,S.Larson,G.E.Plumb,B.R.Noon, D.N.Svingen,G.L.Schenbeck,S.M.Rinehart,andT.W.Byer.2003.Conservationplanning forpopulationviabilityonForestServicelandsinthenorthernGreatPlainsUSA.TheWildlife SocietyBulletin31:986999. Samson,F.B.,F.L.Knopf,andW.R.Ostlie.2004.GreatPlainsecosystems:past, presentandfuture.WildlifeSocietyBulletin32:615. SancezMartinez,G.,andM.R.Wagner.2002.Barkbeetlecommunitystructureunderfour ponderosapinestandconditionsinnorthernArizona.ForestEcologyandManagement170: 145160. Schoenagel,T.,T.T.Veblen,andW.H.Romme.2004.Theinteractionoffires,fuels,and climateacrossRockyMountainforests.BioScience54:661675. Sergio,F.,andI.Newton.2003.Occupancyasameasureofterritorialquality.Journalof AnimalEcology72:857865.

ThisSeptember242006versionreplacesallearlierversions. 90

Setterington,M.,I.D.Thompson,andW.A.Montevecchi.2000.Woodpeckerabundanceand habitatuseinmaturebalsamfirforestsinNewfoundland.JournalofWildlifeManagement64: 335345. Shackelford,C.E.,andR.N.Connor.1997.Woodpeckerabundanceandhabitatuseinthree foresttypesineasternTexas.WilsonBulletin109:132141. Shaffer,M.L.1981.Minimumpopulationsizesforspeciesconservation.BioScience31:131 134. Shaffer,M.L.,andF.B.Samson.1985.Populationsizeandextinction:anoteondetermining criticalpopulationsize.AmericanNaturalist125:144152. Shaffer,M.L.,L.H.Watchman,W.J.SnapeIII,andI.K.Latchis.2002.Populationviability analysisandconservationpolicy.Pages123145 in Populationviabilityanalysis.S.R. Beissinger,andD.R.McCullough,editors.UniversityofChicago,Chicago,Illinois,USA. Short,L.L.1971.SystematicsandbehaviorofsomeNorthAmericanwoodpeckers,genus Picoides.BulletinoftheAmericanMuseumofNaturalHistory145:1118. Short,L.L.1974.HabitatsandinteractionsofNorthAmericanthreetoedwoodpeckers (Picoides arcticus and Picoides tridactylus ).AmericanMuseumNovitates2547:142. Small,A.1994.Californiabirds:theirstatusanddistribution.IbisPublishingCompany,Vista, California,USA. Smith,J.K.,andW.C.Fischer.1997.FireecologyoftheforesthabitattypesofnorthernIdaho. USDAForestServiceGeneralTechnicalReportINT363,Ogden,Utah,USA. Sonsthagen,S.A.2002.Yearroundhabitat,movement,geneflowofnortherngoshawks breedinginUtah.Master’sthesis.BrighamYoungUniversity,Provo,Utah,USA. Squires,J.R.,andL.F.Ruggiero.1995.Wintermovementsofadultnortherngoshawksthat nestedinsouthcentralWyoming.JournalofRaptorResearch29:59. Squires,J.R.,andR.T.Reynolds.1997.NorthernGoshawk.No.298.InThebirdsofNorth America.TheAcademyofNaturalSciences,Philadelphia,Pennsylvania,andTheAmerican Ornithologists'Union,Washington,DC,USA. Stephens,R.M.2001.Migration,habitatuse,anddietofnortherngoshawks( Accipiter gentilis ) thatwinterintheUintaMountains,Utah.Master’sthesis,UniversityofWyoming,Laramie, Wyoming,USA. Taylor,D.L.1979.ForestfiresandtreeholenestingcycleinGrandTetonandYellowstone NationalParks.TransactionsoftheFirstScienceandResearchConference1:509511.

ThisSeptember242006versionreplacesallearlierversions. 91

Taylor,D.L.,andW.J.Barmore,Jr.1980.Postfiresuccessionofavifaunainconiferousforests ofYellowstoneandGrandTetonNationalParks,Wyoming.Pages130145 in Managementof westernforestsandgrasslandsfornongamebirds.USDAForestServiceGeneralTechnical ReportINT86,Ogden,Utah,USA. Taylor,J.,andE.Schachtell.2002.BlackbackedwoodpeckerhabitatanalysisofsixIdaho PanhandleNationalForestattwoscales.Unpublishedmimeoonfile,IdahoPanhandleNational Forests,Coeurd’Alene,Idaho,USA. Thomas,J.W.,E.D.Forsman,J.B.Lint,E.C.Meslow,B.R.Noon,andJ.Verner.1990.A conservationstrategyforthenorthernspottedowl:areportoftheInteragencyScientific Committeetoaddresstheconservationofthenorthernspottedowl.USDAForestService;USDI BureauofLandManagement,FishandWildlifeService,NationalParkService.Portland, Oregon,USA. Thompson,I.D.,H.A.Hogan,andW.A.Montevecchi.1999.Aviancommunitiesofmature balsamforestsinNewfoundland:agedependenceandimplicationsfortimberharvest.Condor 99:311323. USDIFishandWildlifeService.1998.Statusreviewofthenortherngoshawkintheforested west.Portland,Oregon,USA. VanTyne,J.1926.AnunusualflightofArcticthreetoedwoodpeckers.Auk43:469474. Villard,P.1994.Foragingbehaviorofblackbackedandthreetoedwoodpeckersduringspring andsummerinaCanadianborealforest.CanadianJournalofZoology72:19571959. Villard,P.,andC.W.Beninger.1993.Foragingbehaviorofmaleblackbackedandhairy woodpeckersinaforestburn.JournalofFieldOrnithology64:7176. Wallin,K.F.,T.E.Kolb,K.R.Skov,andM.R.Wagner.2003.Effectsofcrownscorchon ponderosapineresistancetobarkbeetlesinnorthernArizona.EnvironmentalEntomology32: 652661. Weinhagen,A.C.1998.Nestsiteselectionbytheblackbackedwoodpeckerinnortheast Vermont.Master’sthesis,UniversityofVermontBurlington,Vermont,USA. Werner,R.A.2002.Effectofecosystemdisturbanceondiversityofbarkandwoodboring beetles.USDAForestServiceResearchPaperPNW546,Portland,Oregon,USA. Werner,R.A.,andK.E.Post.1985.Effectsofwoodboringinsectsandbarkbeetleson survivalandgrowthofburnedwhitespruce.Pages1416 in EarlyresultsoftheRosieCreekfire researchproject1984.AgriculturalExperimentStationPublication852,UniversityofAlaska, Fairbanks,Alaska,USA.

ThisSeptember242006versionreplacesallearlierversions. 92

West,J.D.,andJ.M.Speirs.1959.The19561957invasionofthreetoedwoodpeckers. WilsonBulletin71:348363. Whitford,T.1991.DefiningoldgrowthDouglasfirforestsofcentralMontanaanduseofthe NorthernGoshawk( Accipiter gentilis )asamanagement.Master’sthesis,Universityof Montana,Missoula,Montana,USA. Wickman,B.E.1965.BlackbackedThreetoedWoodpecker, Picoides arcticus ,predationon Monochamus oregonensis (Coleoptera:Cerambycidae).PanpacificEntomology41:162164. Winter,J.1974.ThedistributionoftheflammulatedowlinCalifornia.WesternBirds5:2543. Wouldenberg,A.M.van.2003.Estimatingflammulatedowlpopulationtrendsatthenorthern rangelimit.BirdTrendsWinter:4547. Woudenberg,A.M.van,andD.A.Christie.2000.Flammulatedowlhabitatmodelvalidation fortheMerritandKamloopsForestDistricts.Proceedingsofaconferenceonthebiologyand managementofspeciesandhabitatsatrisk,Kamloops,BritishColumbia.BritishColumbia MinistryofEnvironment,LandsandParks,Victoria,BritishColumbia,Canada. Wright,V.1996.Multiscaleanalysisofflammulatedowlhabitatuse:owldistribution,habitat management,andconservation.Master’sthesis,UniversityofMontana,Missoula,Montana, USA. Yunick,R.P.1985.Areviewofrecentirruptionsoftheblackbackedwoodpeckerandthree toedwoodpeckerineasternNorthAmerica.JournalofFieldOrnithology56:138152. Zack,A.C.1994.EarlysuccessioninwesternhemlockhabitattypesofnorthernIdaho. Dissertation,UniversityofIdaho,Moscow,Idaho,USA. Zwickel,F.C.,andM.A.Schroeder.2003.GrouseoftheLewisandClarkexpedition. NorthwestScience84:119.

ThisSeptember242006versionreplacesallearlierversions. 93

Appendix 1

Estimating Minimum Viable Population Numbers Minimumviablepopulationnumbershaverarelybeenestimateddirectly(SaetherandEngen 2002)or,inameaningfulmanner,bytheuseofquantitativemodels(BeissingerandWestphal 1998,BeissingerandMcCullough2002,Rallsetal.2002,Shafferetal.2002,Perryetal.2004, andothers). Theinabilitytoestimateorusequantitativemodelstoestimateminimumviablepopulation numbersisbasedonthreeprimaryfactors. 1.Thequalityofavailabledemographic,population,orspatiallyexplicitdata,oftenpoorand shortterminnature,resultsinlargesamplingerrorsandwidevarianceinmodelparameters (BeissingerandWestphal1998,Morrisetal.1999,andothers).Therefore,minimumviable populationnumbersbasedonsuchmodelsexhibitbothawidevarianceandlackofreality (LudwigandWalters2002). 2.Stochasticity(ShafferandSamson1985),eitherdemographicorenvironmental,issuggested toinfluencethedynamicsofsmallpopulations.Demographicorenvironmentalstochasticity,as describedlater,aredifficulttomodel(BeissingerandWestphal1998).Moreover,although regularlyincorporatedintopopulationprojectionmodels,empiricalevidenceastotheroleof eitherdemographicorenvironmentalstochasticityinpopulationextinctionismissing.Very importantisthefactthatthedecisiontoincoporatestochasticityinapopulationprojectionmodel canhavealargeinfluenceonthesizeofsubsequentandmodelbasedminimumpopulationsize projections(GroomandRascal1998). 3.Eveninsimplepopulationprojectionmodels,smallvariationinkeymodelparameterscan leadtolargevariationinestimatesofminimumviablepopulationnumbers(Ginzburgetal. 1990).Clearly,eveninconsideringtheobservererrorincollectingdata,"wemusteitherknow thereisverylittleobservationerroror,morereleastically,havesomeestimateofthissourceof variation"(Morrisetal.1999:67). Thefollowingisabriefreviewofthepublishedreferencesthatfocusonthethreeprimary limitationsintheuseofanyquantitativemodeltoestimateminimumviablepopluation numbers—1)modelsandlackofdata,2)incoporatingstochasicity,and3)theinfluenceofsmall changesininputvariablestoaminimumviablepopulationnumbermodel.Thisisnotintended tobeacompletereviewoftheliteraturenoradetailedcritique. Models Modelsarecommonapproachestoestimateminimumviablepopulationnumbersincluding demographic(simpledeterministicsinglepopulation,stochasticsinglepopulationmodels,and metapopulation),genetic,andalgometricscaling.

ThisSeptember242006versionreplacesallearlierversions. 94

Demographic models .BeissingerandWestphal(1998)providedconciseandclearguidelinesto enableuseofdeterministicsinglepopulationmodels,stochasticsinglepopulationmodels,and metapopulationmodels(Table1,page824)toestimateminimumviablepopulationnumbers. Ingeneral,deterministicsinglepopulationmodelsareusuallybasedonamatrixwhichpermits calculatingchangeovertimeforaparticularageorstructureclass(BeissingerandWestphal 1998:821).DatarequiredfordeterministicsinglepopulationmodelsBeissingerandWestphal 1998:824,Table1)includeageorstagestructure,ageoffirstbreeding,meanfecundityforeach ageorstage,andmeansurvivalforeachageorstage. Demographicstochasticityasacomponentonaminimumviablepopulationmodelincludesthe assumptionthatdemographicrateschangerandomlyateachtimestep.Forastochasticsingle populationmodel,demographicdatarequiredincludeageorstagestructure,ageoffirst breeding,meanfecundityforeachageorstage,meansurvivalforeachageorstage,variancein fecundity,varianceinsurvival,carryingcapacityanddensitydependence(Beissingerand Westphal1998:824,Table1). Environmentalstochasticityinconceptiswhenanenvironmentalfactorsuchasweather,fire, andsoonthatmayhaveanunpredictableorrandomeffectonapopulation.Whenincludedina singlepopulationstochasticsimulationmodel,demographicandenvironmentaldatathatmustbe includedareageorstagestructure,ageoffirstbreeding,meanfecundityforeachageorstage, meansurvivalforeachageorstage,varianceinfecundity,varianceinsurvival,carryingcapacity anddensitydependence,varianceincarryingcapacity,frequencyandmagnitudesof catastrophes,covarianceindemographicrates,andspatialcovarianceinrates(Beissingerand Westphal1998:824,Table1). . Ametapopulationisdescribedbythefollowingconditions:"therehastobediscretehabitat patcheswhichare,orcanbe,inhabitedbybreedingsubpopulations"(ElmhagenandAngerbjorn 2001:89)where 1)allpatchspecificsubpopulationshavearisktoextinction, 2)emptyhabitatpatchescanbecolonized, 3)populationdynamicsofpatchspecificsubpopulationshavetobe asynchronous,and 4)simultaneousextinctionofallpatchspecificsubpopulationsisunlikely. Forametapopulationmodel(BeissingerandWestphal1998:824,Table1),demographicand landscapedataarerequired.Demographicdataincludeageorstagestructure,ageoffirst breeding,meanfecundityforeachageorstage,meansurvivalforeachageorstage,variancein fecundity,varianceinsurvival,carryingcapacityanddensitydependence,varianceincarrying capacity,frequencyandmagnitudesofcatastrophes,covarianceindemographicrates,andspatial covarianceinrates.Landscapedataincludepatchtypes,distancebetweenpatches,andareaof patches.

ThisSeptember242006versionreplacesallearlierversions. 95

Iftheametapopulationmodelisspatiallyexplicit,thenspacespecificdemographic,landscape, anddispersalinformationisrequired(BeissingerandWestphal1998:824,Table1).Required demographicinformationincludesageorstagestructure,ageoffirstbreeding,meanfecundity foreachageorstage,meansurvivalforeachageorstage,varianceinfecundity,variancein survival,carryingcapacityanddensitydependence,varianceincarryingcapacity,frequencyand magnitudesofcatastrophes,covarianceindemographicrates,andspatialcovarianceinrates. Requiredlandscapedataincludepatchtypes,distancebetweenpatches,andareaofpatches. Requireddspersaldataincludenumberindispersingageclassorclasses,timingofdispersal, dispersalrelatedmortality,numberimmigrating,andmovementrules. Afurthercomplicationinestimatingaminimumviablenumberforametapopulationisthe interactionofthespatiallyexplicitfactors(ageorstagestructure,ageoffirstbreeding,mean fecundityforeachageorstage,meansurvivalforeachageorstage,varianceinfecundity, varianceinsurvival,carryingcapacityanddensitydependence,varianceincarryingcapacity, frequencyandmagnitudesofcatastrophes,covarianceindemographicrates,andspatial covarianceinrates),thelandscape(patchtypes,distancebetweenpatches,andareaofpatches), dispersal(numberdispersingageclassandtimingofdispersal,dispersalrelatedmortality, numberimmigrating,andmovementrules)andhabitatchange(AmarasekareandPossingham 2001). Availablemetapopulationmodelsdonotconsidereffectsofhabitatchangewhetherinhabitat quality,alterationtohabitatquality,changesininterpatchdistances,vegetationsuccession,and otherenvironmentalvariablesthatmightinfluenceestimatingminimumviablepopulation numbers,makingtheirapplicationunrealistic. Thelackofqualityofavailabledemographic,population,andorspatiallyexplicitdata(problem 1inestimatingminimumviablepopulationnumbers)andhowsmallvariationinkeymodel parameterscanleadtolargevariationinestimatesofminimumviablepopulationnumbers (problem3inestimatingminimumviablepopulationnumbers)isillustratedinacasehistory— thepanther,anendangeredspecies. Maehretal.(2002)desribefourwellintendedmodelbasedconservationeffortstoestimate eitherthetimetroextinctionortheestimatedFloridapanther( Puma concolor coryi ) population numberattheendofanarbitarytimeperiod(100yearsinthiscase). The1989modelbasedeffortsuggestedFloridapantherpopulationextinctionin23.1years.The 1992modelprojectionpredictedFloridapantherpopulationextinctionin43.7years.Asecond 1992"consensus"modelbasedestimatewastohave47.4Floridapantherstobealiveattheend ofthe100years. In1999,four"experts"representingeitherastateconservationagency,afederalconservation agency,oruniversityandallwithaccesstopeerreviewedprofessionalsocietyliteraturewere askedforinputtoestablishrequiredminimumviablepopulationmodelparameters(Maehretal. 2002).Thefour"experts,"usedVORTEX,areadilyavailableandcommercialsoftware,to estimateeithertimeofextinctionornumberofFloridapantherspredictedtobealiveattheend

ThisSeptember242006versionreplacesallearlierversions. 96 ofa100yearsimulationinterval.Thisfour"expert"andmodelbasedeffortsuggested65.7 panthersattheendof100years. Overall,thefour"quantitative"modelbasedestimatesfortheFloridapantherpopulationrange fromextinctionin23.1yearstohaving65.7panthersattheendof100years.Differencesinthe fourminimumviablepopulationnumberestimates"wereprimarilyduetotheuseoffewer guesses(byexperts)inmodelinputs"(Maehretal.2002:305).Otherexamplesexistasto1) theimportanceoflongtermdata(seealsoMorrisetal.1999:pages15,16,and29:" We recommend ten censuses be viewed as the absolute minimum "(theauthor'sitalics)and,2)the futilityinuseof"expert"opinionasthebasistoestimateminimumviablepopulationnumbers. Stochasticity(ShafferandSamson1985),eitherdemographicorenvironmental,issuggestedto influencethedynamicsofsmallpopulationsand,therefore,theirtimetoextinction. In1985,ShafferandSamsonintroducedstochasticityasanelementtoincludeinestimatinga viablepopulationnumber.Thiscontributioninthe American Naturalist wasbasedona classroomexercise.Theintentwastwofold: 1)tocorrectminimumviablepopulationforthegrizzlybearinShaffer's1981(1981) seminalarticleonminimumviabilitypopulations(i.e.,10bears);and 2)tosuggeststochasticitywasaconcepttoconsiderinunderstandingpopulation viability. Thearticleaspublishedwasnotintendedtobethebasisforaspeciesrecoveryplanasrequired undertheEndangeredSpeciesAct(1973). Arecentreviewofthepeerreviewedprofessionalsocietyliteraturefoundnopublishedstudy withempiricalsupportforeitherdemographicorenvironmentalstochasticityasafactorin causinganextinctionofaspecies(models,yes,butnotempiricalevidence). Severalwelldocumentstudiesdoclearlydemonstratethatenvironmentalanddemographic stochasticitydoplayasignificantroleatedgesofspeciesdistributions.Rodriguez(2002)ina reviewofNorthAmericanbirdpopulationdeclinesdemonstratesthat,giventhenormalbell shapedpatterninabundanceforspecies(i.e.,commoninthecenterofthedistribution,morerare ontheperiphery),conservation(coreorotherconservationarea)should 1)focusonthecenterofaspecies'distribution(wherethespeciesisabundant),and 2)populationsneartheperipheryoftheirrespectivedistributionsareexpectedto"wink" outandingiventheinfluencesofweatherandotherfactors(seeBrown1995,Figure4, page56forfurtherinformation). Wilcoveetal.(1998)summarizedfactorsthatplacespeciesatriskthatarelistedunderthe EndangeredSpeciesAct(1973)intheUnitedStates.Habitatloss,invasivespecies,and

ThisSeptember242006versionreplacesallearlierversions. 97 human/recreationactivitiesaretheprimaryfactors.Evidencefortheroleofeitherdemographic orenvironmentalcausinganextinctionofaspeciesisabsent. Modelbasedestimatesthatincludeeitherdemographicorenvironmentaldatahouldbeviewed withconsiderablecautionuntilfield/empiricalevidenceisprovidedastotheireffectonspecies extinction.Empiricalvalidationofmodelsthatincludestochasticitytoestimateminimumviable populationnumberswouldrequiretrackingscoresofreplicatepopulationsthatexperience similarconditionsandcomparingpredictedtoobservedfrequenciesofextinction(Beissinger andWestphal1998). Genetic models. Therecommendationofaneteffectivepopulationequalto50individualsis regarded"asageneralminimumrequirementforshorttermconservation"(AllendorfandRyman 2002:76).Theseauthorspointout,however,thatgenerationintervalisanimportant consideration. Anisolatedneteffectivepopulationof50withagenerationintervalofmorethantwentyyears willmaintain95%ofinitialheterozygosity after100years.Anisolatedpopulationwitha generationlengthoftwoyearswillrequireaneteffectivepopulationofupwardsto600 individuals(Figure4.1,page66,AllendorfandRyman2002)inordertomaintain95%ofinitial heterozygosity after100years. Thecurrentdisagreementamonggeneticistsregardingsizeofneteffectivepopulationinorderto maintaingeneticvariationwillmostlikelycontinue(AllendorfandRyman2002).Inthe interim,a"global"populationwiththeopportunitytoexchangegeneticmaterialof500to1,000 individualscapableofbreedingisconsideredalongtermgoal(page76).Estimatesofshort termpopulationgeneticbasedminimumviablepopulationgoalsareincreasinglyfew,giventhe longternnatureofgeneticchangeandtheabilityofasingleimmigranttoapopulationtoreduce theeffectsofinbreedinginsmallpopulations. Allometric scaling .Manyreportsofthestrongrelationshipofspeciesspecificbodymassand homerange/territorysizeareavailable,e.g.,Holling1992,Brown1995,andothers;and,in general,thisisreferredtoasallometricscaling. Insimpleterms,smallbodiedspecieshavesmallhomerangeswhilelargebodiedspeciestendto havelargehomeranges.SeveralauthorsincludingDinizFilhoetal.(2005)showhowthe allometricrelationshiprelatestoconservation,specificallyformammaliancarnivores. SilvaandDowning(1994)wereamongthefirstconservationiststoprovidespecificconservation recommendationsusingallometricscalingandtheminimaldensitiesrequiredtoconservespecies (mammaliancarnivoresinthiscase). Smallwood(2001:103),inherreviewof83publishedstudiesofmammaliancarnivores,stated herobjectivesamongotherstobe1)"identifytherangeofstudyareaswithinwhichintra specificabundanceestimatesrepresentthetypicalpopulation,"2)"estimatethesizeof populationcharacteristicofeachspecies,"and3)"predicttheareasofhighqualityhabitatneeded

ThisSeptember242006versionreplacesallearlierversions. 98 tosupportpopulationsofterrestrialmammaliancarnivores"usingtheallometricrelationships (e.g.,minimumspaceoccupiedbyapopulation,bodysize,homerangesize,andsoon). Aspublished,Table2inSmallwood(2000)providesthebasistoestimatethethresholdareato conservemammaliancarnivores.This,inturn,couldbeusedtoprovideanestimateofminimum viablenumbersforspeciesofmammaliancarnivoreinNorthAmerica,consideringthefield basedandspeciesspecificestimatesofhomerangesize,. Real studies

Asecondandnonmodelapproachtodeterminineminimumviablepopulationnumbersisto considerrealstudies.Unfortunately,fewrealstudiesexistastothecausesofextinction (BeissingerandWestphal1998,Perryetal.2004). Anumberofwidelycitedcasehistorieshaveshownsmallpopulationsdonotnecessarilyleadto extinction,e.g.,thenorthernelephantseal( Mirounga angustirostris )recoveredfromabout20 individualstoapopulationofatleast30,000individualsinaperiodof75years(Bonnelland Selander1974).Instudiesofislandbirds,JonesandDiamond(1974)haveshownisolated populationswithamedianoflessthan10pairshavesurvivedforupwardsto80years.Bird populationsof200areknowntohaveahighprobabilityofsurvivalforasimilar(75year) interval(Thomas1990). Thomas(1990:327)inanarticle What do real population dynamics tell us about minimum viable population sizes? suggested,"Whenpopulationsshowaverageorlowpopulation variabilityandinhabitstableenvironments,geometricmeanvaluesof500maybeadequatefor longtermpersistence"and100forshorttermpersistenceforalargebodiedspecieswith relativelystablebirthanddeathrates.Suchestimatesofminimumviablepopulationnumberare similartothatprovidedbyWeilgus(2002)forthelargebodiedgrizzlybear( Ursus arctos ) (i.e.,aminimumnumberof250),basedonacompilationofsixdifferentgrizzlybearstudies. Suchcollectivereviewsofstudiesmayrepresentageneralruleofthumb,i.e.,aglobal populationforlargebodiedspeciesof>250isadequatetomaintainpersistence. Forsmallbodiedspecies,basedonrealstudies,andatleastintheshortterm,e.g.,100years, numbersof=or>1,000(AllendorfandRyman2002andothers)appeartoberequiredto maintainaglobalpopulationalthoughpopulationswithmuchsmallernumbershavebeenknown torecover. . Factors to consider 1.Nearlyallavailablemodelbasedestimatesminimumviablepopulationnumbersdosoto providethatnumberneededtomaintaina"global"population.Aglobalpopulationiscomprised ofallindividualscapabletoreproduceandindependentofanyadministrativeorotherborder. Publiclands,includingthosemanagedbytheForestService,mayonlyincluderelativelysmall areasofhabitatimportanttoaparticularspeciesandthatprovidefortheglobalpopulation.In otherwords,publiclandsmaycontributewithintheircapabilitytothatrequiredtomaintaina

ThisSeptember242006versionreplacesallearlierversions. 99 globalpopulation(250to>1,000dependingonbodysizeandlifehistorytraits),butpubliclands cannotbeexpectedtosupportaglobalpopulationforeachandeveryspecies. 2.Anothermajorchallengeinpredictingaminimumviablepopulationnumberisthat "predictingthefutureisdifficult,especiallyifthepredictionconcernsalongtimespan,say100 years"and"suchpredictionstypicallyassumeaconstantenvironmentorarebasedonwild guessesonhowmuchtheenvironmentmightchange"(Hanski2002:100). LudwigandWalters(2002:516)comparedmodelbasedestimationofaminimumviable populationnumbertomodelbasedweatherforecasting,somethingofgreatpracticalimportance, "yetwemustrecognizethattheyarenotveryaccurateandcannotprobablybemademore accurate." 3.Clearly,"Modelshavebeenusedtodiagnosecausesofpopulationdecline(Crouseetal. 1987,Doaketal.1994,andothers)butneedtobeinterpreted very cautiously "(Beissingerand Westphal1998:834).Yetcurrent"demographicPVAs(populationviabilityanalyses)arenot currentlycapableofforecastingwhenspeciesgoextinct"(BeissingerandWestphal1998:836). Suchmodelscannotbesubstitutedforfieldstudiesorfortheconsiderationofapproachesthat focusonhabitat—theprimaryfactorinthepersistenceofspecies(Boyce1992). Inthenearly25yearsthescienceofestimatingviablepopulationshasexisted,quantitative models(andtheirmodelbasednumericalestimates)havemadefewmeaningfulcontributionsto thescienceofpopulationviabilityandclearlyshouldbereplacedbywidelyagreedtoand habitatbasedecologicalprinciplesuntillongtermdemographic,population,andgenetic informationisavailable(Shafferetal.2002). Literature Cited Allendorf,F.W.,andN.Ryman.2002.Theroleofgeneticsinpopulationviability.Pages5085 in Populationviabilityanalysis.S.R.Beissinger,andD.R.McCullough,editors.Universityof ChicagoPress,Chicago,Illinois,USA. Amarasekare,P,andH.Possingham.2001.Patchdynamicsandmetapopulationtheory:the caseofsuccessionalspecies.Journaloftheoreticalbiology209:33344. Beissinger,S.R.,andD.R.McCullough.Populationviabilityanalysis.UniversityofChicago Press,Chicago,Illinois,USA. Beissinger,S.R.,andM.I.Westphal.1998.Ontheuseofdemographicmodelsofpopulation viabilityinendangeredspeciesmanagement.JournalofWildlifeManagement62:821841. Bonnel,M.L.,andR.K.Selander.1974.Elephantseals:geneticvariationandnearextinction. Science184:908909. Boyce,M.S.1992.Populationviabilityanalysis.AnnualReviewofEcologyandSystematics 23:481506.

ThisSeptember242006versionreplacesallearlierversions. 100

Brown,J.H.1995.Macroecology.UniversityofChicagoPress,Chicago,Illinois,USA. Crowder,L.B.,D.T.Crouse,S.S.Heppell,andT.H.Martin.1994.Astagebasedpopulation modelforloggerheadseaandimplicationsforconservation.Ecology68:14121423. DinizFilho,J.A.F.,P.Carvalho,L.M.Bini,andN.M.Torres.2005.Macroecology, geographicrangesizebodysizerelationshipandminimumviablepopulationanalysisforNew Worldcarnivora.ActaOecologica27:2530. Doak,D.,P.Kareiva,andB.Klepetka.1994.Modelingpopulationviabilityforthe tortiseinthewesternMojaveDesert.EcologicalApplications4:446460. Elmhagen,B.,andA.Angerbjorn.2001.Theapplicabilityofmetapopulationtheorytolarge .Oikos94:89100. Ginzburg,L.R.,S.Ferson,andH.R.Akcakaya.1990.Reconstructabilityofdensity dependenceandtheconservativeassessmentofextinctionrisks.ConservationBiology4:6370. Groom,M.J.,andM.A.Pascal.1998.Theanalysisofpopulationpersistence:anoutlookon thepracticeofviabilityanalysis.Pages427inP.L.Fiedler,andP.M.Kareiva,editors. ConservationBiology.Chapman&Hall,NewYork,NewYork,USA. Hanski,I.2002.Metapopulationsofanimalsinhighlyfragmentedlandscapesandpopulation viabilityanalysis.Pages86108 in Populationviabilityanalysis.S.R.Beissinger,andD.R. McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Holling,C.S.1992.Crossscalemorphology,geometry,anddynamicsofecosystems. EcologicalMonographs62:447502. Jones,H.L.,andJ.M.Diamond.1976.Shorttimebasestudiesofturnoverinbreedingbirdson theCaliforniaChannel.Condor78:526549. Ludwig,D.,andC.J.Walters.2002.Fittingpopulationviabilityanalysisintoadaptive management.Pages511520 in Populationviabilityanalysis.S.R.Beissinger,andD.R. McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Maehr,D.S.,R.C.Lacey,E.D.Land,O.L.BassJr.,andT.S.Hoctor.2002.Evolutionof populationviabilityassessmentsfortheFloridapanther:amultiperspectiveapproach.Pages 282311 in Populationviabilityanalysis.S.R.Beissinger,andD.R.McCullough,editors. UniversityofChicagoPress,Chicago,Illinois,USA. Morris,W.,D.Doak,M.Groom,P.Kareiva,J.Fieberg,L.Gerber,P.Murphy,andD.Thomson. 1999.Apracticalhandbookforpopulationviabilityanalysis.TheNatureConservancy, Arlington,Virginia,USA.

ThisSeptember242006versionreplacesallearlierversions. 101

Perry,M.Z.,S.R.Beissinger,S.H.Newman,E.B.Burkett,andT.D.Williams.2004.Applying thedecliningpopulationparadigm:diagnosingcausesoflowreproductivesuccessinMarbled Murrelets.ConservationBiology18:10881098.

Ralls,K.,S.R.Beissinger,andJ.F.Cochrane.2002.Guidelinesforusingpopulationviability analysisinendangeredspeciesmanagement.Pages521550 in Populationviabilityanalysis.S. R.Beissinger,andD.R.McCullough,editors.UniversityofChicagoPress,Chicago,Illinois, USA. Rodriguez,JP.2002.RangecontractionindecliningNorthAmericanbirdpopulations. EcologicalApplications12:238248 Sather,B.,andS.Engen.2002.Includinguncertaintiesinpopulationviabilityanalysisusing populationpredictionintervals.Pages191212 in Populationviabilityanalysis.S.R. Beissinger,andD.R.McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Shaffer,M.L.1981.Minimumpopulationsizesforspeciesconservation.BioScience31:131 134. Shaffer,M.L.,andF.B.Samson.1985.Populationsizeandextinction:anoteondetermining criticalpopulationsize.AmericanNaturalist125:144152. Shaffer,M.,L.H.Watchman,W.J.SnapeIII,andI.K.Lathis.2002.Populationviability analysisandconservationpolicy.Pages123142 in Populationviabilityanalysis.S.R. Beissinger,andD.R.McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Silva,M.,andJ.Downing.1994.Allometricscalingofminimalmammaldensities. ConservationBiology8:732743. Smallwood,K.S.2001.Scaledomainsofabundanceamongstspeciesofmammalian Carnivora.EnvironmentalManagement26:102111. Thomas,C.D.1990.Whatdorealpopulationstellusaboutminimumviablepopulationsizes. ConservationBiology4:324327. Wielgus,RB.2002.Minimumviablepopulationandreservesizesfornaturallyregulated grizzlybearsinBritishColumbia.BiologicalConservation106:381388.

ThisSeptember242006versionreplacesallearlierversions. 102

Appendix 2

Bootstrap Approach

Bootstrap Calculation of Confidence Intervals for the Estimates of Means by Stratum Andy Leach, PhD Inventory and Monitoring Institute Fort Collins, Colorado

What is Bootstrap? Bootstrap is a nonparametric method that can be used for calculating the confidence of estimates.Beingnonparametric meansthatthebootstrap methoddoesnot makeassumptions abouttheunderlyingdistributionofthedatasuchasindependenceandnormality—twocommon assumptionsofothertechniquessuchassimplelinearregression.Thisisparticularlyusefulin plot data such as FIA where the correlation structure among plots and subplots is very complicated.

How The Bootstrap Works Thebootstrapworksbyessentiallysimulatingthevariabilityofthedata.Thatistosayitcreates randomrealizationsofthedatabysamplingthedatawithreplacement.ForFIAdatasuchas thoseplotsinstalledontheIdahoPanhandleNationalForestwheretheplotdesignconsistedof4 subplotsperplot,thismeansselectingplotsrandomlywithreplacement,andthenwithineach plotselectingfoursubplotsrandomlywithreplacement(e.g.itispossibletoselectthesameplot morethanonceandwithineachplotitispossibletoselectthesamesubplotmorethanonce).If aplotwasdesignedtohave4subplotsbutonlythreewereactuallymeasuredthenthefourthplot isconsideredamissingvalueandincludedintheresampling.Forplotdata,therearetwo componentsofvariabilitythatcontributetotheuncertaintyoftheestimateofthestatisticof interest:withinplotvariabilityandbetweenplotvariability.Togetthebestconfidenceinterval forthestatisticofinterestitisimportanttosimulatebothcomponentsofvariability.Thatiswhy thesubplotsareincludedintherandomrealizationprocess,andnotjustthemeanofthesubplot values. Foreachrandomrealizationofthedatathestatisticofinterestiscalculated(inmanycasesthe statisticisthemean,butitcouldbeanything).Manyrandomrealizations(typicallyontheorder of 40,000) produce many point estimates of the statistic of interest. These are ordered from smallest to largest. The 100*(α /2) th percentile is the 100*(1α)% confidence interval lower boundandthe100*(1α/2) th percentileisthe100*(1α)%confidenceintervalupperbound.In thiscontextαisoneminustheconfidencelevel(sofora90%confidenceintervalα=0.10).For example,if40,000bootstrapiterationswereperformedanda90%confidenceintervalisdesired

ThisSeptember242006versionreplacesallearlierversions. 103 thelowerboundisthe2,000 th largestpointestimateandtheupperboundisthe38,000 th largest point estimate (40,000*(0.1/2) and 40,000*(10.1/2) respectively). The standard error of the estimateofthestatisticofinterestisalsocalculated.Itisthestandarddeviationoftheestimates ofthestatisticsofinterestfromthebootstrapiterations. When strata are introduced, the algorithm changes only slightly. Suppose there are k strata. Each plot is assigned to a stratum. This means that all the subplots belonging to a plot are assigned to the same stratum. Assigning the stratum at the plot level is necessary to accommodatethecalculationofthestatisticofinterest.Thestatisticofinterestiscalculatedona perplotbasistocorrectlysimulatethevariabilitystructureofthedata:thesubplotisasubsample of the plot (primary sampling unit). For each bootstrap iteration the statistic of interest is calculatedforeachstratumusingonlytheplotsfromtherandomrealizationthatfallwithinthat stratum.Thusabootstrapof40,000iterationswillresultinksetsof40,000pointestimatesof thestatisticofinterest.Eachoftheseisthenorderedfromsmallesttolargestandtheappropriate percentiles become the lower and upper bound for the confidence interval of the statistic of interestforeachofthestrata.Thestandarderroriscalculatedsimilarlyforeachstratum. Forprecisedetailsofhowthebootstrapisperformedrefertothesectionofthisdocumentlabeled BootstrapAlgorithmDetails.

Interpreting The Results The bootstrap algorithm results in a standard error, confidence interval lower bound, point estimate,andconfidenceintervalupperboundforthestatisticofinterestandforeachstratum. Note that the point estimate of the statistic of interest is just the statistic calculated from the dataset—nobootstrapiterationsarerequiredto generatethis.Theproperinterpretationofthe confidenceintervalis“ifanewrandomrealizationofthedatawascollecteditsstatisticwould havea1αprobabilityofbeingcontainedbytheinterval.”Orinotherwordiftheexperiment wasperformed100moreitisexpectedthatthepointestimatewillbecontainedintheinterval 100*(1α)%ofthetime. The standard error is also a useful measure of the precision of the estimate. Essentially the standarderroristhestandarddeviationoftheestimateofthemean.Clearly,whenthestandard error is large the precision in the estimate of the statistic of interest is not very good. The standarderrorcanalsobeusedtoformacrudeapproximationoftheconfidenceinterval.Itcan bereasonablyassumedthatthetruevalueoftheparameterfallswithin+/twostandarderrorsof the point estimate. This is not necessary in the case however because bootstrap confidence intervalsaremuchbetter.

Bootstrap Algorithm Details

ThisSeptember242006versionreplacesallearlierversions. 104

Thisisaprecisedescriptionofhowthebootstrapalgorithmisperformed.Let nbethenumber ofobservedplotsand mibethenumberofsubplotobservationsforthe ithplot.Thisresultsin n mi thesequenceofobservations {{yij } } .Alsoforanystratification,let kbethenumberofstrata. j=1 i=1 n * n 1. Resample nplotsfrom {yi }i=1 ,withreplacementtoobtain {yi }i=1 . 2. Resample mi units with replacement within the ith plot obtained in step1 to get ** ** ** ** yi = (yi1 , yi2 ,Κ , y * ).Usuallyforplotdatathereshouldbeafixednumberofsubplots imi

perplot,e.g. mi = m forall i.However,someofthesevaluesmaybemissingsothere * th mightonlybe 0≤ mi ≤ mi subplotsforthe i bootstrappedplot. n 3. Repeatstep2forall {yi }i=1 . 4. Let θˆ ** = θˆ(y ** , y ** ,Κ , y ** ,Κ , y ** ,Κ , y ** )bethestatisticofinterestforstratum S.For S 11 12 1m1 n1 nmn this study the statistic of interest is the mean: −1 * **  n   mi y  θˆ ()y ** , y ** ,Κ , y ** ,Κ , y ** ,Κ , y ** =  I ()y* ∈ S   ij  where I( ) is the S 11 12 1m1 n1 nmn ∑ i  ∑∑ *  i=1 * j=1 m    yi ∈S i  * * * * indicatorfunction,e.g. I (yi ∈ S) = 1if yi ∈ S and I (yi ∈ S) = 0 if yi ∉ S .Allsubplots * ** fromasingleplotfallinthesamestratum,e.g.if yi ∈ S then yij ∈ S for j = 1,...,mi . 5. Repeatstep4forallstrata S = ,1 Κ ,k . ˆ ** ˆ ** ˆ ** 6. Repeat steps 15 a large number of times, B = 40000 , to obtain θ S1 ,θ S 2 ,Κ ,θ SB for S = ,1 Κ ,k . To obtain the 100*(1−α )% confidence interval for strata S, order ˆ ** ˆ ** ˆ ** θ S1 ,θ S 2 ,Κ ,θ SB from smallest to largest. The 100*(1−α )% confidence interval lower bound is the 100*(α 2/ ) th percentile and the 100*(1−α 2/ )th percentile is the 100*(1−α )% confidenceintervalupperboundfortheestimateinstratum S.Toobtain ˆ ** ˆ ** ˆ ** the standard error simply calculate the standard deviation of θ S1 ,θ S 2 ,Κ ,θ SB , namely 2 1 B  1 B  SE = θˆ ** − θˆ **  .Computeconfidenceintervalsandstandarderrorsin S ∑ Si ∑ Sj  B −1 i=1  B j =1  thismannerforallstrata S = ,1 Κ ,k .

ThisSeptember242006versionreplacesallearlierversions. 105

Appendix 3

Bootstrap Results

Thespeciesandareaspecifichabitatestimatesthatfollowareestimatedbythebootstrap methodology.TheStandardError(SE)describesthevariabilityoftheestimateofthemean. Theintensiveresampling(orbootstrapmethod)forevaluatingthepropertiesofestimatesis basedon40,000resamples.Theinterpretationisthatoneshouldbeconfidentthatthemean valueforanestimatewillbewithinplusorminusoneSE.

Regionalmodels

Northern goshawk nest habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 9.59040 0.08836 0.10461 0.12149 238 2210 Deerlodge 03 Bitterroot 12.00794 0.09493 0.11801 0.14160 154 1130 04 Clearwater 9.05874 0.12290 0.14420 0.16598 232 1588 05 Custer 10.91583 0.10714 0.13000 0.15378 159 1200 08 Flathead 28.32348 0.02580 0.04571 0.06862 25 525 (part) 10 Gallatin 11.38808 0.07038 0.08652 0.10277 235 2306 11 Helena 14.52303 0.06343 0.08258 0.10303 106 1115 12 Idaho 16.35541 0.09154 0.12374 0.15813 93 695 Panhandle 14 Kootenai 9.29740 0.10043 0.11837 0.13700 308 2366 15 Lewis and 12.47791 0.08270 0.10337 0.12500 142 1335 Clark 16 Lolo (part) 9.72691 0.11030 0.13027 0.15189 233 1635 17 Nezperce 11.20618 0.09047 0.11038 0.13121 139 1232 NRP NRP 4.18360 0.11041 0.11844 0.12682 1321 10225 MRP MRP 6.07499 0.09745 0.10804 0.11903 612 5472 SRP SRP 13.12856 0.05575 0.07077 0.08609 131 1640 R1 R1 3.35883 0.10478 0.11064 0.11716 2064 17337

Northern goshawk pfa habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 7.78844 0.12586 0.14402 0.16252 327 2210 Deerlodge 03 Bitterroot 11.84795 0.10165 0.12599 0.15084 163 1130 04 Clearwater 8.75544 0.13054 0.15239 0.17410 246 1588 05 Custer 11.73289 0.10047 0.12416 0.14836 154 1200 08 Flathead 23.30993 0.04615 0.07238 0.10107 40 525 (part) 10 Gallatin 12.52006 0.05466 0.06869 0.08280 193 2306 11 Helena 14.37468 0.06710 0.08707 0.10820 110 1115 12 Idaho 13.55377 0.12727 0.16258 0.20000 121 695 Panhandle

ThisSeptember242006versionreplacesallearlierversions. 106

14 Kootenai 8.90270 0.10944 0.12812 0.14727 333 2366 15 Lewis and 10.81954 0.10947 0.13258 0.15679 180 1335 Clark 16 Lolo (part) 9.05690 0.12000 0.14067 0.16217 253 1635 17 Nezperce 10.18049 0.11649 0.13961 0.16319 176 1232 NRP NRP 4.23751 0.11150 0.11981 0.12813 1342 10225 MRP MRP 4.94870 0.13122 0.14259 0.15433 804 5472 SRP SRP 12.37694 0.06603 0.08236 0.09939 150 1640 R1 R1 3.12264 0.11731 0.12346 0.12990 2296 17337

Northern goshawk forage habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 4.17469 0.37494 0.40262 0.43043 917 2210 Deerlodge 03 Bitterroot 6.86116 0.29796 0.33540 0.37388 451 1130 04 Clearwater 4.72831 0.36381 0.39483 0.42540 641 1588 05 Custer 5.78996 0.33391 0.36916 0.40404 453 1200 08 Flathead 14.03394 0.15779 0.20380 0.25263 119 525 (part) 10 Gallatin 5.64527 0.27555 0.30391 0.33204 811 2306 11 Helena 8.11064 0.23855 0.27468 0.31214 328 1115 12 Idaho 7.54440 0.37894 0.43309 0.48652 328 695 Panhandle 14 Kootenai 4.81926 0.34071 0.36996 0.39911 965 2366 15 Lewis and 5.94325 0.34733 0.38501 0.42274 525 1335 Clark 16 Lolo (part) 4.85386 0.37931 0.41223 0.44498 724 1635 17 Nezperce 5.62924 0.33259 0.36688 0.40079 469 1232 NRP NRP 2.23967 0.34867 0.36181 0.37496 4045 10225 MRP MRP 2.68908 0.37694 0.39414 0.41176 2239 5472 SRP SRP 7.10589 0.22295 0.25198 0.28151 447 1640 R1 R1 1.67984 0.35210 0.36163 0.37194 6731 17337

Flamulated owl habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 54.97737 0.00047 0.00271 0.00541 6 2210 Deerlodge 03 Bitterroot 36.25393 0.00686 0.01508 0.02475 17 1130 04 Clearwater 27.18475 0.01019 0.01763 0.02590 28 1588 05 Custer 34.70369 0.00597 0.01250 0.02010 15 1200 08 Flathead 133.2889 0.00000 0.00190 0.00714 2 525 (part) 4 10 Gallatin 36.70639 0.00288 0.00652 0.01072 16 2306 11 Helena 42.69589 0.00453 0.01256 0.02211 14 1115 12 Idaho 53.68810 0.00279 0.01151 0.02255 8 695 Panhandle 14 Kootenai 28.32837 0.00647 0.01145 0.01715 29 2366 15 Lewis and 45.10787 0.00237 0.00749 0.01355 10 1335 Clark 16 Lolo (part) 30.39402 0.00689 0.01284 0.01964 21 1635 17 Nezperce 26.83075 0.01241 0.02110 0.03104 30 1232

ThisSeptember242006versionreplacesallearlierversions. 107

NRP NRP 12.86197 0.00961 0.01205 0.01468 126 10225 MRP MRP 19.60978 0.00632 0.00914 0.01223 54 5472 SRP SRP 40.70031 0.00360 0.00915 0.01567 16 1640 R1 R1 10.37892 0.00905 0.01085 0.01273 196 17337

Pileated woodpecker nest habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 26.22060 0.00787 0.01313 0.01908 29 2210 Deerlodge 03 Bitterroot 22.94433 0.02549 0.03992 0.05550 51 1130 04 Clearwater 8.18178 0.15700 0.18136 0.20594 292 1588 05 Custer 10.72914 0.13621 0.16416 0.19360 200 1200 08 Flathead 67.78434 0.00000 0.00761 0.01730 6 525 (part) 10 Gallatin 20.94522 0.01937 0.02913 0.03946 71 2306 11 Helena 26.26088 0.01801 0.03052 0.04425 34 1115 12 Idaho 40.09430 0.00806 0.02014 0.03453 15 695 Panhandle 14 Kootenai 13.68893 0.05040 0.06448 0.07961 164 2366 15 Lewis and 35.20594 0.00557 0.01198 0.01940 16 1335 Clark 16 Lolo (part) 15.28077 0.04214 0.05565 0.07021 97 1635 17 Nezperce 10.56570 0.13203 0.15909 0.18710 212 1232 NRP NRP 5.17187 0.07522 0.08229 0.08937 875 10225 MRP MRP 9.82970 0.03929 0.04661 0.05427 272 5472 SRP SRP 24.86853 0.01415 0.02318 0.03337 40 1640 R1 R1 4.65973 0.06061 0.06543 0.07057 1187 17337

Pileated woodpecker winter forage habitat

Strata Category Standard CI Low Estimate CI High Habitat Subplots EstimateSubplots Error 02 Beaverhead 21.13427 0.01335 0.01992 0.02720 44 2210 Deerlodge 03 Bitterroot 17.24809 0.05033 0.06921 0.08935 88 1130 04 Clearwater 6.20267 0.27512 0.30604 0.33734 493 1588 05 Custer 9.23284 0.17733 0.20833 0.24006 254 1200 08 Flathead 48.31941 0.00674 0.02285 0.04273 15 525 (part) 10 Gallatin 15.95813 0.03762 0.05043 0.06409 131 2306 11 Helena 20.89391 0.03634 0.05385 0.07343 61 1115 12 Idaho 24.85413 0.03100 0.05035 0.07225 40 695 Panhandle 14 Kootenai 9.90767 0.10324 0.12261 0.14316 313 2366 15 Lewis and 20.08145 0.02462 0.03595 0.04835 49 1335 Clark 16 Lolo (part) 12.11782 0.07187 0.08929 0.10744 157 1635 17 Nezperce 8.49130 0.20092 0.23295 0.26557 305 1232 NRP NRP 4.14877 0.12451 0.13373 0.14289 1436 10225 MRP MRP 7.65191 0.06631 0.07568 0.08535 438 5472 SRP SRP 19.30525 0.03079 0.04392 0.05872 76 1640 R1 R1 3.61724 0.10077 0.10689 0.11354 1950 17337

ThisSeptember242006versionreplacesallearlierversions. 108

Ecological Province (Bailey 1996) models

Flamulated owl habitat

Strata Category StandardE CI Low Estimate CI High Habitat Subplots EstimateSubplots rror 02 Beaverhead 54.95396 0.00047 0.00271 0.00541 6 2210 Deerlodge 03 Bitterroot 36.83573 0.00636 0.01419 0.02351 16 1130 04 Clearwater 30.89703 0.00763 0.01448 0.02232 23 1588 05 Custer 37.35063 0.00479 0.01083 0.01791 13 1200 08 Flathead 133.13920 0.00000 0.00190 0.00714 2 525 (part) 10 Gallatin 53.34612 0.00085 0.00347 0.00683 8 2306 11 Helena 42.71001 0.00455 0.01256 0.02212 14 1115 12 Idaho 53.50864 0.00281 0.01151 0.02255 8 695 Panhandle 14 Kootenai 36.12173 0.00307 0.00678 0.01114 16 2366 15 Lewis and 45.17114 0.00237 0.00749 0.01358 10 1335 Clark 16 Lolo (part) 34.19551 0.00477 0.00978 0.01572 16 1635 17 Nezperce 26.85807 0.01238 0.02110 0.03104 30 1232 NRP NRP 14.62619 0.00691 0.00901 0.01122 92 10225 MRP MRP 19.62311 0.00630 0.00914 0.01222 54 5472 SRP SRP 40.75586 0.00356 0.00915 0.01573 16 1640 Region1 Region1 11.54997 0.00736 0.00906 0.01079 162 17337

Northern goshawk habitat

Strata Category StandardE CI Low Estimate CI High Habitat Subplots EstimateSubplots rror 02 Beaverhead 7.79920 0.12577 0.14402 0.16255 327 2210 Deerlodge 03 Bitterroot 22.47736 0.02297 0.03549 0.04930 44 1130 04 Clearwater 14.24359 0.04601 0.05982 0.07407 97 1588 05 Custer 21.27017 0.02539 0.03833 0.05215 48 1200 08 Flathead 23.37725 0.04600 0.07238 0.10166 40 525 (part) 10 Gallatin 22.27006 0.01183 0.01826 0.02511 54 2306 11 Helena 14.40025 0.06700 0.08707 0.10813 110 1115 12 Idaho 13.56275 0.12740 0.16258 0.20000 121 695 Panhandle 14 Kootenai 15.81954 0.02997 0.03988 0.05086 98 2366 15 Lewis and 10.83005 0.10944 0.13258 0.15677 180 1335 Clark 16 Lolo (part) 18.11776 0.02356 0.03302 0.04334 60 1635 17 Nezperce 10.20005 0.11645 0.13961 0.16329 176 1232 NRP NRP 7.46606 0.03200 0.03634 0.04082 401 10225 MRP MRP 4.94154 0.13119 0.14259 0.15430 804 5472 SRP SRP 12.37856 0.06591 0.08236 0.09947 150 1640 Region1 Region1 4.12126 0.06933 0.07426 0.07951 1355 17337

ThisSeptember242006versionreplacesallearlierversions. 109

Northern goshawk habitat

Strata Category StandardE CI Low Estimate CI High Habitat Subplots EstimateSubplots rror 02 Beaverhead 23.72637 0.01059 0.01675 0.02360 38 2210 Deerlodge 03 Bitterroot 44.67541 0.00292 0.00887 0.01603 11 1130 04 Clearwater 27.20612 0.00977 0.01700 0.02493 29 1588 05 Custer 29.70238 0.00958 0.01750 0.02664 22 1200 08 Flathead 137.75739 0.00000 0.00190 0.00720 1 525 (part) 10 Gallatin 67.97908 0.00000 0.00260 0.00589 8 2306 11 Helena 41.37176 0.00345 0.00897 0.01555 13 1115 12 Idaho 37.78146 0.00916 0.02158 0.03612 19 695 Panhandle 14 Kootenai 26.22529 0.00810 0.01357 0.01971 33 2366 15 Lewis and 34.12974 0.00534 0.01123 0.01795 15 1335 Clark 16 Lolo (part) 32.07775 0.00567 0.01100 0.01721 21 1635 17 Nezperce 30.97195 0.00803 0.01542 0.02380 19 1232 NRP NRP 13.55523 0.00867 0.01116 0.01358 124 10225 MRP MRP 14.98904 0.01200 0.01572 0.01972 91 5472 SRP SRP 40.25730 0.00256 0.00671 0.01148 14 1640 Region1 Region1 9.81022 0.01030 0.01218 0.01424 229 17337

Idaho Panhandle National Forests

Flammulated owl habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 0 0 0.00000 0 0 188 17010105 SD_4_CODE_HUC 0 0 0.00000 0 0 76 17010213 SD_4_CODE_HUC 134.21281 0 0.01562 0.05769 1 64 17010214 SD_4_CODE_HUC 86.21068 0 0.02419 0.0625 3 124 17010215 SD_4_CODE_HUC 92.77311 0 0.00943 0.02631 2 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 94.1833 0 0.00574 0.01612 2 348 17010302 SD_4_CODE_HUC 138.12144 0 0.02777 0.10416 1 36 17010303 SD_4_CODE_HUC 134.95366 0 0.01785 0.06666 1 56 17010304 SD_4_CODE_HUC 93.51797 0 0.00549 0.01543 2 364 17010305 SD_4_CODE_HUC 0 0 0.00000 0 0 20 17060308 SD_4_CODE_HUC 133.80352 0 0.01041 0.03846 1 96 M333Aa SD_ECO_SUBSECTION 71.86184 0 0.03448 0.08035 4 116 M333Ab SD_ECO_SUBSECTION 0 0 0.00000 0 0 296 M333Ba SD_ECO_SUBSECTION 0 0 0.00000 0 0 180 M333Be SD_ECO_SUBSECTION 0 0 0.00000 0 0 36 M333Da SD_ECO_SUBSECTION 53.04812 0.00227 0.01219 0.0238 6 492 M333Db SD_ECO_SUBSECTION 76.30136 0 0.00765 0.01861 3 392 M333Dd SD_ECO_SUBSECTION 0 0 0.00000 0 0 76 04 FOREST 37.31159 0.00374 0.00818 0.01364 13 1588

ThisSeptember242006versionreplacesallearlierversions. 110

Northern goshawk forage habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 19.57795 0.1576 0.22872 0.30405 46 188 17010105 SD_4_CODE_HUC 29.66012 0.14062 0.26315 0.39583 23 76 17010213 SD_4_CODE_HUC 32.26842 0.13235 0.26562 0.41176 17 64 17010214 SD_4_CODE_HUC 22.65691 0.18 0.28225 0.39102 37 124 17010215 SD_4_CODE_HUC 15.29866 0.23728 0.31603 0.39622 68 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 10.16197 0.33536 0.40229 0.46978 141 348 17010302 SD_4_CODE_HUC 35.14699 0.15 0.33333 0.53125 12 36 17010303 SD_4_CODE_HUC 26.85105 0.1923 0.33928 0.5 19 56 17010304 SD_4_CODE_HUC 13.48893 0.21306 0.27197 0.33333 99 364 17010305 SD_4_CODE_HUC 32.67846 0.25 0.55000 0.83334 11 20 17060308 SD_4_CODE_HUC 28.14734 0.1375 0.25000 0.36956 24 96 M333Aa SD_ECO_SUBSECTION 23.06057 0.16964 0.26724 0.37068 34 116 M333Ab SD_ECO_SUBSECTION 14.28217 0.21036 0.27364 0.33974 84 296 M333Ba SD_ECO_SUBSECTION 20.91339 0.14444 0.21666 0.29347 42 180 M333Be SD_ECO_SUBSECTION 44.7174 0.06818 0.22222 0.39285 8 36 M333Da SD_ECO_SUBSECTION 8.28537 0.3545 0.41056 0.46638 203 492 M333Db SD_ECO_SUBSECTION 13.15345 0.211 0.26785 0.32675 105 392 M333Dd SD_ECO_SUBSECTION 28.05951 0.15384 0.27631 0.40625 21 76 04 FOREST 5.79615 0.2777 0.30667 0.33607 497 1588

IPNFs northern goshawk nest habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 0 0 0.00000 0 1 188 17010105 SD_4_CODE_HUC 134.56309 0 0.01315 0.04807 1 76 17010213 SD_4_CODE_HUC 0 0 0.00000 0 0 64 17010214 SD_4_CODE_HUC 132.73292 0 0.00806 0.02941 1 124 17010215 SD_4_CODE_HUC 85.68013 0 0.01415 0.03703 4 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 58.55176 0.00274 0.01436 0.02989 5 348 17010302 SD_4_CODE_HUC 137.90376 0 0.02777 0.10416 1 36 17010303 SD_4_CODE_HUC 92.45186 0 0.03571 0.1 2 56 17010304 SD_4_CODE_HUC 45.94804 0.00949 0.03021 0.05494 11 364 17010305 SD_4_CODE_HUC 140.57361 0 0.05000 0.1875 1 20 17060308 SD_4_CODE_HUC 93.82111 0 0.02083 0.05833 2 96 M333Aa SD_ECO_SUBSECTION 0 0 0.00000 0 1 116 M333Ab SD_ECO_SUBSECTION 85.78876 0 0.01013 0.02631 4 296 M333Ba SD_ECO_SUBSECTION 93.61016 0 0.01111 0.03125 2 180 M333Be SD_ECO_SUBSECTION 0 0 0.00000 0 0 36 M333Da SD_ECO_SUBSECTION 46.52557 0.00505 0.01626 0.02976 8 492 M333Db SD_ECO_SUBSECTION 44.68355 0.00952 0.02806 0.0505 11 392 M333Dd SD_ECO_SUBSECTION 85.58203 0 0.03947 0.10294 3 76 04 FOREST 27.44578 0.0099 0.01700 0.02506 29 1588

IPNFs northern goshawk pfa habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 57.36364 0.00595 0.03723 0.07608 8 188 17010105 SD_4_CODE_HUC 93.43112 0 0.02631 0.07352 2 76

ThisSeptember242006versionreplacesallearlierversions. 111

17010213 SD_4_CODE_HUC 134.22702 0 0.01562 0.05769 1 64 17010214 SD_4_CODE_HUC 57.10298 0.00781 0.04032 0.08108 5 124 17010215 SD_4_CODE_HUC 35.72978 0.03431 0.07547 0.12264 17 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 23.03808 0.06024 0.09482 0.13202 33 348 17010302 SD_4_CODE_HUC 0 0 0.00000 0 0 36 17010303 SD_4_CODE_HUC 53.4508 0.02272 0.10714 0.20833 6 56 17010304 SD_4_CODE_HUC 33.71187 0.02644 0.05494 0.0875 20 364 17010305 SD_4_CODE_HUC 141.18148 0 0.05000 0.1875 1 20 17060308 SD_4_CODE_HUC 64.63919 0 0.04166 0.09 4 96 M333Aa SD_ECO_SUBSECTION 92.90263 0 0.01724 0.04807 3 116 M333Ab SD_ECO_SUBSECTION 33.18157 0.03308 0.06756 0.10666 21 296 M333Ba SD_ECO_SUBSECTION 52.76843 0.00675 0.03333 0.06521 6 180 M333Be SD_ECO_SUBSECTION 0 0 0.00000 0 0 36 M333Da SD_ECO_SUBSECTION 20.08935 0.05978 0.08739 0.11752 43 492 M333Db SD_ECO_SUBSECTION 33.58829 0.02477 0.05102 0.08132 20 392 M333Dd SD_ECO_SUBSECTION 71.29784 0 0.05263 0.125 4 76 04 FOREST 14.37292 0.04601 0.05982 0.07442 97 1588

Black-backed woodpecker foraging habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 14.50788 0.3173 0.41489 0.515 83 188 17010105 SD_4_CODE_HUC 20.24239 0.30952 0.46052 0.61539 36 76 17010213 SD_4_CODE_HUC 35.2137 0.1 0.21875 0.35 14 64 17010214 SD_4_CODE_HUC 22.17752 0.1875 0.29032 0.39843 36 124 17010215 SD_4_CODE_HUC 17.07364 0.205 0.28301 0.36363 62 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 16.52089 0.17091 0.23275 0.29687 81 348 17010302 SD_4_CODE_HUC 34.38562 0.16666 0.36111 0.56819 13 36 17010303 SD_4_CODE_HUC 83.93851 0 0.07142 0.18181 4 56 17010304 SD_4_CODE_HUC 12.91042 0.25342 0.32142 0.39077 117 364 17010305 SD_4_CODE_HUC 83.64591 0 0.15000 0.375 3 20 17060308 SD_4_CODE_HUC 58.9272 0.01041 0.07291 0.15 7 96 M333Aa SD_ECO_SUBSECTION 27.69955 0.12068 0.21551 0.31818 27 116 M333Ab SD_ECO_SUBSECTION 14.25105 0.22887 0.29729 0.36824 93 296 M333Ba SD_ECO_SUBSECTION 12.57779 0.38333 0.48333 0.58334 88 180 M333Be SD_ECO_SUBSECTION 58.41176 0.02083 0.13888 0.28571 5 36 M333Da SD_ECO_SUBSECTION 13.50844 0.18452 0.23577 0.28899 116 492 M333Db SD_ECO_SUBSECTION 14.41831 0.1975 0.25765 0.3193 101 392 M333Dd SD_ECO_SUBSECTION 28.39431 0.1875 0.34210 0.5 26 76 04 FOREST 6.59963 0.25187 0.28211 0.31312 456 1588

Black-backed woodpecker nest habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 8.3599 0.56373 0.65426 0.74343 128 188 17010105 SD_4_CODE_HUC 13.27206 0.53001 0.68422 0.82895 53 76 17010213 SD_4_CODE_HUC 18.79294 0.38461 0.56250 0.73334 36 64 17010214 SD_4_CODE_HUC 8.7624 0.61112 0.71775 0.81819 90 124 17010215 SD_4_CODE_HUC 6.6811 0.64394 0.72642 0.80455 163 212 17010216 SD_4_CODE_HUC 0 0 1.00000 0 4 4 17010301 SD_4_CODE_HUC 6.89305 0.55748 0.62932 0.7 221 348 17010302 SD_4_CODE_HUC 23.30669 0.32142 0.52778 0.725 19 36

ThisSeptember242006versionreplacesallearlierversions. 112

17010303 SD_4_CODE_HUC 14.86154 0.5 0.67858 0.83929 38 56 17010304 SD_4_CODE_HUC 6.56531 0.52885 0.59341 0.65722 216 364 17010305 SD_4_CODE_HUC 34.24681 0.25 0.60000 0.95834 12 20 17060308 SD_4_CODE_HUC 14.75694 0.37903 0.50000 0.61957 48 96 M333Aa SD_ECO_SUBSECTION 11.7194 0.48529 0.60345 0.71775 76 116 M333Ab SD_ECO_SUBSECTION 6.03536 0.63514 0.70609 0.77574 218 296 M333Ba SD_ECO_SUBSECTION 7.86097 0.60715 0.70000 0.78774 127 180 M333Be SD_ECO_SUBSECTION 24.29618 0.33333 0.55556 0.77778 20 36 M333Da SD_ECO_SUBSECTION 5.58931 0.58209 0.64228 0.70042 318 492 M333Db SD_ECO_SUBSECTION 6.74965 0.49184 0.55358 0.61449 217 392 M333Dd SD_ECO_SUBSECTION 12.02902 0.54546 0.68422 0.81667 52 76 04 FOREST 3.02469 0.60444 0.63603 0.66771 1028 1588

IPNFs pileated woodpecker foraging habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 27.41602 0.08173 0.14361 0.21111 28 188 17010105 SD_4_CODE_HUC 28.23017 0.15277 0.27631 0.40789 21 76 17010213 SD_4_CODE_HUC 38.20567 0.11111 0.28125 0.46428 18 64 17010214 SD_4_CODE_HUC 17.95834 0.28571 0.40322 0.5242 51 124 17010215 SD_4_CODE_HUC 12.87925 0.33823 0.42924 0.52084 94 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 10.56972 0.31593 0.38218 0.44871 135 348 17010302 SD_4_CODE_HUC 58.22139 0 0.22222 0.45 8 36 17010303 SD_4_CODE_HUC 22.9204 0.3 0.48214 0.66667 27 56 17010304 SD_4_CODE_HUC 15.51765 0.16898 0.22527 0.28437 82 364 17010305 SD_4_CODE_HUC 57.98741 0 0.35000 0.7 7 20 17060308 SD_4_CODE_HUC 29.64855 0.125 0.22916 0.34523 22 96 M333Aa SD_ECO_SUBSECTION 17.367 0.30882 0.43103 0.55556 54 116 M333Ab SD_ECO_SUBSECTION 15.35835 0.21103 0.28040 0.35245 84 296 M333Ba SD_ECO_SUBSECTION 22.22005 0.14285 0.22222 0.30555 40 180 M333Be SD_ECO_SUBSECTION 62.96214 0 0.16666 0.35714 6 36 M333Da SD_ECO_SUBSECTION 8.78993 0.34297 0.40040 0.45867 199 492 M333Db SD_ECO_SUBSECTION 15.01631 0.16463 0.21683 0.2715 85 392 M333Dd SD_ECO_SUBSECTION 28.6317 0.17857 0.32894 0.48684 25 76 04 FOREST 6.14325 0.27549 0.30604 0.33712 493 1588

IPNFs pileated woodpecker nesting habitat

Strata Category StandardErro CI Low Estimate CI High Habitat EstimateSu r Subplots bplots 17010104 SD_4_CODE_HUC 38.01261 0.02906 0.06914 0.11538 13 188 17010105 SD_4_CODE_HUC 49.21069 0.025 0.09210 0.17187 7 76 17010213 SD_4_CODE_HUC 40.69303 0.08333 0.21875 0.375 14 64 17010214 SD_4_CODE_HUC 23.97502 0.16 0.25806 0.3629 32 124 17010215 SD_4_CODE_HUC 18.91878 0.18032 0.25943 0.3421 57 212 17010216 SD_4_CODE_HUC 0 0 0.00000 0 0 4 17010301 SD_4_CODE_HUC 15.4186 0.15789 0.20977 0.26453 75 348 17010302 SD_4_CODE_HUC 58.32688 0 0.22222 0.45 8 36 17010303 SD_4_CODE_HUC 29.93356 0.17857 0.33928 0.5 19 56 17010304 SD_4_CODE_HUC 20.87048 0.08256 0.12362 0.16755 45 364 17010305 SD_4_CODE_HUC 59.04401 0 0.25000 0.5 5 20 17060308 SD_4_CODE_HUC 32.90831 0.08653 0.17708 0.27678 17 96 M333Aa SD_ECO_SUBSECTION 20.31054 0.2258 0.33620 0.45 41 116 M333Ab SD_ECO_SUBSECTION 22.02289 0.10333 0.15878 0.21785 47 296

ThisSeptember242006versionreplacesallearlierversions. 113

M333Ba SD_ECO_SUBSECTION 38.07664 0.03571 0.08333 0.13953 15 180 M333Be SD_ECO_SUBSECTION 64.29325 0 0.13888 0.3 5 36 M333Da SD_ECO_SUBSECTION 12.37634 0.18584 0.23170 0.27952 116 492 M333Db SD_ECO_SUBSECTION 18.61045 0.10238 0.14540 0.19117 57 392 M333Dd SD_ECO_SUBSECTION 43.74196 0.05 0.14473 0.25 11 76 04 FOREST 8.23547 0.15712 0.18136 0.20643 292 1588

ThisSeptember242006versionreplacesallearlierversions. 114

Appendix 4

Methods to Estimate Forested Habitat WilliamTanke,NorthernRegion,Missoula,MT West-side Forests DataSets DatasetsusedinthisanalysiswereobtainedfromtheR1GeospatialLibraryandincluded: • Ownership(ForestService)forRegion11:126,720 • EcologicalUnitSubsectionsforRegion11:500,000 • Vegetation(vmaplifeform)forwesternRegion1 Processingsteps AllprocessingwasdoneinArcMap(v8.3) 1. ConvertedOwnershipandSubsectionsto15metergridtomatchlifeformdata(resulting datasets:fsown_g,subsec_g) 2. InRasterCalculatorperformedacombineoperationonOwnership,Subsectionand LifeformGrid(resultingdataset:for_subsec_lf) 3. JoinedOwnership,SubsectionandLifeformattributestothefor_subset_lfGrid 4. Exportedthefor_subsec_lfattributetableandconvertedtoanExcelspreadsheet 5. InExcel: • Removedunnecessarycolumns • Computedacresbasedon15x15metergridcells • Summarizedresultsusingapivottable AccuracyIssues Thedatasetsusedtogeneratetheseresultshavesomelimitationsandthereforetheaccuracyof thisanalysisshouldbeconsideredasgrossestimatesonly.Thebiggestconcerniswiththeuseof theecologicalsubsectionswhichare1:500,000scaledata(approx.1/8inchonamapofthis scaleequals1mileontheground).I’drecommenddisplayingtheseresultstothenearest1,000 or10,000acresratherthentothenearestacre. East-side Forests Thisanalysisissimilartothatdoneforthe7westsideforests(IdahoPanhandle,Nezperce, Clearwater,Kootenai,Flathead,Bitterroot,Lolo)usingR1Vmapdatatodeterminedforested lands.AdatasetwhichisacombinationofSILC2andSILC3wasusedtodetermineforested landsfor5eastsideForests(BeaverheadDeerlodge,Custer,Gallatin,Helena,Lewis&Clark).

ThisSeptember242006versionreplacesallearlierversions. 115

InformationfortheDakotaPrairiewasnotincludedbecausewedidnothaveadatasetfor determiningforestedlands. SmallportionsoftheLoloandtheFlatheadNFwerenotincludedinthepreviouswestside analysisbecausetheR1Vmapdatadidnotcovertheseareas.Theexcludedportionsfortheseto Forestswereincludedinthisanalysis DataSets DatasetsusedinthisanalysiswereobtainedfromtheR1GeospatialLibraryandincluded: • Ownership(ForestService)forRegion11:126,720 • EcologicalUnitSubsectionsforRegion11:500,000 • HydrologicUnitBoundaries(5thcode)forRegion1 • Vegetation(mtsilc3)foreasternRegion1 Processingsteps ProcessingwasdoneinArcMap(v9.0)andWorkstationArcInfo(v9.0) 6. Projectedmtsilc3tostandardprojectionusedinRO(resultingdatasetmtsilc3_prj) 7. SelectedCovertypes>4000and<4400toproduceadatasetofForestedlands (mtsilc3_tree) 8. ConvertedOwnership,SubsectionsandFifthCodeHUC’sto30metergridtomatch mtsilc3_prj(resultingdatasets:fsown_g,subsect_g,huc5_g) 9. Usingfsown_gproducedanownershipgridwhichonlyincludedthe5eastsideforests plustheportionsoftheLoloandFlatheadwhichwerenotincludedintheprevious analysisfortheWestside(fsown_es) 10. Performed3combineoperationsasfollows: • fsown_g,mtsilc3_tree–toobtainforestedacresbyunit(resultantgrid: fsown_tree • fsown_g,mtsilc3_tree,huc5_g–toobtainforestedacresbyunitbyfifthcode HUC(resultantgrid:fsown_huc5) • fsown_g,mtsilc3_tree,subsect_g–toobtainforestedacresbyunitbysubsection (resultantgrid:fsown_subsect) 11. Joinedappropriateattributestoeachofthethreegridscreatedinstep4asfollows: • Forfsown_treejoinedattributesfromfsown_g • Forfsown_huc5joinedattributesfromfsown_gandhuc5_g • Forfsown_subsectjoinedattributesfromfsown_gandsubsect_g 12. Exportedtheattributetablesforthethreeresultantgridsfromstep5andconvertedtoan Excelspreadsheet 13. InExcel: • Removedunnecessarycolumns • Computedacresbasedon30x30metergridcells • Summarizedresultsusingapivottable AccuracyIssues

ThisSeptember242006versionreplacesallearlierversions. 116

Thedatasetsusedtogeneratetheseresultshavesomelimitationsandthereforetheaccuracyof thisanalysisshouldbeconsideredasgrossestimatesonly.Thebiggestconcerniswiththeuseof theecologicalsubsectionswhichare1:500,000scaledata(approx.1/8inchonamapofthis scaleequals1mileontheground).I’drecommenddisplayingtheseresultstothenearest1,000 or10,000acresratherthentothenearestacre.

ThisSeptember242006versionreplacesallearlierversions. 117

Appendix 5

Common and Scientific Names. Blackcottonwood Populus tricocarpa Douglasfir Pseudotsuga menziesii Grandfir Jefferypine Pinus jeffreyi Lodgepolepine Pinus contorta Paperbirch Ponderosapine Quakingaspen Populau tremuloides SagebrushwoodyArtemisa spp. Westernhemlock heterophylla Westernlarch Larix occidentalis Westernredcedar Thuja plicata Whitepine Pinus albicaulis Whitebarkpine Pinus monticola Carpenterants Camponotus spp. Mountainpinebeetle Dendroctous ponderosae Westernpinebeetle Dendroctous brevicomis Whitespottedsawyerbeetle Monochamus scutellatus Barredowl varia Blackbackedwoodpecker Picoides arcticus Cooper’shawk Accipiter cooperii Flammulatedowl Otus flammeolus Greathornedowl Bubo virginianus Imperialwoodpecker principalis Ivorybilliedwoodpecker Campephilusimperialis Northerngoshawk Accipiter gentilis Pileatedwoodpecker Dryocopus pileatus Redtailedhawk jamaicensis Ruffedgrouse Bonasa umbellus Sagegrouse Centrocercus urophasianus Spottedowl Strix occidentalis Threetoedwoodpecker Picoides tridactylus Americanmarten Martes americana Grayfox Urocyon cinereoargenteus Grizzlybear Ursus arctos Longtailed Mustela frenata Snowshoehare Lepus americanus

ThisSeptember242006versionreplacesallearlierversions. 118

Appendix 6

Vegetation Council Report Vegetation Council Algorithms for Stand Classification ThefollowingdocumentsthealgorithmsusedbytheR1SummaryDatabaseandtheForest VegetationSimulator(FVS)Classifierpostprocessorforassigningspeciesdominancetype, standsize,andverticalstructure.

Dominance Type:

Dominance Type (Elemental) 1. Forplots/standswith>20squarefeetofbasalarea,dominanceisbasedonbasalarea. 2. Ifaplot/standhas<20squarefeetofbasalareabut>100treesperacrethendominance isbasedontreesperacre. 3. Ifneitherbasalareanortreesperacrecriteriaismet,adominancecallisnotmadeand willbelabeledas‘none’inthedatabase. 4. Theproportionofthedominanceattribute,eitherbasalareaortreesperacre,isthen calculatedforeachspeciesoccurringontheplots/stands.SeeAppendixAforakeyto validspeciesandspeciesgroups. • Single species –Speciescomprises>60%ofthedominanceattribute. • Two species Twospeciescomprise>80%ofthedominanceattributewitheach individualspeciescontributing>20%ofthetotal. o Assignlabelinorderofabundance.Ifproportionofdominanceattributeisequal between2species,assignlabelbasedonthespecieswiththelargestBA(TPA) weightedDBHbeingfirstintheorder.IftheBA(TPA)weightedDBHisequal thenassignlabelbasedonthespecieswithlargestaveragetreeheight. • Three species –Threespeciescomprise>80%ofthedominanceattributewitheach individualcontributing>20%ofthetotal. o Assignlabelinorderofabundance.Ifproportionofdominanceattributeisequal betweenthe2orall3species,assignlabelbasedonthespecieswiththelargest BA(TPA)weightedDBHbeingfirstintheorder.IftheBA(TPA)weightedDBH isequalthenassignlabelbasedonthespecieswithlargestaveragetreeheight • Mix –NoSingle,Two,orThreespeciescallcanbemade.Typeofmix,eitherintolerant ortolerant,isdeterminedbywhatspeciescombinationhaspluralityofdominance attribute. o IfproportionofdominanceattributeofIMXS>TGCH+TASH,thenassignto IMXS. o IfIMXS=TolerantSpecies(TGCH+TASH)thenlabelbasedonthe“mix”with thelargestBA(TPA)weightedDBH.IftheBA(TPA)weightedDBHofthe mixesareequalthenassignlabelbasedonthelargestBA(TPA)weightedtree heightforthemix.

ThisSeptember242006versionreplacesallearlierversions. 119

o IftheresultisnotIMXSandTGCH>TASH,thenlabelasTGCH o IftheresultisnotIMXSandTASH>TGCH,thenlabelasTASH o IfTGCH=TASHthenassignlabelbasedonthe“mix”withthelargest BA(TPA)weightedDBH.IftheBA(TPA)weightedDBHofTASH=TGCH thenassignlabeltothemixwithlargestBA(TPA)weightedtreeheight. Collapsed Dominance Type SamelogicasElementalDominanceTypehoweveranythree speciesdominancetypeisreclassifiedaccordingtoMixalgorithmdescribedabove.InFVS Classifierprogram,if3speciesincludes“2Tree”thenlabelasUNCL. Dominance Group :SimilartoCollapsedDominanceTypeexcept2speciestypesaregrouped basedonthemostabundantspecies. Ifcollapseddominanceis1speciesoramix(TASH,TCGH,IMXS)orUNCLthendominance group=collapseddominance. Ifcollapseddominanceis2speciesthendominancegroup=thefirstspeciesplus"1MIX"(For exampleABGRPSME,ABGRPICOandABGRTHPLaregroupedintoABGR1MIX)

Dominance Set:  similartodominancetype–elemental,exceptformixedtypes

1. Forplots/standswith>20squarefeetofbasalarea,dominanceisbasedonbasalarea. 2. Ifaplot/standhas<20squarefeetofbasalareabut>100treesperacrethendominance isbasedontreesperacre. 3. Ifneitherbasalareanortreesperacrecriteriaismet,adominancecallisnotmadeand willbelabeledas‘none’inthedatabase. 4. Theproportionofthedominanceattribute,eitherbasalareaortreesperacre,isthen calculatedforeachspeciesoccurringontheplots/stands.SeeAppendixAforakeyto validspeciesandspeciesgroups. • Single species –Speciescomprises>60%ofthedominanceattribute. • Two species Twospeciescomprise>80%ofthedominanceattributewitheach individualspeciescontributing>20%ofthetotal. o Assignlabelinorderofabundance.Ifproportionofdominanceattributeisequal between2species,assignlabelbasedonthespecieswiththelargestBA(TPA) weightedDBHbeingfirstintheorder.IftheBA(TPA)weightedDBHisequal thenassignlabelbasedonthespecieswithlargestaveragetreeheight. • Three species –Threespeciescomprise>80%ofthedominanceattributewitheach individualcontributing>20%ofthetotal. o Assignlabelinorderofabundance.Ifproportionofdominanceattributeisequal betweenthe2orall3species,assignlabelbasedonthespecieswiththelargest BA(TPA)weightedDBHbeingfirstintheorder.IftheBA(TPA)weightedDBH isequalthenassignlabelbasedonthespecieswithlargestaveragetreeheight

ThisSeptember242006versionreplacesallearlierversions. 120

• Mix –NoSingle,Two,orThreespeciescallcanbemade.Typeofmix,eitherintolerant ortolerant,isdeterminedbywhatspeciescombinationhaspluralityofdominance attribute. o Ifproportionofdominanceattributeof IMIX > TMIX, thenassignto IMIX. o If IMIX = TMIX thenlabelbasedonthe“mix”withthelargestBA(TPA) weightedDBH.IftheBA(TPA)weightedDBHofthemixesareequalthen assignlabelbasedonthelargestBA(TPA)weightedtreeheightforthemix. Dominance Cluster:  Single species –Singlespeciescomprises>60%ofthedominanceattribute.  Mixed species determinedbywhatmixedspeciestype , IMIX or TMIX ,hasplurality ofdominanceattribute.SeeAppendixAfordefinition. 1. If IMIX = TMIX thenlabelbasedonthe“mix”withthelargestBA(TPA)weighted DBH.IftheBA(TPA)weightedDBHofthemixesareequalthenassignlabelbasedon thelargestBA(TPA)weightedtreeheightforthemix. 2. Regardlessofthemixedspeciestype,selectthelargestindividualspeciesdominance attributepercentage,if>40%ofthetotaldominanceattribute,labelthemixedspecies typewiththatindividualspecies.LabelssuchasPSMETMIXorABLAIMIXare “permitted”.If2speciesaretiedforthelargestpercentage,assignlabelbasedonthe specieswiththelargestBA(TPA)weightedDBH.IftheBA(TPA)weightedDBHofthe 2speciesareequalthenassignlabelbasedonthelargestBA(TPA)weightedtreeheight. Example: Species %oftotalcanopycover PSME 45 THPL 20 ABGR 10 ABLA 15 PIEN 10 LabeltheaboveexampleasPSMETMIX 3. Ifthelargestindividualspeciesdominanceattributepercentageis<40%,retainthelabel ofthedominantmixedspeciestypeinstep1.

Size Class Categories: Size_Class_NTG : National Technical GuideforExistingVeg.MappingandClassification http://www.fs.fed.us/emc/rig/includes/veg/section3_2004.pdf Plots/standsmusthaveatleast20squarefeetofbasalareaor100treesperacreinordertohave sizecomputed.Otherwise,thesizelabelis‘none’.Sizeclasscategoryisbasedonbasalarea weighteddiameteroftheplot/stand.Basalareaweighteddiameter(BAwtDBH)isthesumofthe diameteroftree,timesthenumberoftreesthetreerepresentstimesbasalareaoftree.Thissum isdividedbytotalbasalarea.Weighteddiameteriscalculatedthenclassificationismadeas followsaccordingtoweighteddiameter:

ThisSeptember242006versionreplacesallearlierversions. 121

NTGSizeClassLabel RULESET*forbasalareaweighteddiameter • Seedling If100ormoretreesperacrearepresentbutbasalarea weighteddiameteris0.0ornull. • 0.1–4.9” 0.0<BAwtDBH<5.0* • 5.0–9.9” 5.0<BAwtDBH<10.0 • 10.0–14.9” 10.0<BAwtDBH<15.0 • 15.0–19.9” 15.0<BAwtDBH<20.0 • 20.0–24.9” 20.0<BAwtDBH<25.0 • 25.0+” BAwtDBH>25.0 Size_Class_Trad: Trad itionalRegionOneTSMRSsizeclass. http://fsweb.r1.fs.fed.us/directives/html/fsh2000.html Plots/standsmusthaveatleast20squarefeetofbasalareaor100treesperacreinordertohave sizecomputed.Otherwise,thesizelabelis‘none’.Sizeclasscategoryisbasedonbasalarea weighteddiameteroftheplot/stand.Basalareaweighteddiameter(BAwtDBH)isthesumofthe diameteroftree,timesthenumberoftreesthetreerepresentstimesbasalareaoftree.Thissum isdividedbytotalbasalarea.Weighteddiameteriscalculatedthenclassificationismadeas followsaccordingtoweighteddiameter: TradSizeClassLabel RULESET*forbasalareaweighteddiameter • Seedling If100ormoretreesperacrearepresentbutbasalarea weighteddiameteris0.0ornull. • 0.1–0.9”DBH 0.0<BAwtDBH<1.0 • 1.0–4.9” 0.1<BAwtDBH<5.0 • 5.0–8.9” 5.0<BAwtDBH<9.0 • 9.0–13.9” 9.0<BAwtDBH<14.0 • 14.0–20.9” 14.0<BAwtDBH<21.0 • 21.0”+ BAwtDBH>21 *definitionis“expanded”toassureclassificationofBAWeightedDBHbetweenclass boundaries,suchasbetween4.9000001and4.999999

Vertical Structure: Thereare5possibleverticalstructureclasses:1=singlestory,2=twostory,3=threestory,C =continuous,none=insufficientba/tpafoundontheplot/stand. Vertical Structure Categories: Theproportionoftotalbasalareaforthefollowingdiameterclasses:04.9”,5.09.9”,10.0 14.9”,15.019.9”,20.024.9”,25.0”+,foraplots/standthathasatleast20squarefeetofbasal areaiscalculated,multipliedby100androundedtothenearestpercent.Ifaplothaslessthan20 squarefeetofbasalareabutatleast100treesperacre,asinglestoryclassisassigned.Initially, everyplot/standisclassifiedashaving1layerofverticalstructure.

ThisSeptember242006versionreplacesallearlierversions. 122

Thefollowingalgorithmisdoneintheorderstated: 1. Forany3consecutivediameterclassesorderedlargesttosmallest,ifthefirst(largest) andthird(smallest)diameterclasseachhaveatleast2%ofthetotalbasalarea,andifthe percentofbasalareainthefirstandthirddiameterclassareatleast1.8timeslargerthan theproportionofbasalareainthemiddlediameterclassthen,addalayer. 2. Forany4consecutivediameterclassesorderedfromlargesttosmallest,ifthemiddle2 diameterclassproportionsarewithin10%ofeachother,andthesmallestandlargest diameterclasseseachhaveatleast2%ofthebasalarea,andeachhaveatleast90%of thesumofthemiddle2diameterclassesproportionsthen,addalayer. 3. Iflayerstillequals1andatleast5consecutiveclasseshave>2%basalarea,thenvertical structureiscontinuous. 4. Iflayerequals1andthe3smallest(04.9,5.09.9,10.014.9)diameterclasseshave>2% basalarea,thenverticalstructureiscontinuous. Examples of Vertical Structure Algorithm: Example1: Percent BA by Diameter Class 25+ 2025 1520 1015 510 05 Vertical Structure Class 0 0 0 50 50 0 1 Thisexampledoesnotqualifyforanyoftheverticalstructureclassrulesthereforeitissingle story.

SVSimageofExample1data. Example2: Percent BA by Diameter Class 25+ 2025 1520 1015 510 05 Vertical Structure Class 0 25 0 0 5025 2 Seerule#2.Thisexampleclassifiesto2verticallayerswhenlookingatthe%ofbasalareain diameterclasses2025through510.Themiddle2diameterclassbothhaveapercentofba within10%ofeachother,theyareboth0.90%ofthesumofthese2classesis0.Thelargest

ThisSeptember242006versionreplacesallearlierversions. 123

(25)andsmallest(50)diameterclassesbothhaveapercentbasalareagreaterthan0.Therefore

thisstandis2layers. SVSimageofExample2data. Example3: Percent BA by Diameter Class 25+ 2025 1520 1015 510 05 Vertical Structure Class 0 0 0 47 51 2 C Thisexampledoesnotmeetcriteria13howeverthesmallest3diameterclasseshave>2%basal area,soverticalstructureiscontinuous.

SVSimageofExample3data. Appendix A: Dominance Type Definitions

Shade Tolerant Species: IMIX

TGCH Tolerant grand fir, western red cedar and western hemlock

ABGR grandfir THPL westernredcedar TSHE westernhemlock TABR2 pacificyew(R1FIASummaryDatabase) TASH Tolerantsub alpinefir, spruceandmountain hemlock ABLA subalpinefir PIEN Engelmannspruce TSME mountainhemlock

ThisSeptember242006versionreplacesallearlierversions. 124

Shade Intolerant Mixed Species: IMIX IMXS Intolerant Mixed Species PIPO ponderosapine PSME Douglasfir LAOC westernlarch LALY alpinelarch PICO lodgepolepine PIMO3 westernwhitepine PIAL whitebarkpine PIFL2 limberpine(thisappliestosummaryprogramnottheclassifierprogram) POPUL blackcottonwood BEPA paperbirch POTR5 aspen JUNIP juniper(thisappliestosummaryprogramnottheclassifierprogram) NOTES:2TREEinIdahoismostlikelyTABR2.ThereforeUNCLintheFVSClassifierismost likelyTGCHinIdaho.InEasternMT2TREEcouldbePIFL2orPOTR5orJUNIPorPOPUL. Somediscrepanciesbetweensummarydatabaseandstandclassifieraredueto:1)rounding methods,2)2TREEclassification,whereFSVspeciesisOSorOT,and3)nothavingreporting ruleswhen2or3speciesdominancetypeshave=TPAorBA.

ThisSeptember242006versionreplacesallearlierversions. 125

Appendix 7

Map of well-distributed habitat for the northern goshawk. A single population is evident in the Northern Region (see text for details).

ThisSeptember242006versionreplacesallearlierversions. 126

Appendix 8

Map of well-distributed habitat for the black-backed woodpecker. A single population is evident in the Northern Region (see text for details).

ThisSeptember242006versionreplacesallearlierversions. 127

Appendix 9 Species Habitat Estimates for the Idaho Panhandle National Forests

Forested Habitat

NumberofFIAsampleplotsontheIdahoPanhandleNationalForests(IPNFs)eitherby EcologicalSubsection(Bailey1996)orby4thCodeHydrologicUnit(HUC)areshowninTable 25.ThenumberofsampleplotsperEcologicalSubsectionorHUCreflectsthesizeofarea managedbytheIPNFs. Table25.NumberofsampleplotsinanEcologicalSubsection(Bailey1996)or4 th Code HydrologicUnit(HUC)ontheIdahoPanhandleNationalForests. EcologicalSubsection Numberofsample 4th CodeHUC Numberofsample plots plots M333Aa 27 17010104 83 M333Ab 93 17010105 36 M333Ac 17010213 14 M333Ba 88 17000214 36 M333Be 5 17010215 62 M333Da 116 17010301 81 M333Db 101 17010302 13 M333Dd 26 17010303 4 M333De 17010305 117 17060308 3 Total 456 456

Thewildlifehabitatrelationshipmodelsdevelopedforthisconservationassessmentrepresent threescales:1)aRegionwidedescriptionwherethefullrangeofhabitatsusedbyaspeciesis includedinthemodel;2)aProvincewidedescriptionwherethefullrangeofhabitatsusedbya specieswithinthatparticularEcologicalProvinceisincluded;and3)aForestspecificmodel wherelocalconditionsareconsideredinthedevelopmentofthehabitatrelationshipmodel. Table26summarizestheRegionwide,EcologicalProvince,andIPNFswildlifehabitat relationshipmodelsanddescribesanyadditiontotheIPNFsmodels.Asummaryofhabitat estimatesbasedofeach(Regional,Province,andIPNFs)modelandforeachofthefourspecies alsoisincludedinTable26.

ThisSeptember242006versionreplacesallearlierversions. 128

Table26.Habitatestimatesbasedofeach(Regional,Province,andIPNFs)modelandforthe fourspecies.DifferencesinspeciesspecificmodelbyRegion,ProvinceorbyIdahoPanhandle NationalForestsaredisplayed.

R1model Province IPNFs4th IPNFs IPNFsmodel model codeHUC Ecological additions Subsection (Bailey 1996) Northern goshawk Nest 137,420 16,201 16,201 16,201 PFA 145,225 58,132 57,007 57,007 Foraging 376,266 381,193 292,251 292,251 Added=>23 cm ba_wt_dbh 1 Flammulated owl Forest 33,602 13,342 7,795 7,795 Canopy coverage%of 4070%;SE, S,SW,W, andLR aspect 2;snag =>35cm Black-backed woodpecker Nest 606,125 606,125 FSVegquery onlyfor IPNFs Foraging 268,846 268,846 FSVegquery onlyfor IPNFs Pileated woodpecker Nest 175,349 172,833 172,833 Foraging 296,377 291,651 291,651

ThisSeptember242006versionreplacesallearlierversions. 129

Table26continued 1BA_WTD_DBHisthesumofthediameterofthetreetimesthenumberoftreesthetreerepresentstimesbasal areaofthetreedividedbytotalbasalarea. 2Southeast(SE),south(S),southwest(SW),west(W)andlevelrolling(LR).

Habitat Estimates—Northern Goshawk

Table27demonstratesabundanthabitatforthenortherngoshawkontheIPNFsbyEcological Subsection(Bailey1996).Thesizeofanareathatdescribesanortherngoshawknestsitevaries from10to12ha(Reynoldsetal.1992), thereforenesthabitatexistsontheIPNFsforupwardsto 1350nestsor270to675pairs(assumingonetofivealternativenestsareconstructed). Table27.Habitatestimates(ha)forthenortherngoshawkfortheIPNFsbyEcological Subsection(Bailey1996). Subsection Nest Pfa Foraging M333Aa 1,135 17,587 M333Ab 1,737 11,587 46,930 M333Ac 110 M333Ba 1,185 23,104 M333Be 1569 3,991 M333Da 4,949 15,528 124,957 M333Db 6,462 12,120 61,685 M333Dd 2,025 14,173 M333De Forest 16,201 57,007 292,251 Northerngoshawkpfa(Table27)habitatontheIPNFswouldsupportupwardsto238pairs, assuminganortherngoshawkrequiresabout240haforapfa(rangeisfrom120to240ha, Reynoldsetal.1991). Thenortherngoshawkforaginghabitatrelationshipmodelwasadjustedtoincludeanadditional structurerequirement(>23cmba_wt_dbh,Table26,R.Ralphs,personalcommunication, IPNFs,Coeurd'Alene,Idaho).ForaginghabitatontheIPNFs(Table27)couldprovidehabitat forupwardsto166pairs,assuminganortherngoshawkrequires1758haforforaging(usingan estimateof1,758haforforagingandbasedonuseofradiotelemetry,BrightSmithandMannan 1994).

ThisSeptember242006versionreplacesallearlierversions. 130

Table28.Habitatestimates(ha)forthenortherngoshawkfortheIPNFsby4 th Code HydrologicUnit. HUC Nest Pfa Foraging 17010101 17010103 17010104 4,216 25,901 17010105 538 1,076 10,761 17010204 17010213 584 9,929 17010214 593 2,964 20,745 17010215 1,804 9,623 40,297 17010216 17010301 3,026 19,979 84,764 17010302 674 8,086 17010303 1,233 3,700 11,717 17010304 6,789 12,347 61,119 17010305 699 698 7,682 17010306 17060308 17060108 17060306 17060307 17060308 1,041 2,082 12,496 Forest 16,201 57,007 292,251 Asimilaranalysisusingthenortherngoshawkwildlifehabitatrelationshipmodelsfornestsite habitat,pfaandforaging(Table26)butby4thCodeHydrologicUnit(HUC)ontheIPNFsis displayedinTable28.Nest,pfa,andforaginghabitatforthenortherngoshawkeitherbyHUC orEcologicalSubsectionisabundantontheIPNFs. Habitat Estimates—Black-backed Woodpecker

BlackbackedwoodpeckernesthabitatwasestimatedbyEcologicalSubsection(Bailey1996) (Table29)andby4 th codeHUC(Table30)fortheIPNFs.Theblackbackedwoodpeckernest habitatrelationshipmodelestimatestheamountofhabitatwithasnag=>12.7cm/haandless thanfiveyearssincedeath.Theliteraturesuggeststhatsnagsremainaviablesubstrateforuse bytheblackbackedwoodpeckerforatleastfiveyearsasforaginghabitat.Itisassumedthatthe snagifofappropriatesizecouldalsoserveasanestcavitytreeoverafiveyearinterval.The blackbackedwoodpeckerisaprimarycavitynesterandexcavatestheirowncavitiesmostoften

ThisSeptember242006versionreplacesallearlierversions. 131

Table29.Habitatestimates(ha)fortheblackbackedwoodpeckerfortheIPNFsbyEcological Subsection(Bailey1996). Subsection Nest Foraging M333Aa 39,713 14,183 M333Ab 121,096 50,986 M333Ac M333Ba 74,646 51,541 M333Be 9,978 2,494 M333Da 195,483 72,158 M333Db 127,487 59,336 M333Dd 35,095 17,548 M333De Forest 606,125 268,846 indeadordyingconifertrees(Short1974,RaphaelandWhite1984,Weinhagen1998,Martin andEddie1999). ForaginghabitatontheIPNFsbyEcologicalSubsection(Table29)and4 th codeHUC(Table30) fortheblackbackedwoodpeckerwasestimatedbytheamountofhabitatwith=>64snags/ha and=>2.5cm.Onlylodgepolepine,larchandsprucesnagslessthanfiveyearssincedeath wereincludedintheestimateofforaginghabitat. Thesizeofanareathatdescribesablackbackedwoodpeckerterritoryvariesfrom72hato124 ha(ascitedinDixonandSaab2000andinHoyt2000).TheIPNFsprovidesforginghabitatfor upwardsto2,168to3,734pairsandhigheramountofnestinghabitats(Table29andTable30). Table30.Habitatestimates(ha)fortheblackbackedwoodpeckerfortheIPNFsby4 th Code HydrologicUnit. HUC Nest Foraging 17010101 17010103 17010104 74,090 46,983 17010105 27,979 18,831 17010204 17010213 21,027 8,177 17010214 52,755 21,339 17010215

ThisSeptember242006versionreplacesallearlierversions. 132

Table30continued 17010216 17010301 132,600 49,041 17010302 12,804 8,760 17010303 23,435 2,466 17010304 133,356 72,232 17010305 8,380 2,095 17010306 17060308 17060108 17060306 17060307 17060308 24,992 3,644 Forest 606,125 268,846

Habitat Estimates—Flammulated Owl HabitatsfortheflammulatedowlontheIPNFsbyEcologicalSubsection(Bailey1996)is summarizedinTable31usingthewildlifehabitatrelationshipNRMEP(Table17)modelwith threemodifications(Table26):1)canopycoverageof4070%;2)aspectofSoutheast,South, Southwest,andWest;and3)asnag=>35cm(R.Ralphs,personalcommunication,IPNFs, Coeurd'Alene,Idaho). Table31.Habitatestimates(ha)fortheflammulatedowlfortheIPNFsbyEcological Subsection(Bailey1996). Subsection Habitat M333Aa 2,269 M333Ab M333Ac M333Ba M333Be M333Da 3,710 M333Db 1,762 M333Dd M333De Forest 7,795

ThisSeptember242006versionreplacesallearlierversions. 133

Table31.Habitatestimates(ha)fortheflammulatedowlfortheIPNFsby4 th CodeHydrologic Unit. HUC Habitat 17010101 17010103 17010104 17010105 17010204 17010213 584 17010214 1778 17010215 1,202 17010216 17010301 1,209 17010302 674 17010303 616 17010304 1,234 17010305 17010306 17060308 17060108 17060306 17060307 17060308 520 Forest 7,795 HabitatbyEcologicalSubsection(Bailey1996)fortheflammulatedowlontheIPNFsis displayedinTable30.Giventhesmallterritorysize[Linkhartetal.(1998)of11.1±1.9hain 1982and18.3±5.1hain1983],theIPNFswouldprovidehabitatforupwardsto426 flammulatedowlpairs.Asimilaranalysisusingtheflammulatedowlbutby4thCode HydrologicUnit(HUC)ontheIPNFsisdisplayedinTable31. Habitat Estimates—Pileated Woodpecker ThewildlifehabitatrelationshipsmodelforthePileatedwoodpeckernestandwinterforaging habitat(Table26)estimates7,795hafornesthabitatand291,651haforforaginghabitat(Table 32andTable33)ontheIPNFs. Inwinter,mostlikelythecriticalperiod,thepileatedwoodpeckerrequiresanareaof40ha (Bonor2001).Inwinter,theIPNFsmayprovidecriticalwinterforaginghabitatforupwardsto

ThisSeptember242006versionreplacesallearlierversions. 134

Table32.Habitatestimates(ha)forthepileatedwoodpeckertheIPNFsbyEcological Subsection(Bailey1996). Habitat Subsection Nest Foraging M333Aa 22,125 28,366 M333Ab 27,231 48,089 M333Ac M333Ba 8.886 23,697 M333Be 2,494 2,993 M333Da 70,520 121,865 M333Db 33,485 49,935 M333Dd 7,424 16,872 M333De Forest 172,833 291,651 Table33.Habitatestimates(ha)forthepileatedwoodpeckerfortheIPNFsby4 th Code HydrologicUnit. HUC Habitat Nest Foraging 17010101 17010103 17010104 16,263 17010105 11,299 17010204 17010213 584 10,513 17010214 1778 29,637 17010215 1,202 54,732 17010216 17010301 1,209 80,527 17010302 674 5,391 17010303 616 16,651 17010304 1,234 50,625 17010305 4,888 17010306 17060308 17060108 17060306

ThisSeptember242006versionreplacesallearlierversions. 135

Table33continued 17060307 17060308 520 11,454 Forest 7,795 291,651 7,291pairsofpileatedwoodpeckers.Asimilarpatterninabundantnestandwinteringhabitatfor thepileatedwoodpeckerontheIPNFsisevidentbyHUCs(Table33). Amounts of habitat Table34comparesestimatedamountsofhabitatforthefourspeciesconsideredinthis assessmentbasedbothonRedmondetal.(2001)andthisconservationassessment.Inboth estimates—theindependentUniversityofMontanaSpatialAnalysisLaboratory—andthis conservationassessment,habitatisveryabundantacrosstheNorthernRegionandtheIPNFs.As describedinthemaintext(seealsoAppendix7andAppendix8),welldistributedhabitat(1982 rule,219.19)isnotanissue. Table34.Habitatestimates(ha)(Redmondetal.2001,thisassessment)forthegoshawk,black backedwoodpecker,flammulatedowl,andpileatedwoodpeckerontheIdahoPanhandle NationalForests. Goshawk Blackbacked Flammulatedowl Pileated woodpecker woodpecker Redmondetal. 869,940 775,172 275,606 849,612 (2001) IPNFsmodels 292,251 268,846 7,795 172,833 Table34compareshabitatamountsforthefourspeciesasestimatedbyRedmondetal.(2001) andbytheIPNFshabitatrelationshipmodels(Table26).Inbothcases(oneindependentand onebytheForestService),habitatisveryabundantforeachofthefourspecies.Thedifferences inthespeciesspecificestimates(Redmondetal.2001andthisassessment)summarizedinTable 34reflectuseofsatelitebasedinformationversusFIA.OnlyFIAmaybeusedtoestimate variablessuchastreesize,numberofcanopylayers,andtreedensityinconjunctionwith methodologysuchasbootstrap(Appendix2andAppendx3).Useofsatelliteimageryshould

ThisSeptember242006versionreplacesallearlierversions. 136 discusspossibleerrors(BeissingerandWestfall1998)andorbelimitedtodistinguishingforest andnonforestvegetationasinthisconservationassessment. Longtermviabilityandthesustainabilityofecosystemsreflecthowecologicalprocessesand nativespeciesinteract(Figure1,page69)andforma"figure8."TheecosystemcycleinFigure 8representsaselfreinforcingsystemthatmaintainshabitatwithinwhichspeciesevolveand havedependeduponforcenturiestothousandsofyears. TheIdahoPanhandleNationalForestswillconductananalysisofhistorichabitatsandpatterns inecologicalprocessesthatshapeandsustainhabitatsimportanttowildlife(Haufleretal.2002). Thismayresultinlossofsuitablehabitatforthefourspeciesconsideredinthisassessmentinthe shorttermbutwillcontributetolongtermsustainability(Representativeness,Redundancyand Resiliency)oftheirrespectivehabitats,andthereforetheirlongtermviability.

ThisSeptember242006versionreplacesallearlierversions. 137

Appendix 10 Habitat estimates based on models developed as part of the Wildlife Counicil

Draft Habitat Guidelines for the Black-backed Woodpecker Northern Region, USDA Forest Service

Introduction

Thepurposeofthisdocumentistoprovideprojectlevelhabitatguidancefortheblackbacked woodpecker.Thisguidancerepresentsbothinformationinthepublishedandunpublished(these anddissertations)scientificliteratureandexpertopinion.Thebestavailableinformationusedto developtheguidelinesincludedpeerreviewedliterature,unpublishedliterature(primarilytheses anddissertations),andRegionOneassessmentandinventoryandmonitoringdata.Where necessary,habitatrecommendationsfromotherstudiesareadjustedtobetterreflectRegionOne conditions.

Majorconclusionsorinformationthatformthebasisfortheguidelinesincludesthefollowing.

1.DixonandSaab(2000). The Birds of North America No. 298 providesdetailed informationonbreedingrange,nonbreedingrange,migration,morphology,pair formation,courtshipandcopulation,nestingphenology,metabolismandtemperature regulation,moltsandplumages,anddemographics. 2.USForestServiceRockyMountainRegionblackbackedwoodpeckerspecies assessment(http://fsweb.r2.fs.fed.us) 3.Hillisetal.(2002)producedanassessmentofblackbackedwoodpeckerhabitat whichevaluatedtheavailabilityoffirekilledforestswithintheNorthernRegion. O’ConnorandHillis(2001)conductedasimilaranalysisfortheLoloNationalForest in2001.Theseanalysescomparedhistoricamountsofpostfirehabitattoexisting amountswhichisoftenreferredtoinconceptastheHistoricRangeofVariability. 4.Samson(2006)providedaconservationassessmentwhichprovidesasummaryof publishedandunpublishedliteraturethatdescribeshabitatusebytheblackbacked woodpeckerandestimateshabitatavailablebyForest. 5.Lifehistory—MontanaNaturalHeritageProgram(http:/nhp.nris.state.mt.us/mbd) andIdahoDigitalAtlas(http://imn.isu.edu/digitalatlas). 6.Status—theblackbackedwoodpeckerisneitherthreatenednorendangered,and hasneverbeenpetitionedforlisting.Theblackbackedwoodpeckerhasaglobal conservationstatusrankofG5–demonstrablywidespread,abundantandsecure (www.natureserve.org).

ThisSeptember242006versionreplacesallearlierversions. 138

7.Populationtrend—ananalysisofBreedingBirdSurveys(http.//www.mbr pwrc.usgs.gov)for1966–1996indicatesasignificantincrease(6.7%change/year)in blackbackedwoodpeckerpopulationsinsprucehardwoods(n=26)BBSsurvey routes,asignificantincrease(6.6%change/yr)intheUnitedStates(n=27)BBS survey routes,andnosignificantpopulationtrendelsewhere(Saueretal.1997).No routefrom 1966to2004intheBBSdatabaseshowsalongtermdeclineforblack backedwoodpecker (Saueretal.2005). Principle Habitat Recommendations

●Background

UnderstandinghabitatrequirementsfortheblackbackedwoodpeckerinthenorthernRocky Mountainsandelsewhereislimitedduetostudydesign(Hoffman1997).Fewstudieshave equallysampledallhabitatsandseralstagesinproportiontotheiravailabilityonthelandscape. Forexample,IbarzabalandDesmeules(2006)testedthehypothesisthattheprobabilityof detection inburnedandunburnedforestswassimilar.Theyfoundthetimetodetectblack backedwoodpeckersinburnedforest(3minutes)wassignificantly(p<.0001)differentfromthe timerequired(25minutes)inunburnedforest.Thissuggeststhatsurveysfortheblackbacked woodpeckermustadjustthelengthoftimeatasurveysamplepointtoreflectdifferencesin habitat. Threepossiblecausesexisttoexplainblackbackedwoodpeckerdistributionandabundancein theNorthernRegion:1)useofpostburnareas;2)useofinsectoutbreakareas;and3)apattern expectedinalandscapewithanaturalrangeintheoccurrencesofecologicalprocessessuchas fireandinsectuse.Allthreepremisesassumeacloserelationtothespatialandtemporal distributionandabundanceofbarkbeetlesandorwoodboringbeetles.

Postburnhabitat . Lester(1980)examinedtherelationshipoffivewoodpeckersandanendemic populationofmountainpinebeetles.Woodpeckerswereobservedtobothfeedandnestinpost fireareas.Harris(1982)inastudyinapostfireareanearMissoula,MontanashowedPicoides tobepresentalthoughadeclineoccurredthreeyearspostfire.ThisconcentrationofPicoides woodpeckerswasinresponsetobarkbeetlesandwoodboringbeetlelarvaeinthefiredamaged trees.Inthisstudy,manylodgepolepineswereattackedbymountainpinebeetlesbuttheshort termnatureofthestudyprecludedestablishingconsistentpredictorsofwoodpeckerdensities.

Inthesummersof19921994,Caton(1996)surveyedbirdsintheRedBenchpostfireareain northwesternMontana.Mostoftheburnareaconsistedoflodgepolepreviouslykilledby mountainpinebeetlesbutincludedpatchesofDouglasfir,Engelmannspruce,subalpinefir, westernlarch,ponderosapineandothertreespecies.Additionaltransectsinborderingunburned standsof80yearoldlodgepolepinewereestablishedforcomparativepurposes.

Caton(1996)found12blackbackednestsinthepostfireareawithcavitiesexcavatedintwo treespecies(Table11).Caton(1996)didnote(page31)thatlargefires,i.e.,theRedBenchin thestudyarea,werenotcommonhistorically(beforeEuroAmericans)inherstudyareaandthat firesuppression“mayhaveseriousconsequencesfortheblackbackedwoodpecker”(page31).

ThisSeptember242006versionreplacesallearlierversions. 139

Caton’sstudyshowedthatfoodavailabilityandnotnestsiteavailabilitywaslimitinguseof postfireareasbyboththeblackbackedwoodpeckerandthethreetoedwoodpecker.

Hutto(1995)estimatedbirdabundancein34burnsitesinthenorthernRockyMountains followingthe1988forestfires(onefirein1987).Thesedatawerecomparedtobirdcountdata inothervegetationtypes.Hutto(1995)foundanabundanceofblackbackedwoodpeckersand theyseemedtobenearlyrestrictedindistributiontopostburnhabitats.Murphyand Lehnhausen(1998)expandedonHutto’sobservations,andsuggestedrecentlyburnedforests represented“sourcehabitats,”i.e.,populationnumbersmayincreaseinpostfireanddecrease whenoccupyingotherandunburnedforests.

Morerecently,inaseriesofstudies(http://www.rmrs.nau.edu/lab/4251/birdsburns),Saabreports thattheblackbackedwoodpecker:

1)nestedinareaswithsignificantlyhighersnagdensities(101/acre)andlargertrees(15.8 inches)thannonnestareasinIdahopostburnforests;

2)oddsofnestoccurrencedoubledwithanincreaseof2snags/acre;

3)preferredponderosapine(nearly2:1)overDouglasfir;

4)hadgreaterodds(nearly3:1)ofthenestinunloggedversusloggedarea;

5)forevery20acresincreaseinpatchsize,oddsofnestingincreased1.2times;

6)nestsuccesswashigherinpostburnthanbeetlekilledforest;and

7)nestingnumberspeaked4yearspostfire.

Thefavorableeffectsoffirearenotlonglastingforeitherthebarkbeetleorthewoodboring beetle.Partiallyburnedtrunksandrootsmayprovidehabitatforthebarkbeetleforupto10 yearsafterburning(Werner2002).Thelimitingfactorforthewoodboring(Cerambycidaeand Buprestidae)isthemoisturecontentofthewood.Insectdevelopmentandsurvivaldecreasesas treesdryoutinfourtoeightyearsafterfiredependingonlocation(WernerandPost1985). Populationlevelsofwoodboringdroptolevelsbelownearbyundisturbedsiteswhenpostfire areaschangeanddryovertime.Partiallyburnedareasneartheperimeterofintensivelyburned sitesprovidehabitatfordiverseassemblagesofwoodboringbeetles.

Barkbeetleinfestedhabitat .Areasofbarkbeetle(Scolytidae)infestationhavereceivedless attentionintermsofresearchonblackbackedhabitatthanpostburnsareas.Bulletal.(1986) andGoggans(1988)reportnestingofblackbackedwoodpeckersinareasofbarkbeetle outbreaksinOregon.Setterringtonetal.(2000)proposedpopulationsofblackbacked woodpeckerscouldbesupportedbyendemiclocalizedpopulationsofbarkbeetles ,asHughes suggested(2000)innortheasternCalifornia.

ThisSeptember242006versionreplacesallearlierversions. 140

Mohren(2002:87)inhisstudyoftheblackbackedwoodpeckerintheBlackHillsofSouth Dakotaconcluded“Itisalsopossiblethesewoodpeckerspeciesarenotselectingforaging locationbasedonhabitatcharacteristics,butareselectingareaspopulatedwithwoodboring beetles.”Mohren(2002)criticizedmanagementrecommendationsintheBlackHillsForestplan (1996RevisedLandResourceManagementPlanFinalEnvironmentalStatementIII450)that callforthinninginthatsuchtimbermanagementwouldreducehabitatsuitableforinsect outbreaksand,therefore,habitatfortheblackbackedwoodpecker.

Mohren(2000:86,87)furthersuggestedaneedtocreate“standsthatwillbecomesusceptibleto woodboringbeetleswillprovideanabundanceofpreyforbothofthesespecies(blackbacked andthreetoedwoodpeckers)aspartofforestmanagementbytheBlackHillsNationalForest. Also,allowinglargeareastobecomeinfestedwithwoodboringbeetles(suchasBaerMountain area)issuggestedtoletblackbackedandthreetoedwoodpeckersincreaseinpopulationsize. Currentoutbreaksshouldbeexaminedtodeterminetheeffectswoodboringbeetleshaveon blackbackedandthreetoedwoodpecker.”

Bonnot(2006)alsoworkingintheBlackHillswithsupportfromtheUSForestServicefound blackbackedwoodpeckersnestedinareasofmountainpinebeetleandpreferredareaswith increasedsnagdensities.Bonnotfoundblackbackedwoodpeckernestsuccessinbarkbeetle areasrangedfrom75%(n=12in2004)to47%(n=32in2005)andusedbothliveanddead aspentreesonanequalbases.Hefurthersuggestedthatblackbackedwoodpecker demographicsinbarkbeetlehabitatwereatleastequaltothatreportedinpostburnhabitat. Bonnot(2006:2)furthersuggestedthatforestmanagers"willneedtoconsidertradeoffs betweentimberharvestandwildlifespeciesthatbenefitfrommountainpinebeetleinfestations."

Anaturalrange . Mohren(2002)suggestedthathistoricallysmallbutwidespreadoutbreaksof woodboringbeetlesinanaturallandscapecouldsupportblackbackedwoodpeckerpopulations. R.Dixon(2005,personalcommunication,IdahoFishandGame,Boise)alsosuggeststheblack backedwoodpeckermaybeneitherdependentoneitherpostfireorinsectoutbreaksbutmaybe welldistributedbutrelativelyuncommoninthemorenaturallandscape.

AsnotedbyHoytandHannon(2002),fewstudieshaveconsideredallhabitatsinproportionto availabilitynorconsideredthecomparativedifficultyinobservingbirdsinopenpostfirehabitats versusthemoreclosedandstructurallycomplexliveforestenvironment.

HoytandHannon(2002)foundblackbackedwoodpeckersnestinginstandsofoldspruce46to 93milesdistantfromthepostfirestudy,suggestingabilityfortheblackbackedwoodpeckerto surviveinnonpostfireareas.Hoyt(2000:34)furthernotes“toassessthesourcesinkdynamics ofrecentlyburnedandoldgrowthblacksprucehabitatsestimatesoffecundityandsurvival wouldberequired.”Hoyt’ssamplesize(n=22nests)wasinadequatetoestimateeither fecundityorsurvivalratestoestimatesourcesinkdynamics.Hoyt(2000:34)continuedwith“I believethatwithanintensifiedsearcheffortitwouldbepossibletofindnestsinunburnedforests (seeWeinhagen1998).Therefore,Ibelievethatoldgrowthblacksprucesitesembeddedina matrixofoldforestsneedtobeexaminedmorecloselybeforetheycanbeclassifiedassink habitat.”Treemortalityduetothemountainpinebeetlecanoccurasscatteredindividualtrees welldistributedacrossthelandscapeormayimpactentiregroupsoftrees.

ThisSeptember242006versionreplacesallearlierversions. 141

●Landscape

Managingatalandscapelevelmaybeimportantforthosespecieswhichmayoraresuggestedto respondtofeaturesofthelandscapesuchasbeetleoutbreaksandfirethatchangeoverspaceand timeinlocation.Oneissueinmanagingforspeciessuchastheblackbackedwoodpeckerishow muchofthelandscapeisneededtomaintainthespeciesparticularlyinareasofsalvagelogging. Unfortunately,dataarefewtoprovideguidelinesbetweenlevelsoftimberharvestandecological consequences(Hutto2006). OneapproachtoconservationincludingthatoftheForestServiceistousetheRangeofNatural Variation(RNV).TheprimaryassumptioninRNVisthatthearrayofhistoriccommunitytypes andtheirdistributionwithintheirexpectedrangeisadequatetomaintaintheviabilityofthe majorityofspecies(Samson2002).Understandingnaturalpatterninfireisontheincreaseinthe NorthernRegionbutpublishedexamplesthatdescribethehistoriclandscapearefew(Gallantet al.2003).Ifestimatesofthehistoriclandscapeextentandcompositionareavailable,onecould suggestbasedonareviewoftheliterature(Fahrig2003)thatpersistenceofspeciesassociated withahabitattype(i.e.,postfireorbeetleoutbreak)isvulnerablewhenathresholdof2030%of historicisreached.Importantassumptionsincludethatneitherpreorplannedmanagement actionshaveanaffectandvariationinhabitatqualityisminimal. IntheNorthernRegion,meannumberoflivetrees/acre(>5inches—asizeconsideredlarge enoughtoremainstandingfollowingfire)rangefrom145ontheCusterNFto252onthe BeaverheadDeerlodgeNF.MeannumberofstandingdeadtreesintheNorthernRegionrange from22.4/acreontheClearwaterNFto44.9ontheGallatinNF.Conceptually,followingfire,it wouldbepossibletohaveupwardsto275snags/acreonaNationalForestassumingdeadtrees survivefire—amorelikelyuppergeneralboundwouldbe145to230/acre. Researchindicatesthathabitatusebytheblackbackedwoodpeckervariesgreatly(Table1) variedotherthanselectingrelativelysmalltreesfornestcavities.Nevertheless,inareassalvage loggingofpostfireorbeetlekilltreesareas,thefollowingisrecommendedasaminimum. 1.Maintain30%ofpostfireorbeetlekilltreesareasby6thcodeorlargerhydrologicalunitas identifiedthroughaRNVanalysis.Thiswouldbeaconceptualminimumrequiredfor persistence —ahigherpercentwouldbebetterconservation.Minimumamountsofeitherpost burnorbeetleinfestedhabitattopermitnestingareunknown. 2.MeetForestPlanguidelinesforsnagnumbersanddistributions.IfForestPlanguidelinesfor snagnumbersanddistributionsarenotavailable,provideupwardsof5livetrees/acrefornesting and20snags/acre(Table1)dependingonthenaturalpatternonvegetationinthetreatmentarea. Table1.Summaryofblackbackedwoodpeckernest,nestarea,andforaginghabitat. Habit Key Bullet Harris Groggans Mohen Saab Bonnot Taylorand Rangeof at Compon al. 1982 2 etal. 2002 4 2006 5 2006 6 Schachtell Conditions Featur ents 1986 1 1989 3 2002 7

ThisSeptember242006versionreplacesallearlierversions. 142

es Nest Live 2 2 8.9 5.6 midpoint5, Trees/ac range29 Dead 4 14 4.9 2.8 101 13 2.4 midpoint Trees/ac 20,range2 101 Size 11.81 9.19+ 7.87 15.75 15.75 Conifer 10.12 816 (inches) + 1.11 +0.79 – 2.72 10.81+ 1.57 Aspen– 7.85+ 0.84 Cover Multi 68.9% Multi Basal Area Nest Live 17+ 32 >17 Area Trees/ac 16.5 Dead 18+ >17 Trees/ac 18.1 Size 4.9+ >5 (inches) 0.39 Cover 46% 28+ 2846 (%) 18.59% Basal 20+ Area 11.9 Forag Live ing Trees/ac Dead 1.9 129+ 23+12.6 23129 Trees/ac 9.7 Size 9.49 1 >1 (inches) Cover Basal Area 1Bulletal.(1986)studyareainOregon. 2 Harris(1982)studyareanearMissoula,Montana. 3Grogganetal.(1989)studyareaontheDeschutesNationalForestinOregon. 4 Mohen(2002)studyareaintheBlackHills,SouthDakota. 5Saab(2006)studyareasinIdaho,SouthDakota,andMontana. 6Bonnot(2006)studyareaintheBlackHills,SouthDakota. 7TaylorandSchachtell(2002)analysisareaontheIdahoPanhandleNationalForest. 3.Moderateandhighintensityburnedforestareasaswellasareasofbarkbeetleinfestation maybeusedfornestinghabitat.Moderateandhighintensitypostfireareasmaybe suitableforupto10years.Habitatqualityisbetter1–4yearsfollowingfire. 4.Inpotentialburnareas,patchsize(biggerbetter)andprefirecrownclosure(>50%)isa predictorofpostfirehabitatuse—probablyreflectsfuturesnagdensities.

ThisSeptember242006versionreplacesallearlierversions. 143

●NestArea Recommendationsastotheminimumstandsizearenotavailablebutshouldexceedthatrequired tomaintainapair(29to50acres,DixonandSaab2000).Standcompositionhabitat recommendationsaredifficultdotothevariationindatathatdescribenestingconditionsother thannesttreesize(Table1).TheRangeofConditionsarerecommendedbasedonavailable scientificliteratureandinformationisrecommendedtodescribedblackbackedwoodpecker habitat.Twovariable[nesttreesize(8to16inches)andnumberofsnags/acre (> 18/acre)]are usedintheupdatedConservationAsessment(Samson2006)toestimateEcologicalProvinceand Foresthabitatamounts. ●Projectanalysis 1.AllForestPlanstandardsaremetanddocumented. 2.AnalysisisdisclosedintheNEPAdocumentthatconsidersanddiscussesthequalityand quantityofhabitatnecessarytosupporttheblackbackedwoodpeckerutilizingavailable scientifichabitatrecommendations. 3.Considersanddisclosesanyknownblackbackedwoodpeckerpopulationinformation,dataor trendinformationavailablefrommonitoringsources,naturalhistorydatabasesetc. 4.Setsforthandappliesamethodologyformeasuringtheexistingamountofthespecieshabitat. Themethodologyusedissupportedbyevidencethatthemethodologyisreasonablyreliableand accuratewithreferencetoscientificandothersourcesreliedupon. 5.ConsidersanddiscussestheamountofspecieshabitatavailableattheRegionaland/orForest widelevel(Samson2006). 6.Disclosestheimpactoftheprojectonthespecieshabitatbasedontheabove—including cumulativeimpacts—showingthatnoappreciableadversehabitatdisturbancewouldresultfrom theplannedactivity.ThebasisfortheForestService’sconclusionisadequatelyexplainedwith referencetothefactualbasisforitsanalysis. 7.Addressesandincludesdiscussionofanyscientificuncertaintyorcredibleopposingscientific viewpointsraisedinpubliccommentconcerninghabitatrecommendations,methodologiesetc. Duringprojectlevelplanning,itmaybenecessarytodeterminethepresenceofblackbacked woodpeckerstodeterminewhetheractivityrestrictionorhabitatrecommendationsshouldbe applied.Thepresenceofblackbackedwoodpeckerscanbedeterminedbyreviewing District/Forest/Grasslandwildlifesightingrecords,reviewingDistrict/Forest/Grasslandwildlife monitoringrecords,and/orconductingfieldinventoriesforblackbackedwoodpeckerswithinthe projectarea . SuchinformationshouldbeavailbleinFAUNA. Seeattachedchecklistforconsistency

ThisSeptember242006versionreplacesallearlierversions. 144

Summary

UnderstandinghabitatrequirementsfortheblackbackedwoodpeckerinthenorthernRocky Mountainsandelsewhereislimited.Fewstudieshaveequallysampledallhabitatsandseral stagesinproportiontotheiravailabilityonthelandscape.Dataareavailabletodescribeover 300nesttreesizes,lessinformationexistsonneststandorforaginghabitat.Threepossible causesexisttoexplainblackbackedwoodpeckerdistributionandabundanceintheNorthern Region:1)useofpostburnareas;2)useofinsectoutbreakareas;and3)apatternexpectedina landscapewithanaturalrangeintheoccurrencesofecologicalprocessessuchasfireandinsect use.Allthreepremisesassumeacloserelationtothespatialandtemporaldistributionand abundanceofbarkbeetlesandorwoodboringbeetles.Forestsareencouragedtouselocal informationifavailabletoadjusthabitatrecommendationssummarizedinTable1andas outlinedunderProjectAnalysis.

Literature Cited

Bonnot,T.W.2006.Nestingecologyofblackbackedwoodpeckersinmountainpinebeetle infestationsintheBlackHills,SouthDakota.Thesis,UniversityofMissouri,Columia,USA.

Bull,E.L.,S.R.Peterson,andJ.W.Thomas.1986.Resourcepartitioningamongwoodpeckers innortheasternOregon.USDAForestServiceResearchNotePNW444. Caton,E.L.1996.Effectsoffireandsalvageloggingonthecavitynestingbirdcommunityin northwesternMontana.Dissertation,UniversityofMontana,Missoula,Montana,USA. Dixon,R.D.,andV.A.Saab.2000.Blackbackedwoodpecker( Picoides arcticus ).No.509. InBirdsofNorthAmerica.A.Poole,andF.Gill,editors.TheAcademyofNaturalSciences, Philadelphia,Pennsylvania,andTheAmericanOrnithologists’Union,Washington,DC,USA. Fahrig,L.2003.Effectsofhabitatfragmentationonbiodiversity.AnnualReviewofEcology andSystematics34:487515. Gallant,A.,A.J.Hansen,J.S.Councilman,D.K.Monte,andD.W.Betz.2003.Vegetation dynamicsunderfireexclusionandlogginginaRockyMountainwatershed.Ecological Applications13:385403. Goggans,R.1986.HabitatusebyflammulatedowlsinnortheasternOregon.Master’sthesis, OregonStateUniversity,Corvallis,Oregon,USA. Harris,M.A.1982.Habitatuseamongwoodpeckersinforestburns.Master’sthesis,University ofMontana,Missoula,Montana,USA.

Hillis et al. 2002

ThisSeptember242006versionreplacesallearlierversions. 145

Hutto,R.L.1995.Compositionofbirdcommunitiesfollowingstandreplacementfiresin NorthernRockyMountain(U.S.A.)coniferforests.ConservationBiology9:10411058. Hoffman,N.J.1997.DistributionofPicoideswoodpeckersinrelationtohabitatdisturbance withintheYellowstonearea.Master’sthesis,MontanaStateUniversity,Bozeman,Montana, USA. Hoyt,J.S.2000.Habitatassociationsofblackbacked Picoides arcticus andthreetoed P. tridactylus woodpeckersinthenortheasternborealforestofAlberta.Dissertation,Universityof Alberta,Edmonton,Alberta,Canada. Hoyt,J.S,andS.J.Hannon.2002.Habitatassociationsofblackbackedandthreetoed woodpeckersintheborealforestofAlberta.CanadianJournalofForestResearch32:1881 1888. Hughes,K.K.2000.ForagingecologyofPicoideswoodpeckersinrelationtoponderosapine decaydynamics.Master’sthesis,UniversityofIdaho,Moscow,Idaho,USA. Hutto,R.L.1995.Compositionofbirdcommunitiesfollowingstandreplacementfiresin NorthernRockyMountain(U.S.A.)coniferforests.ConservationBiology9:10411058.

Ibarzabal,J.,andP.Desmeules.2006.Blackbackedwoodpecker( Picoides arcticus )in unburnedandburnedmatureconiferforestsinnortheasternNorthAmerica.Annuals ZoologicalFennica43:228234

Lester,A.M.1980.Numericalresponseofwoodpeckersandtheireffectonmortalityof mountainpinebeetlesinlodgepolepineinnorthwesternMontana.Master’sthesis,Universityof Montana,Missoula,Montana,USA. Mohren,S.R.2002.Habitatevaluationanddensityestimatesfortheblackbackedwoodpecker (Picoides arcticus )andthreetoedwoodpecker( Picoides tridactylus )intheBlackHillsNational Forest.Master’sthesis,UniversityofWyoming,Laramie,Wyoming,USA. Murphy,E.C.,andW.A.Lehnhausen.1998.Densityandforagingecologyofwoodpeckers followingastandreplacementfire.JournalofWildlifeManagement62:13591372.

O'Connor and Hillis 2001

Samson,F.B.2002.Populationviabilityanalysis:management,andconservationplanningat largescales.Pages425441 in Populationviabilityanalysis.S.R.Beissinger,andD.R. McCullough,editors.UniversityofChicagoPress,Chicago,Illinois,USA. Samson,F.B.2006a.(www.fs.fed.us/r1/projects/wlfecology;AccessedJune29,2006).A Conservationassessmentofthenortherngoshawk,blackedbackedwoodpecker,flammulated owl,andpileatedwoodpeckerintheNorthernRegion,USDAForestService.Unpublished reportonfile,NorthernRegion,Missoula,Montana,USA.

ThisSeptember242006versionreplacesallearlierversions. 146

Sauer,J.R.,J.E.Hines,andJ.Fallon.2005.TheNorthAmerianBreedingBirdSurvey1966 2005,Version6.2.USGeologicalSurveyPatuxentWildlifeResearchCenter,Laurel,Maryland, USA.

Setterington,M.,I.D.Thompson,andW.A.Montevecchi.2000.Woodpeckerabundanceand habitatuseinmaturebalsamfirforestsinNewfoundland.JournalofWildlifeManagement64: 335345. Taylor,J.,andE.Schachtell.2002.BlackbackedwoodpeckerhabitatanalysisofsixIdaho PanhandleNationalForestattwoscales.Unpublishedmimeoonfile,IdahoPanhandleNational Forests,Coeurd’Alene,Idaho,USA. Weinhagen,A.C.1998.Nestsiteselectionbytheblackbackedwoodpeckerinnortheast Vermont.Master’sthesis,UniversityofVermontBurlington,Vermont,USA. Werner,R.A.2002.Effectofecosystemdisturbanceondiversityofbarkandwoodboring beetles.USDAForestServiceResearchPaperPNW546,Portland,Oregon,USA. Werner,R.A.,andK.E.Post.1985.Effectsofwoodboringinsectsandbarkbeetleson survivalandgrowthofburnedwhitespruce.Pages1416 in EarlyresultsoftheRosieCreekfire researchproject1984.AgriculturalExperimentStationPublication852,UniversityofAlaska, Fairbanks,Alaska,USA.

ThisSeptember242006versionreplacesallearlierversions. 147

DRAFTTerrestrialWildlifeConsistencyChecklist √ Topic Yes No NA Notes 1 Haveyoudeterminedtheprobabilityof occurrenceofwildlifespeciesand/or theirhabitatintheprojectarea? 2 Doeshabitatfortherelevantspecies occurboth,intheanalysisareaandon theForest? 3 Hasthespeciesbeendetectedboth,in theanalysisareaandontheForest? 4 Doesthespecieshavespecialstatus? (TES,SOCI,MIS) 5 Hasthespeciesbeeninvolvedinpastor ongoinglitigation?Haveyoureviewed theresultsofthislitigation? 6 Howwasspeciesoccurrence determined?(HistoricalorHard evidence) 7 HasaRegionalconservationorviability assessmentbeencompletedforthe species? 8 Hasthespeciesbeenaddressedinthe statecomprehensivewildlife conservationstrategy(CWCS)? 9 Haveconservationassessmentsand/or stateCWCSsidentifiedconservation needs,andaddressedcurrentor predictedtrendsinthespecieshabitat and/orpopulations? 10 Isthereacurrentorpredictedtrendin habitatcapabilityontheunit? 11 Arehabitatconclusionsinconservation assessmentsand/orstateCWCSs consistentwithFIAdataorotherbroad scaletools? 12 Haveyoudefinedthemethodsusedto determinehabitatconditions? 13 Haveyouassessedtheageofdata availableforuseinassessingthe speciesandhabitat? 14 Arethespecies’habitatparameters understoodandconsistentlyappliedon theunit? 15 Haveyouassessedhabitatconditionsat asufficientscaletodeterminedirect, indirectandcumulativeeffects? 16 Haveyouexplainedwhyyouranalysis areaissufficient? 17 Haveyouidentifiedallthepast,present

ThisSeptember242006versionreplacesallearlierversions. 148

andforeseeablyfutureactionsthat affecthabitatorthespecies? 18 Doestheproposedactionand alternativesprovidesufficient informationtoassesspotentialimpacts tospecieshabitat? 19 Whattypesandamountsofhabitatare affectedbytheproject? 20 Arethetypesandamountsofhabitatin shortsupplyintheanalysisareaand/or unit?Ifsowhy? 21 Havethepotentialeffectsbeenlisted anddescribed? 22 Haveyoudescribedwhethertheeffects arepermanent,temporaryorseasonal? Haveyoudescribedwhyandforhow long? 23 Havetheeffectstospecieshabitatbeen putintocontext?Haveyoudisclosed thepercentageofthesuitablehabitat thatisbeingaffectedintheanalysis areaandontheforest? 24 Havehabitatbaseddesigncriteriabeen incorporatedintotheproposedactionor analternative? 25 Aremitigationmeasuresneededabove andbeyondprojectdesigncriteria? 26 Dothehabitatevaluations,project effectsanddeterminationstrack consistentlythroughtheassessment process? 27 Haveyoumadeafinaleffect determination?Haveyouusedthe appropriatedeterminationlanguage? 28 Haveyouclearlystatedtherationalefor thedetermination? 29 Hasthebestavailablesciencebeenused anddocumentedintheprojectrecord? 30 Hasopposingsciencebeenusedand documentedintheprojectrecord? 31 Hasscientificuncertaintybeen addressedintheassessment? Amoredetailedexplanation/descriptionofthesechecklisttopicsiscontainedintheprojectrecord. Definitions: Probability of Occurrence –Low =Noevidenceof,orpotentialforthespeciesorhabitat.Speciesis notrelevanttotheproject;Moderate =Evidenceof,orpotentialforthespeciesorhabitat;High =Species reproductivesitesareknown.ModerateandHighprobabilityspeciesarerelevanttotheproject. Habitat capability –Theabilityofaspecifiedareatosupportaspeciesexpressedintermsofnumbersofanimals and/oramountofsuitablehabitat.

ThisSeptember242006versionreplacesallearlierversions. 149

HabitatEstimatesfortheblackbackedwoodpeckerusingthemodeldescribedabove(i.e.,Table 1). Forest Habitat(ha) BeaverheadDeerlodge 170,698 Bitterroot 42,560 IdahoPanhandle 426,936 Clearwater 195,619 Custer 28,703 Flathead 55,539 Gallatin 119,519 Helena 47,459 Kootenai 89,503 LewisandClark 92,856 Lolo 105,255 NezPerce 298,226

ThisSeptember242006versionreplacesallearlierversions. 150

DRAFT Habitat Guidelines for the Northern Goshawk Northern Region, USDA Forest Service Introduction

TheNorthernRegionhasthreeapproachestogoshawkconservation:1)summarizethebest availableinformationandestimateamountsanddistributionsofgoshawkhabitat(Samson2006a and2006b);2)useagridbasedpeerreviewed(WoodbridgeandHargis2006)sampling frameworkthatallowsforestimationofdetectionprobabilitiestoestimategoshawkoccurrence (Kowalski2006);and3)provideconsistentactivityandhabitatguidelinesattheprojectscale.

Thisdocumentprovidesmanagementguidelinesfornortherngoshawkduringprojectlevel analysestoprotectadultsandtheiryoungduringthebreedingseasonaswellastosustainhabitat overtimeatspatialscalesthatarebiologicallymeaningful(nestarea,postfledgingarea,and foragingarea,detailedbelow).Thebestavailableinformationwasusedtodevelopthe guidelines,includingpeerreviewedliterature,unpublishedliterature(primarilythesesand dissertations),andRegionOneassessmentandinventoryandmonitoringdata.Wherenecessary, habitatrecommendationsfromotherstudieswereadjustedtobetterreflectRegionOne conditions. Majorconclusionsthatformthebasisfortheguidelinesincludethefollowing: 1. Nodemographicinformationexiststosuggestadeclineingoshawknumbers(USDIFish andWildlifeService1998,Kennedy2003,Andersonetal.2004,SquiresandKennedy 2006). 2. Goshawkpopulationgrowthrateisinfluencedbydensitydependentterritoriality(Reichet al.2004).Foodavailability(Salafskyetal.2005)andlackofpredationcharacterizehigh qualityhabitat(SquiresandKennedy2006). 3. GoshawkhabitatinRegionOneisabundantandwelldistributedwhereitoccursnaturally, andmoreforest,andthereforenestinghabitat,existsontoday’slandscapethanwhat occurredhistorically(Samson2006a). 4. Onewouldexpectwithahighlevelofconfidence(95%)that39%+10%ofroadaccessible habitatofallqualityinRegionOneshouldhavegoshawkspresentduringthebreeding season(Kowalski2006).Theestimateisbasedonasimple,oneyear,randomsample (n=114)of12,350samplingunitslocatedinroadaccessiblehabitatinRegionOnethatwere surveyedforgoshawkpresencein2005followingWoodbridgeandHargis(2005).Methods, results,managementimplicationsandcautionsaresummarizedinKowalski(2006). 5. Relevantspatialscales:RelevanthabitatvariablesfromForestInventoryandAnalysis(FIA) plotdatawereusedtomodelandestimatenestingandpostfledgingarea(PFA)habitatby NationalForestineachofthreeecologicalprovincesthatencompassRegionOne;the

ThisSeptember242006versionreplacesallearlierversions. 151

NorthernRockyMountainSteppe,MiddleRockyMountainSteppe,andSouthenRocky MountainSteppe(Bailey1996 in Samson2006a).WerecognizethatFIAdataprovides statisticallyreliableestimatesattheregionalandforestlevelsdowntoaroundthe5 th field hydrologicunitcodelevel.Thedataisusefulwhenanalyzingcumulativeeffectsfora project,butcannotbespatiallydisplayed.Asaresult,finerscalevegetationdata,suchas TSMRSorFSVeg,arenecessarytoquantifyandmapgoshawkhabitatattheprojectlevel, usingvariablesorcombinationsofvariablessimilartothoseusedintheFIAmodels. 6. Principlehabitatattributesinthenest,PFA,andforagingareas: a. Nest Area . i. Goshawksnestinavarietyofforesttypesthroughouttheirrange(i.e.Squiresand Reynolds1997,USDIFishandWildlifeService1998,Samson2005,Squiresand Kennedy2006). ii. Ingeneral,thenestareavegetationisdescribedbyanarrowerrangeof characteristics:matureforestswithlargertrees;relativelyclosedcanopies;and openunderstories(Ibid. ). iii. Averagepatchsizeofthecorenestareavariesbasedonavailablehabitat conditions,i.e.30acresrecommendedbyReynoldsetal.1992inthesouthwestern UnitedStates,40acresfoundbyClough(2000)inwestcentralMontana,74acres foundbyMcGrathetal.(2003)innortheasternOregonandcentralWashington,and 80acresfoundbyPatla(1997)inIdaho. iv. Noevidenceexiststhatthegoshawkisdependentonlarge,unbrokentractsof“old growth”ormatureforest(FederalRegister63:35183,June29,1998)orselectsfor "oldgrowth"forest(Whitford1991,McGrathetal.2003). v. Forestmanagementmayhaveeitherapositiveornegativeimpactongoshawk nestinghabitat(SquiresandKennedy2006).However,14yearsofdatacollected fromthesouthwesternUnitedStatesshowthatanumberoffactors,including weather,predators,competitors,anddisease,significantlyconfoundthedetectionof forestmanagementeffectsongoshawkreproduction(Reynoldsetal.2005). LimiteddatasuggestthatgoshawksinshelterwoodsystemsinFranceandItalymay beabletotoleratesomevegetationtreatmentsaroundnestareasdowntosome threshold(PenterianiandFaivre2001).Furthermore,McGrathetal.(2003@ p.24)foundgoshawksincentralWashingtonandnortheasternOregon(n=82) occurredclosertohumandisturbances(i.e.forestroads)comparedwithrandom sites(P=0.054),withproductivitylevelswellwithintherangesreportedforstudies inmanagedandunmanagedlandscapesthroughoutthewesternUnitedStates. vi. Morethanhabitatcompositionoranyotherfactor(i.e.preyabundance), territorialitydeterminesnestdistribution,andspringweatherdeterminesnest success(Joy2002,Reichetal.2004). b. Post-fledging area . i. ThefunctionofthegoshawkPFAisunknownbutisdefendedunliketheforaging area.ThePFAmayprovideprotectionfrompredationandserveasanareawhere youngbirdsdevelopflyingandhuntingskills (Reynoldsetal.1992,Kennedyetal. 1994).

ThisSeptember242006versionreplacesallearlierversions. 152

ii. Size(148to420acres),shapeandhabitatcompositionofthePFAmayvarywith localconditions( Ibid .). c. Foraging areas . i. Goshawkforagingareasareheterogeneousandmayincludesomematureforest components(SquiresandKennedy2006)aswellasamixofotherforestandnon forestcomponents(i.e.sagebrush,grasslands,lowlandriparian,andagriculture) (i.e.YounkandBechard1994,Reynolds1994,Patlaetal.1997). ii. Sizeofthetypicalhomerangeforthegoshawkvariesdependingonanumberof factors(1409to8649acres)(Kennedy2003). iii. Thecompositionofvegetativetypes,includingtreecanopyclosuresandsizeclass distributionslocatedoutsidethenestareablendintothesurroundinglandscape beyondthePFAscale,suchthat,nodifferenceinhabitatcompositioninoccupied versusrandomforagingareascanbedetected(McGrathetal.2003).

Project Habitat Recommendations

●Neststand Activity

Maintainaminimum40acre(seebelow)noactivitybufferplacedaroundknowngoshawknest treesoccupiedatleastonceinthepast10years(Reynoldsetal.2005,WoodbridgeandHargis 2006)tomaintainexistingconditionsinalloraportionofthenestarea.Patchshapeandsizeof thebuffermayvarydependingontopographyorotherlocalconditions(suchasmultiple alternatenestsfoundincloseproximitytooneanother).Noactivitymeansnoground disturbanceorvegetationmanipulationmayoccuratanytimeinsidethebufferednestarea,until thenestareaisnolongerusedbythebreedingpair. Thenoactivitybufferwasselectedto conserveexistingconditionsinthecorenestarea(see6.a.iii.above)becausedesiredconditions areassumedpresentaroundrecentlyoccupiednestareas;anditerrsontheconservativeside untilconclusive,empiricaldataontheeffectsofthinninginnestareasincloseproximitytonest treesisavailable. Habitat ThefollowingaredesiredconditionsfornestinghabitatthatmayvarybyEcologicalProvince, firehistory,insectactivityorotherlocalfactors(Samson2005:Table6).Maintainatleast240 acresofsuitablenestinghabitatinknownorpotentialgoshawkterritoriesinpatchesofatleast 40acreswherefeasible(adjustedfromReynoldsetal.1992toreflectRegionOneconditions). NorthernRockyMountainEcologicalProvince (includingtheIdahoPanhandle,Kootenai, Flathead,Lolo,Bitteroot,andClearwaterNationalForests). Treedominancegroup:Grandfir,larch,westernwhitepine,ponderosapine,lodgepolepine, Douglasfir,hemlockmix,westernhemlock,aspen,andbirch.Treesize:14+3.8inches Deleted: ¶ Canopycover:79.8+12.2%

ThisSeptember242006versionreplacesallearlierversions. 153

Basalarea:181+65.7squarefeet/acre Structureclass:1(onestory),2(twostory) MiddleRockyMountainProvince (includingtheBeaverheadDeerlodge,Helena,Lewisand Clark,andNezPerceNationalForests) Treedominancegroup:Grandfir,larch,westernwhitepine,ponderosapine,lodgepolepine, Douglasfir,hemlockmix,westernhemlock,aspen,andbirch Treesize:15.4+2.5inches Canopycover:52.4+18.2% Basalarea:187+65.7squarefeet/acre Structureclass:1,2 SouthernRockyMountainProvince (includingtheCusterandGallatinNationalForests) Treedominancegroup:Lodgepolepine,Douglasfir,ponderosapine,andaspen Treesize:12.5+3.0inches Canopycover:70.0+10.3% Basalarea:142+38.3 squarefeet/acre Structureclass:1,2 ●Postfledgingarea Activity

A297acre(Reynoldsetal.1992)noactivitybufferfrom15April through15Augustarounda nest,currentlyactiveorwasactivethepreviousyear,toprotectthegoshawkpairandyoung fromdisturbanceduringthebreedingseasonuntilfledglingsrefineflyingskills.AfterAugust 15,treatmentrelatedactivitiesmaycommencewithinthePFA.

Habitat Table1providesarangeofconditionsforhabitatcompositionfoundinPFAsinthewestern UnitedStatesshowingthevariationfoundamonggeographicregions,dependingonEcological Province,firehistory,insectactivityorotherlocalfactors.NoteMcGrathetal.(2003) quantifiedthecompositionofthePFAbyseralstage.Theseseralstageswerecombinedand placedintooneofthreetreesizeclassesplusopenings,tobestmatchthenomenclatureusedby theNorthernRegionincluding,seedling/saplings(<5”dbh),polesized(5to8.9”dbh);mature andolderforest(>9”dbh),andopenings(wet/drycombined).Table1alsodisplaysthe proportionofPFAswithgreaterthan50%canopycover6.Acanopycoverage>=50%is suggestedforForestsintheMiddleandSouthernRockyMountainEcologicalProvinces;>=70% fortheNorthernRockyMountainEcologicalProvince(Samson2006a).Thelastcolumn displaystherangeofmeanconditionsfoundamongthestudies.

ThisSeptember242006versionreplacesallearlierversions. 154

Table1.Rangeofconditionsforhabitatcompositionfoundinpostfledgingareas(PFAs)inthe westernUnitedStates.DatareflectthemeanproportionofthePFA,expressedinpercentage (%),comprisedofeachseralstageintheMcGrathetal.(2003)studyandeachsizeclassplus openingsinallotherstudies(seedling/sapling=<5”dbh;polesized=5to8.9”dbh;matureand older=>9.0”dbh).TheproportionofthePFAcomprisedofpoleandlargerforestwith>50% canopycoverisalsodisplayedforeachstudy. McGrathetal.(2003:Table Reynoldset Patla Desimone Clough Rangeof 15) 1 al.(1992) 2 (1997) 3 (1997) 4 (2000) 5 Conditions Mean%of(StandardError) Mean%of(StandardError)bySizeClass bySeralStage Standinitiation 3.6(0.9) Seedling/ 10 18.3(3.0) 4.2(1.7) 9.3(2.9) 4to15 sapling Highstem 18.3(2.0) Polesized 20 20 15.3(2.9) 65.7(5.0) 18to61 exclusion Lowstem 8.3(1.4) exclusion Highunderstory 37.2(2.0) Mature 60 66.0(4.0) 44.8 11.3(2.6) 14to62 reinitiation andolder Lowunderstory 24.8(2.2) forest reinitiation Oldgrowth 0.9(0.4) Pole/Maturewith 55.5 66 36.5(4.9) 69 36to69 >50%canopy cover 6 Wetopenings 2.9(0.4) Openings 10 6.7(2.2) 6.7(2.2) 9to10 Dryopenings 5.4(1.1) 1McGrathetal.(2003),northeasternOregonandcentralWashingtonintheBlueMountainsandEasternCascade Provinces.Nestsfoundinmixedconifer,Douglasfir,ponderosapine,westernlarch,lodgepolepinebetween2388 and6991feetelevationthataveraged22inchesofprecipitationperyear. 2 Reynoldsetal.(1992),southwesternUnitedStates,managementrecommendationsforponderosapine,mixed conifer,andsprucefirforests. 3Patla1997,southeasternIdahoandwesternWyomingincludingportionsoftheMiddleandNorthernRocky MountainProvinces.GoshawknestswerefoundinDouglasfir,lodgepolepine,ormixedconiferforestsbetween 6102and7923feetelevationthataveraged16to24inchesofprecipitationperyearatthelowerelevations. 4Desimone(1997),easternOregon,BlueMountainsProvince.Nestsfoundinponderosapine,mixedconifer,and lodgepolepine(noelevationalrangeorannualprecipitationreported). 5 Clough(2000),westcentralMontana,MiddleRockyMountainProvince.NestswerefoundinDouglasfir, lodgepolepine,andmixedconiferforestsbetween5000and6601feetelevationthataveraged14inchesof precipitationperyearatlowerelevations. 6B.Moser(pers.comm.September18,2006),Phd.dissertationinprep.attheUniversityofIdahoatMoscow, basedontelemetrydatacollectedinnorthernIdaho,recommendsmaintainingatleast40%ofthePFAinpolesized orlargerforestwithhigh(>50%)canopycover,withatleast100ofthoseacresformingcontiguousforestthat encompassestheoccupiednestsiteorneststand. ●Foraging McGrathetal.(2003:48)show“thegoshawk’srelianceonspecifichabitatconditionsfor nestingdecreasesasdistancefromthenestincrease.”Hargisetal.(1994)duringathreeyear studyofnortherngoshawksinCaliforniatrackedeightfemaleandtwomalenortherngoshawks equippedwithradiotransmittersthatprovidedataonforaginghabitats.TheintentoftheHargis etal.(1994)studywastodeterminethosefeaturesorlandscapepatternsthatinfluencenorthern

ThisSeptember242006versionreplacesallearlierversions. 155 goshawkhomerangesizeandindividualuse.Hargisetal.(1994)concludedthatan“emphasis shouldbeplacedoncreatingormaintainingvegetationdiversity”(ascomparedtorandomsites) page66)and"thattimberharvestsbedesignedtocreateajuxtapositionofseralstages,including maturetimber,ratherthanlargetracksofhomogeneous,midseralstages"(page73). GiventheHargisetal.(1994)recommendation,amixofseralstagessimilartothePFA(Table 1)serveasageneraldescriptionofdesiredgoshawkforaginghabitat.Theserecommendations shouldbeconsideredasgeneralinthatthegoshawkisahabitatgeneralistattheforagingarea scaleandopportunisticpredator.Goshawktakepreyitemstakenontheground,onvegetation, intheair,andincludetree,groundsquirrels,rabbits,hares,,andgrousethat relyonavarietyofforestedandnonforestedhabitats. Project Analysis

AllForestPlanstandardsaremetanddocumented. AnalysisisdisclosedintheNEPAdocumentthatconsidersanddiscussesthequalityand quantityofhabitatnecessarytosupportthegoshawkutilizingavailablescientifichabitat recommendations. Considersanddisclosesanyknowngoshawkpopulationinformation,dataortrendinformation availablefrommonitoringsources,naturalhistorydatabasesetc. Setsforthandappliesamethodologyformeasuringtheexistingamountofthe species habitat—e.g.applyinganest,PFA,andhomerangeanalysis—asdescribedaboveforgoshawk. Themethodologyusedissupportedbyevidencethatthemethodologyisreasonablyreliableand accuratewithreferencetoscientificandothersourcesreliedupon. ConsidersanddiscussestheamountofspecieshabitatavailableattheRegional and/orForest widelevel. Disclosestheimpactoftheprojectonthespecieshabitatbasedontheabove—including cumulativeimpacts—showingthatnoappreciableadversehabitat disturbancewouldresult fromtheplannedactivity.ThebasisfortheForest Service’sconclusionisadequatelyexplained withreferencetothefactualbasisforitsanalysis. Addressesandincludesdiscussionofanyscientificuncertaintyorcredibleopposingviewpoints raisedinpubliccommentconcerninghabitatrecommendations,methodologiesetc.

AppendixAprovidesanexampleofaprojectlevelanalysesforafuelsreductionprojectthat includes“dropin”languagethattrackswithRegionalstatusandtrendinformation,adiscussion ofrecentopposingviewsintheliterature,offersameanstoanalyzedirect,indirect,and cumulativeeffects,andaddressesviability/sustainabilitythatissensitivetorecentcourt decisions.ArecommendedchangeistousePFAinformationprovidedabove.Foraginghabitat canbeanalyzedbydisplayingthediversityofavailablehabitatsatthe5 th fieldhydrologicunit codescale.AppendixBincludesachecklistrelativetoprojectlevelanalysis.

ThisSeptember242006versionreplacesallearlierversions. 156

Duringprojectlevelplanning,itmaybenecessarytodeterminethepresenceofgoshawksto Formatted: Font color: Auto determinewhetheractivityrestrictionorhabitatrecommendationsshouldbeapplied.The Comment [F1]: Added and edited presenceofgoshawkscanbedeterminedbyreviewingDistrict/Forest/Grasslandwildlifesighting this paragraph from the future monitoring section to say that some records,reviewingDistrict/Forest/Grasslandwildlifemonitoringrecords,and/orconductingfield level of project-level inventories may inventoriesforgoshawkswithintheprojectarea . be needed to see whether restriction/recommendations need be applied. Joanne Summary Formatted: Font color: Auto Thenortherngoshawkoccursinavarietyofforestedenvironments.Overall,thegoshawkisa habitatgeneralist,butmaybemoreofahabitatspecialistaroundthenest.Whileno demographicinformationsuggestsadeclineingoshawknumbers,therearewidedifferences amonggeographicregionsandscientificstudiesinunderstandingnorthgoshawkhabitat requirements.BasedonthesedifferencesandtheissuesfacingtheNorthernRegionpertaining tothenortherngoshawk,thisdocumentwasproducedtoprovideregionalmanagementguidance tobeusedduringprojectlevelplanningandimplementationtoprotectnortherngoshawksand theirhabitat.Thisdocumentalsoprovideshabitatparametersthatcanbeusedtobuildahabitat relationshipmodelattheprojectlevel(SeeProjectHabitatRecommendations),aswellasalist ofitemstoconsiderwhenconductingprojectlevelanalyses(SeeProjectAnalysissection). Glossary of Terms Deleted: ¶

1. Activenest–Agoshawknestknowntohavecontainedanegg.Anestneednothavesuccessfully producedfledglingstobeconsideredactive. 2. Activenestarea–Anareacontaininganactivegoshawknestwithinthelast10years.Analternate nestareacanbenestareathathasbeenrecentlyactiveorhistorical. 3. Adversemanagementactivity–Anyactivitythatcouldadverselymodifygoshawkbehavior, reproductiveeffort,orhabitat. 4. Alternativenestarea–Goshawkhomerangesoftencontaintwoormorenestareas,onlyoneof whichwillbeactiveinagivenyear.Allalternativenestareasarehistoricalnestareas. 5. BasalArea(BA)–Basalareaisthecrosssectionatbreastheight(4.5feetabovegroundlevel)orat therootcrownofatreeortrees,usuallyexpressedassquarefeetperacre.Ameasureofstand density. 6. Breedingseason–TheperiodfromMarch1throughSeptember30,whichincludescourtship, incubation,nestling,andfledglingdependencyperiods. 7. Canopyclosure(synonymouswithcanopycover)–thepercentageofgroundareashadedby overheadfoliage. 8. Covertype–Thecurrentorexistingvegetationofanarea,basedonthepredominantvegetation species. 9. Diameteratbreastheight(DBH)Theoutsidebarkdiameterofatreemeasuredatbreastheight,4.5 feetabovetheforestfloorontheuphillsideofthetree. 10. Dominanttree–Thetallesttreeinaforest.Togetherwiththecodominants,thedominanttrees comprisethemaincanopyofthestand. 11. Failednest–Anactivenestinwhichtheeggsornestlingsarelost(e.g.,topredators,weather)or abandonedbytheadult(s).Noyoungfledged. 12. Fledgling–Ayoungbirdthathasleftit’snestbutisunabletocompletelycareforitself. 13. Fledglingdependencyperiod–Theperiodbeginningwhentheyoungleavethenesttowhentheyare nolongerdependentuponadultsforfood(about3060daysforgoshawks). 14. Foraginghabitat–Areaswherepreyaresearchedfor,pursuedbyandcapturedbygoshawks.

ThisSeptember242006versionreplacesallearlierversions. 157

15. Habitatsecurity–Theprotectioninherentinanysituationthatallowswildlifetoremaininadefined areadespiteanincreaseinstressordisturbanceassociatedwithhumanactivity.Habitatsecurityis areaspecific. 16. Historicalnest–Anestknowntohavebeenactivemorethan10yearsfromthepresenttime. 17. Historicalnestarea–Anestareacontainingoneormorehistoricalnests.Analternatenestareacan beahistoricalnestarea. 18. HomeRange–Theareathatananimalhabituallyusesduringnesting,resting,bathing,foragingand roosting.Adjacentpairsofgoshawksmayhaveoverlappinghomeranges;theextentofwhichis typicallyunknown.Anestinghomerangecontainsnestareas(activeandhistorical),thepost fledglingarea,andthesurroundingforaginghabitat. 19. Mesic–Moderatemoistureconditions,ratherthanhydric(wet)orxeric(dry)conditions. 20. MultistoriedstandAforeststandhavingmorethanonehorizontallayerofvegetation. 21. Nest–Aplatformofsticks,ducttape,crazyglueandoldseatcushionsonwhicheggsarelaid.Most goshawknestsareplacedwithinthelowertwothirdsoftreecrowns,oftenagainstthetrunkbut occasionallyonalimbupto10feetfromthetrunk,goodforbowhunting. 22. Nestarea–Thenesttreeandstand(s)surroundingthenestthatcontainpreyhandlingareas,perches, androosts.Nestareasareoftenoncoolandmesicsites(northerlyfacingslopes). 23. Nestattempt–Anattempttonest.Evidenceofcourtshipbehaviorinanestarea,newnest construction,reconstructionofanoldnest,eggsornestlings. 24. Neststand–Thestandoftreesthatcontainsthenesttree. 25. Nesttree–Thetreecontainingthenest. 26. Nestingseason–Theperiodfromthebeginningofcourtshipbehavioruntilthefledgling(s)areno longerdependentonadultsforfood. 27. Postfledglingarea–Theareaofconcentratedusebythegoshawkaftertheyoungleavethe nest. 28. Replacementnestarea–Forestareaswithphysiographiccharacteristicsandsize(s)similartosuitable nestareas.Replacementareascanhaveyoungtomatureforeststhatcandevelopintosuitablenest areas. 29. Roost–Treesorgroupsoftreesusedbybirdsormammalsforresting.Aroostsiteconsistsofall othertreeswhosecrownsoverlaporinterlockwiththeroosttree. 30. Singlestoriedstand–Astandoftreeshavingasinglecanopylayer. 31. Stand–Anareaoftreespossessingsufficientuniformitytobedistinguishablefromtreesinadjacent areas. 32. Successfulnest–Anestfromwhichatleastoneyoungisfledged. 33. SuitablehabitatHabitatthatiscurrentlyuseablefornesting,roostingandforaging.Habitatneednot beoccupiedtobeconsideredsuitable. 34. Suitablenestarea–Anareathatincludesalltheattributesofanestareaandis,therefore,useablefor nesting. 35. Territory–Anexclusiveareadefendedbygoshawks.Anactivenestisnotanessentialelementofa territory. 36. Understory–Anylayeroftheforestcanopybelowtheoverstory;canconsistoftrees,shrubsand/or herbaceouslayers. 37. Unsuitablehabitat–Habitatthatdoesnothavethecapabilityofattainingthecharacteristicsof suitablehabitatthroughstandard,prescribedmanagementtreatmentsornaturalprocesses. Definition Sources Daubenmire,R.1959.Acanopycoveragemethodofvegetationanalysis.NorthwestSci.33:4364.

ThisSeptember242006versionreplacesallearlierversions. 158

Ganey,J.L.andW.M.Block.1994.Acomparisonoftwotechniquesformeasuringcanopyclosure. WesternJournalofAppliedForestry,Vol.9,No.1,January1994. Reynolds,R.T.,etal.1992.Managementrecommendationsforthenortherngoshawkinthesouthwestern UnitedStates.USDAFor.Serv.Gen.Tech.Rep.RM217.

Literature Cited

Andersen,D.E.,S.DeStefano,M.I.Goldstein,K.Titus,C.CrockerBedford,J.J. Keane,R.G.Anthony,andR.N.Rosenfield.2004.Thestatusof northerngoshawksinthewesternUnitedStates.WildlifeSocietyTechnicalReview0401.The WildlifeSociety,Bethesda,Maryland,USA. Clough,L.T.2000.Nestinghabitatselectionandproductivityofnortherngoshawksinwest centralMontana.Missoula,MT:UniversityofMontana.M.S.Thesis.87pp. DeSimone,S.M.1997.OccupancyratesandhabitatrelationshipsofNorthernGoshawksin historicnestingareasinOregon.Master’sthesis,OregonStateUniversity,Corvallis,OR.Hargis, Deleted: ¶ C.D.,C.McCarthy,andR.D.Perloff.1994.HomerangesandhabitatsofNorthernGoshawks ¶ ineasternCalifornia.StudiesinAvianBiology16:6674. Joy,S.M.2002.NortherngoshawkhabitatontheKaibabNationalForestinArizona:factors affectingnestlocationsandterritorialquality.Dissertation,ColoradoStateUniversity,Fort Collins,Colorado,USA. Kennedy,P.L.,J.M.Ward,G.A.Rinker,andJ.A.Gessaman.1994.Postfledglingfamilyareasin NorthernGoshawkhomeranges.Stud.AvianBiol.16:7582.Kennedy,P.L.2003.Northern Deleted: ¶ ¶ goshawk( Accipiter gentilis atricapillus ):atechnicalconservationassessment.Unpublished ¶ report,USDAForestService,RockyMountainRegion,SpeciesConservationProject,Denver, Colorado,USA. Kowalski,S.2006.FrequencyofnortherngoshawkpresenceinthenorthernRegion. Formatted: Space Before: 0 pt, UnpublishedreportonfileinUSDAFor.Serv.,RegionOne,MissoulaMT.(tobeaddedto After: 0 pt http://www.fs.fed.us/biology/wildecology/goshawk.html) McGrath,M.T.,S.DeStefano,R.A.Riggs,L.L.Irwin,andG.J.Roloff.2003.Spatiallyexplicit influencesonNorthernGoshawknestinghabitatintheinteriorPacificNorthwest.Wildlife Monographs154:1–63. Patla,S.M.1997.Nestingecologyandhabitatofthenortherngoshawkinundisturbedandtimber harvestareasontheTargheeNationalForest,GreaterYellowstoneEcosystem.M.S.Thesis, IdahoStateUniv.,Pocatello,ID.164pp. Penteriani,V.,andB.Faivre.2001.Effectsofharvestingtimberstandsongoshawksintwo Europeanareas.BiologicalConservation101:211216.

ThisSeptember242006versionreplacesallearlierversions. 159

Reich,R.M.,S.M.Joy,andR.T.Reynolds.2004.Predictingthelocationofnortherngoshawk nests:modelingthespatialdependencybetweenlocationsandforeststructure.Ecological Modeling176:109133. Reynolds,R.T.,R.T.Graham,M.H.Reiser,R.L.Bassett,P.L.Kennedy,D.A.Boyce,G. Goodwin,R.Smith,andE.L.Fisher.1992.ManagementrecommendationsfortheNorthern GoshawkintheSouthwesternUnitedStates.GeneralTechnicalReportRM217,90pp.USDA ForestService,RockyMountainForestandRangeExperimentStation,FortCollins,CO,USA. Reynolds,R.T.,R.T.Graham,andD.A.Boyce.2005.Habitatconservationofthenorthern Formatted: Font: Times New goshawkinthesouthwesternunitedstates:responsetoGreenwaldetal.,reportdatedDecember Roman, Not Bold 18,2005,FinalSupplementtotheFinalEnvironmentalImpactStatement(FEIS)forAmendment Formatted: Font: Times New Roman ofForestPlans,USDAForestService,SouthwesternRegion,Albuquerque,NM . Deleted: Salafsky,S.R.,R.T.Reynolds,andB.R.Noon.2005.Patternsoftemporalvariationin goshawkreproductionandpreyresources.JournalofRaptorResearch39:237246. Samson,F.B.2006a.(www.fs.fed.us/r1/projects/wlfecology;AccessedJune29,2006).A Deleted: Conservationassessmentofthenortherngoshawk,blackedbackedwoodpecker,flammulated owl,andpileatedwoodpeckerintheNorthernRegion,USDAForestService.Unpublished reportonfile,NorthernRegion,Missoula,Montana,USA. Deleted: Samson,F.B.2006b.(www.fs.fed.us/r1/projects/wlfecology;AccessedJune29,2006). Habitatestimatesformaintainingviablepopulationsofthenortherngoshawk,blackbacked woodpecker,flammulatedowl,pileatedwoodpecker,Americanmartin,andfisher.Unpublished reportonfile,NorthernRegion,Missoula,Montana,USA.

Squires,J.R.,andR.T.Reynolds.1997.NorthernGoshawk.No.298.InThebirdsofNorth America.TheAcademyofNaturalSciences,Philadelphia,Pennsylvania,andTheAmerican Ornithologists'Union,Washington,DC,USA.

Squires,J.R.,andP.L.Kennedy.2006.Northerngoshawkecology:anassessmentofcurrent knowledgeandinformationneedsforconservationmanagement.StudiesinAvianBiology 31: 862.

USDIFishandWildlifeService.1998.Statusreviewofthenortherngoshawkintheforested west.Portland,Oregon,USA.

Whitford,T.C.1991.DefiningoldgrowthDouglasfirforestsofcentralMontanaanduseofthe NorthernGoshawk( Accipiter gentilis )asamanagementindicatorspecies.Master’sthesis, UniversityofMontana,Missoula,MT.Woodbridge,B.,andC.D.Hargis.2005.Northern goshawkinventoryandmonitoringtechnicalguide.USDAForestService,WashingtonOffice, Deleted: ¶ EcosystemManagementCoordinationStaff,Wildlife,Fish,Watershed,andAirStaff, WashingtonDC,USA.

ThisSeptember242006versionreplacesallearlierversions. 160

Younk,J.V.,andM.J.Bechard.1994.BreedingecologyoftheNorthernGoshawkinhigh Formatted: Indent: Left: 0", First elevationaspenforestsofnorthernNevada.Stud.AvianBiol.16:119121. line: 0", Tabs: Not at 0.5"

ThisSeptember242006versionreplacesallearlierversions. 161

HabitatEstimatesforthenortherngoshawkusingthemodeldescribedabove(i.e.,Table1). Forest Habitat(ha) BeaverheadDeerlodge 142,206 Bitterroot 16,031 IdahoPanhandle 59,085 Clearwater 25,096 Custer 14,657 Flathead 13,942 Gallatin 40,460 Helena 46,869 Kootenai 28,641 LewisandClark 67,856 Lolo 23,629 NezPerce 106,728

ThisSeptember242006versionreplacesallearlierversions.