The Combined Action of Esrrb and Nr5a2 Is Essential for Naïve Pluripotency

Total Page:16

File Type:pdf, Size:1020Kb

The Combined Action of Esrrb and Nr5a2 Is Essential for Naïve Pluripotency bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.134999; this version posted June 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The combined action of Esrrb and Nr5a2 is essential for naïve pluripotency. Nicola Festuccia1,2,*, Nick Owens3, Almira Chervova2, Agnès Dubois2, and Pablo Navarro2 1MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, W12 0NN London, UK 2Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France 3Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK *Corresponding author: [email protected] The maintenance of pluripotency in mouse embryonic stem cells both during early differentiation (Festuccia et al., 2018a) (ESCs) is governed by the action of an interconnected network and, conversely, during reprogramming to induced pluripo- of transcription factors. Among them, only Oct4 and Sox2 have tency (Adachi et al., 2018); it orchestrates the recruitment of been shown to be strictly required for the self-renewal of ESCs the transcriptional machinery (Bell et al., 2020; Percharde and pluripotency, particularly in culture conditions where dif- et al., 2012) and other transcription factors (Adachi et al., ferentiation cues are chemically inhibited. Here, we report that 2018) to key regulatory elements of the pluripotency network the conjunct activity of two orphan nuclear receptors, Esrrb (Whyte et al., 2013); it maintains its binding activity dur- and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve ESCs. By occupying a large common set of regulatory el- ing mitosis, directly contributing to the stability of pluripo- ements, these two factors control the binding of Oct4, Sox2 and tency during cell division (Festuccia et al., 2016). Given Nanog to DNA. Consequently, in their absence the pluripotency these characteristics, it is therefore not surprising that the network collapses and the transcriptome is substantially dereg- genetic ablation of Esrrb is profoundly detrimental to ESCs ulated, leading to the differentiation of ESCs. Altogether, this self-renewal in conventional culture conditions (Festuccia et work identifies orphan nuclear receptors, previously thought to al., 2012). In contrast, the loss of Esrrb is tolerated in culture be performing supportive functions, as a new set of core regula- conditions that more stringently enforce the maintenance of tors of naïve pluripotency. the undifferentiated state (Martello et al., 2012) and which involve blocking the differentiation cues imparted by ERK signalling and reinforcing the activation of WNT by GSK3b Introduction inhibition (Ying et al., 2008). How ESCs accommodate the The uncommitted identity of mouse Embryonic Stem (ES) concomitant disruption of the multiple aspects of Esrrb action cells is maintained by the activity of a gene regulatory net- remains unclear, representing a major gap in our knowledge work that strictly depends on the function of Oct4 and Sox2 of the molecular control of ESCs. (Yeo and Ng, 2013). Binding DNA in complex with Sox2 One simple hypothesis to molecularly explain how 2i/LIF (Tapia et al., 2015), Oct4 enables the recruitment of other can bypass the requirements for Esrrb activity is that other transcription factors (TFs) at regulatory regions (King and TFs might be performing a compensatory role. Of note, Esrrb Klose, 2017). In accord, altering the expression of Oct4 or is part of a broad family of TFs, orphan nuclear receptors, that Sox2 results in the differentiation of ESCs. In line with their show high sequence and structural homology, and play over- role in ESCs, Oct4 and Sox2 are essential for epiblast spec- lapping developmental functions (Festuccia et al., 2018b). ification (Avilion et al., 2003; Nichols et al., 1998). Along- Among these, Nr5a2 interacts with Esrrb (van den Berg et side, a number of auxiliary factors stabilise the pluripotency al., 2010) and binds to nearly identical half-palindromic se- network. While their individual depletion often affects the quences through a related DNA binding domain presenting a efficiency of self-renewal (Chambers et al., 2007) and mod- common extension to the conventional zinc-finger of nuclear ulates Oct4 and Sox2 binding at a subset of regulatory ele- receptors (Heng et al., 2010; Solomon et al., 2005). Further, ments (Heurtier et al., 2019), the loss of these TFs does not Nr5a2 is expressed in ESCs, where it contributes to support- result in overt differentiation. For these reasons, it is gen- ing, or instating, pluripotency (Guo and Smith, 2010; Heng erally considered that the pluripotency network is structured et al., 2010). To test whether Nr5a2 mitigates the conse- along two distinct modules: the core network centred on the quences of loss of Esrrb function, we concomitantly ablated master regulators Oct4 and Sox2, and a cohort of supportive both TFs. Here, we report that the loss of both Esrrb and transcription factors. Nr5a2 leads to the complete abrogation of self-renewal and Among all auxiliary TFs, Esrrb is prominent (Festuccia the induction of differentiation even in 2i/LIF. These effects et al., 2018b), controlling multiple aspects of the molecular are mediated by the full collapse of the pluripotency network: wiring of ESC identity: Esrrb is a pivotal mediator of pro- Oct4, Sox2 and Nanog binding is acutely lost at most ESC self-renewing signalling cues, operating downstream of the enhancers and ESC-specific gene expression is shut down. canonical WNT pathway (Martello et al., 2012), and bypass- Our results identify Esrrb and Nr5a2 as a new set of essen- ing the dependence of ESCs on the LIF cytokine (Festuccia tial regulators of pluripotency, whose collective importance et al., 2012); it acts as a major gatekeeper of pluripotency, parallels that of Oct4 and Sox2 in ESCs. N. Festuccia et al. | bioRχiv | June 5, 2020 | 1–14 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.134999; this version posted June 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Fig. 1. Overlapping expression and bind- A C FCS/LIF ing patterns of Esrrb and Nr5a2. (A) Esrrb- DNA Esrrb-mCherry Nr5a2-GFP T2a-GFP (red) and Nr5a2-T2a-GFP (blue) flu- 100 Esrrb DNA Esrrb NR5a2 orescence levels (percentage of mode in each 80 NR5a2 e dataset) determined by flow cytometry in ESC d Neg o 60 cultured in FCS/LIF. In black, background lev- m f o 40 els measured in wild-type E14Tg2a ESCs. (B) % Nr5a2-GFP and Esrrb-mCherry levels in dou- 20 ble knock-in ESCs cultured in FCS/LIF (black) 0 or 2i/LIF (magenta), as determined by imag- 0 200K 400K 600K 800K B GFP 2i/LIF ing flow cytometry (ImageStream). (C) Confo- 300K DNA Esrrb-mCherry Nr5a2-GFP DNA Esrrb NR5a2 cal microscopy images showing Esrrb-mCherry FCS/LIF y and Nr5a2-GFP expression in double knock-in r r 2i/LIF e 200K ESCs cultured in FCS/LIF (top) or 2i/LIF (bot- h C tom). Note double-negative ESCs (white arrow- m - b heads) exist only in FCS/LIF. (D) Profiles of Es- r r 100K s rrb and Nr5a2 binding as determined by ChIP- E seq in proximity of the Sall1 and Foxd3 genes, 0 0 10K 20K 30K 40K 50K highlighting examples of the binding preference Nr5a2-GFP of each TF at common targets (arrowheads). (E) D E Venn diagram showing the intersection between Sall1 Foxd3 NR5a2 regions called as peaks for Esrrb and Nr5a2 34% Esrrb 61% (detected in all replicates, see Methods for de- (9940) (5616) 4% tails). (F) Local enrichment heatmap compar- Nr5a2 Esrrb (724) ing Esrrb (left, red) and Nr5a2 (right, blue) oc- cupancy at regions bound by either of the two f 2 f i i TFs. Esrrb/Nr5a2 peaks were ordered by de- t t a rrb o o s F G H r5 creasing Nr5a2 signal (mean Reads Per Million m Esrrb Nr5a2 E m N 2 > a > - – RPM) and averaged every 20 regions. The full - rrb ) 1.5 r5 s T C M E N paired-end fragments were marked. (G) DNA P 1 R Esrrb ( sequence identified by de-novo motif discovery 2 0.5 5 0mm g ) at all Esrrb/Nr5a2 target regions (top); note the o M 1mm L 0 2.5 7th base can either be a T or a C. Boxplots show- No (RP ing Esrrb and Nr5a2 binding (RPM) at target ) 1.5 0 motif M regions containing tcaaggTca, tcaaggCca, both Log2 P 1 Both R motifs or none, indicating the 7th base of the mo- ( -2.5 2 0.5 T -> Esrrb g tif discriminates Esrrb (T) or Nr5a2 (C) prefer- o Nr5a2 C -> Nr5a2 L 0 5 No motif ential binding. (H) Heatmaps presenting Esrrb ) ) and Nr5a2 occupancy (RPM) at target regions M 3 2.5 M 2 ordered by descending Esrrb/Nr5a2 ratio (left), (RP (RP 1 0 along the occurrence of the Esrrb or Nr5a2 motif 0 Log2 as a function of the number of mismatches (mm; Log2 -1 -2.5 right). Results or negative for the second (Fig 1B, C). Nonetheless, possibly as a consequence of the lower expression levels, Nr5a2 down- Esrrb and Nr5a2 are co-expressed in individual ES cells regulation is overall more frequently observed, as confirmed and bind together at regulatory elements. by single-cell gene expression analysis (Fig 1C, S2B,C).
Recommended publications
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Tbx3 Controls the Sinoatrial Node Gene Program and Imposes Pacemaker Function on the Atria
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria Willem M.H. Hoogaars,1,3 Angela Engel,2,3 Janynke F. Brons,1,3 Arie O. Verkerk,2 Frederik J. de Lange,1 L.Y. Elaine Wong,1 Martijn L. Bakker,1 Danielle E. Clout,1 Vincent Wakker,1 Phil Barnett,1 Jan Hindrik Ravesloot,2 Antoon F.M. Moorman,1 E. Etienne Verheijck,2 and Vincent M. Christoffels1,4 1Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; 2Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression.
    [Show full text]
  • TBX3 Acts As Tissue-Specific Component of the Wnt/Β
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TBX3 acts as tissue-specific component of the Wnt/b-catenin enhanceosome Dario Zimmerli1,6#, Costanza Borrelli2#, Amaia Jauregi-Miguel3,4#, Simon Söderholm3,4, Salome Brütsch1, Nikolaos Doumpas1, Jan Reichmuth1, Fabienne Murphy-Seiler5, Michel Aguet5, Konrad Basler1*, Andreas E. Moor2*, Claudio Cantù3,4* 1 Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland, CH-8057 2 Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland, CH-8057 3 Wallenberg Centre for Molecular Medicine, Linköping University 4 Department of Biomedical and Clinical Sciences, Faculty of Health Science, SE-581 83 Linköping, Sweden 5Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, CH-1015 Lausanne, Switzerland 6 Current address: Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands # These authors contributed equally to this work * For correspondence: [email protected] [email protected] [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
    [Show full text]
  • The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations May 2019 The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Dai, Yunkai, "The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes" (2019). All Dissertations. 2377. https://tigerprints.clemson.edu/all_dissertations/2377 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ROLE OF TBX5 IN SINOATRIAL NODE DIFFERENTIATION IN MOUSE EMBRYONIC STEM CELL DERIVED CARDIOMYOCYTES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Bioengineering by Yunkai Dai May 2019 Accepted by: Dr Ann Foley, Committee Chair Dr Agneta Simionescu Dr Robin C. Muise-Helmericks Dr Ying Mei ABSTRACT The sinoatrial node of the mouse embryo arises from the wall of the right atrium near the border of the sinus venosus. Early in development this region expresses the transcription factor Tbx5. Because of this, Tbx5 is thought to sit at the apex of a transcriptional cascade leading to sinoatrial node (SAN) differentiation. To test this we produced a mouse embryonic stem cell line B1 (pTripZ-mTbx5; αMHC::GFP) that conditionally overexpresses Tbx5, to determine if this would lead to enhanced SAN differentiation. We found that ES cells overexpressing Tbx5 showed enhanced overall cardiac differentiation and that cardiac cells showed increased beat rates as compared control embryos.
    [Show full text]
  • Differential Spatio-Temporal Regulation of T-Box Gene Expression by Micrornas During Cardiac Development
    Journal of Cardiovascular Development and Disease Article Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development Mohamad Alzein, Estefanía Lozano-Velasco , Francisco Hernández-Torres , Carlos García-Padilla , Jorge N. Domínguez , Amelia Aránega and Diego Franco * Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; [email protected] (M.A.); [email protected] (E.L.-V.); [email protected] (F.H.-T.); [email protected] (C.G.-P.); [email protected] (J.N.D.); [email protected] (A.A.) * Correspondence: [email protected] Abstract: Cardiovascular development is a complex process that starts with the formation of symmet- rically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcrip- tional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA–mRNA expression pro- Citation: Alzein, M.; Lozano-Velasco, files.
    [Show full text]
  • Systematic Review and Meta-Analysis of Candidate Gene Association Studies of Lower Urinary Tract Symptoms in Men
    S D E U Eur Urol. 2014 Oct; 66(4): 752–768. PMCID: PMC4410299 doi: 10.1016/j.eururo.2014.01.007 Systematic Review and Meta-analysis of Candidate Gene Association Studies of Lower Urinary Tract Symptoms in Men ☆ Rufus Cartwright,a,†⁎ Altaf Mangera,b,† Kari A.O. Tikkinen,c Prabhakar Rajan,d Jori Pesonen,e Anna C. Kirby,f Ganesh Thiagamoorthy,g Chris Ambrose,h Juan Gonzalez-Maffe,i Phillip R. Bennett,j Tom Palmer,k Andrew Walley,l Marjo-Riitta Järvelin,m Vik Khullar,n and Chris Chappleo a Department of Epidemiology and Biostatistics and Department of Urogynaecology, Imperial College London, London, UK b Department of Urology Research, University of Sheffield, Sheffield, UK c Department of Urology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland, and Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada d Beatson Institute for Cancer Research, University of Glasgow, Glasgow, UK e Department of Urology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland f Department of Reproductive Medicine, University of California, San Diego, San Diego, CA, USA, and Department of Obstetrics and Gynecology, Kaiser Permanente, San Diego, CA, USA g Department of Urogynaecology, King's College London, London, UK h University College London Medical School, London, UK i Clinical Trials Unit, Imperial College London, London, UK j Institute for Reproductive and Developmental Biology, Imperial College London, London, UK k Division of Health Sciences,
    [Show full text]
  • Life-Threatening Cardiac Episode in a Polish Patient Carrying Contiguous Gene Microdeletion of the TBX5 and the TBX3 Genes
    Iwanicka‑Pronicka et al. SpringerPlus (2016) 5:1638 DOI 10.1186/s40064-016-3275-1 CASE STUDY Open Access Life‑threatening cardiac episode in a Polish patient carrying contiguous gene microdeletion of the TBX5 and the TBX3 genes Katarzyna Iwanicka‑Pronicka1,2*, Magdalena Socha3, Maria Jędrzejowska1, Małgorzata Krajewska‑Walasek1 and Aleksander Jamsheer3,4 Abstract Holt–Oram syndrome (HOS) features radial ray hypoplasia, heart defect and cardiac conduction impairment. Ulnar- mammary syndrome (UMS) characterizes congenital defects of the ulnar side of the upper limbs, underdevelop‑ ment of apocrine glands including hypoplasia and the dysfunction of mammary glands, hypogonadism and obesity. Inheritance of both conditions is autosomal dominant, mutations or deletions are found in the TBX5 and TBX3 gene, respectively. The Polish patient presented short stature, obesity, congenital malformation of the radial and ulnar side of the upper limbs, heart block, hypogonadism and dysmorphic features. At the age of 13 years he lost conscious‑ ness developing respiratory insufficiency caused by bradycardia in the course of sudden atrioventricular third degree heart block requiring immediate implantation of pace maker-defibrillator device. Microdeletion of the 12q24.21 was identified using array CGH method. This region includes contiguous genes the TBX5, TBX3, and part of RBM19. The patient initially diagnosed as having HOS, was found to present the UMS features as well. Array CGH method should be applied in patients suspected of HOS or UMS, especially
    [Show full text]
  • Breast Ductal Carcinoma in Situ Carry Mutational Driver Events
    Modern Pathology (2017) 30, 952–963 OPEN 952 Official journal of the United States and Canadian Academy of Pathology Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer Jia-Min B Pang1,2, Peter Savas3, Andrew P Fellowes1, Gisela Mir Arnau4, Tanjina Kader5,6, Ravikiran Vedururu1, Chelsee Hewitt1, Elena A Takano1, David J Byrne1, David YH Choong1, Ewan KA Millar7,8,9,10, C Soon Lee10,11,12, Sandra A O’Toole7,11,13, Sunil R Lakhani14,15, Margaret C Cummings14,15, G Bruce Mann16,17, Ian G Campbell5,6, Alexander Dobrovic18, Sherene Loi3,5, Kylie L Gorringe2,5,6,19 and Stephen B Fox1,2,5,19 1Department of Pathology, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, Australia; 2Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, Australia; 3Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, Australia; 4Molecular Genomics Core, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, Australia; 5Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, Australia; 6Cancer Genomics Program, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, Australia; 7Translational Breast Cancer Research, The Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; 8Department of Anatomical Pathology, South Eastern Area Pathology Service, St George Hospital, Kogarah, NSW, Australia; 9School of Medical
    [Show full text]
  • Estrogen Expands Breast Cancer Stem-Like Cells Through Paracrine FGF/Tbx3 Signaling
    Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling Christine M. Fillmorea,b, Piyush B. Guptac,1, Jenny A. Rudnickb,d, Silvia Caballerob,d, Patricia J. Kellerb,d, Eric S. Landerc,e, and Charlotte Kuperwassera,b,d,2 aGenetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111; bMolecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111; cBroad Institute of MIT/Harvard and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; dDepartment of Anatomy and Cellular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111; and eDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115 Edited by Geoffrey M. Wahl, Salk Institute for Biological Studies, La Jolla, CA, and accepted by the Editorial Board October 26, 2010 (received for review June 17, 2010) Many tumors contain heterogeneous populations of cells, only cells but, rather, activates their proliferation through paracrine some of which exhibit increased tumorigenicity and resistance to signaling (14, 15). These data imply a two-component mammary + anticancer therapies. Evidence suggests that these aggressive stem cell niche in which estrogen signaling in the ERα non- cancer cells, often termed “cancer stem cells” or “cancer stem-like stem cell compartment stimulates the proliferation of cells within α− cells” (CSCs), rely upon developmental signaling pathways that are the ER stem cell compartment. In breast cancer, it is unclear whether stem-like cells are also important for survival and expansion of normal stem cells. Here fi we report that, in analogy to embryonic mammary epithelial bi- regulated by speci c hormone-growth factor paracrine signal- ology, estrogen signaling expands the pool of functional breast ing pathways.
    [Show full text]
  • Estrogen Receptor B As a Therapeutic Target in Breast Cancer Stem Cells
    JNCI J Natl Cancer Inst (2017) 109(3): djw236 doi: 10.1093/jnci/djw236 First published online February 10, 2017 Article ARTICLE Estrogen Receptor b as a Therapeutic Target in Breast Cancer Stem Cells Ran Ma, Govindasamy-Muralidharan Karthik, John Lo¨ vrot, Felix Haglund, Gustaf Rosin, Anne Katchy, Xiaonan Zhang, Lisa Viberg, Jan Frisell, Cecilia Williams, Stig Linder, Irma Fredriksson, Johan Hartman Affiliations of authors: Department of Oncology and Pathology (RM, GMK, JL, FH, XZ, LV, SL, JH), Cancer Center Karolinska (RM, GMK, JL, FH, GR, XZ, LV, SL, JH), and Department of Molecular Medicine and Surgery (JF, IF), Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden (GR, CW); Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (AK, CW); Department of Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden (FH, JH); Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden (JF, IF); Science for Life Laboratory, Department of Proteomics, KTH, Royal Institute of Technology, Stockholm, Sweden (CW); Department of Medical and Health Sciences, Department of Medicine and Health, Linko¨ ping University, Linko¨ ping, Sweden (SL); Correspondence to: Johan Hartman, M.D., PhD, Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden (e-mail: [email protected]). Abstract Abstract Background: Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods: We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers.
    [Show full text]
  • Metabolic Network-Based Stratification of Hepatocellular Carcinoma Reveals Three Distinct Tumor Subtypes
    Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes Gholamreza Bidkhoria,b,1, Rui Benfeitasa,1, Martina Klevstigc,d, Cheng Zhanga, Jens Nielsene, Mathias Uhlena, Jan Borenc,d, and Adil Mardinoglua,b,e,2 aScience for Life Laboratory, KTH Royal Institute of Technology, SE-17121 Stockholm, Sweden; bCentre for Host-Microbiome Interactions, Dental Institute, King’s College London, SE1 9RT London, United Kingdom; cDepartment of Molecular and Clinical Medicine, University of Gothenburg, SE-41345 Gothenburg, Sweden; dThe Wallenberg Laboratory, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden; and eDepartment of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved November 1, 2018 (received for review April 27, 2018) Hepatocellular carcinoma (HCC) is one of the most frequent forms of of markers associated with recurrence and poor prognosis (13–15). liver cancer, and effective treatment methods are limited due to Moreover, genome-scale metabolic models (GEMs), collections tumor heterogeneity. There is a great need for comprehensive of biochemical reactions, and associated enzymes and transporters approaches to stratify HCC patients, gain biological insights into have been successfully used to characterize the metabolism of subtypes, and ultimately identify effective therapeutic targets. We HCC, as well as identify drug targets for HCC patients (11, 16–18). stratified HCC patients and characterized each subtype using tran- For instance, HCC tumors have been stratified based on the uti- scriptomics data, genome-scale metabolic networks and network lization of acetate (11). Analysis of HCC metabolism has also led topology/controllability analysis.
    [Show full text]
  • Foxa1/2 Downregulates Liver Differentiation Markers and the Endoderm and Liver Gene Regulatory Network in Human Stem Cells and in a Human Stable Liver Cell Line
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128108; this version posted June 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Foxa1/2 downregulates liver differentiation markers and the endoderm and liver gene regulatory network in human stem cells and in a human stable liver cell line Iyan Warren1, Mitchell Maloy1, Daniel Guiggey1, Ogechi Ogoke1, Theodore Groth1, Tala Mon1, Saber Meamardoost1, Xiaojun Liu1, Antoni Szeglowski4, Ryan Thompson1, Peter Chen3, Ramasamy Paulmurugan 5, Natesh Parashurama1,2,3 1 Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 2 Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 3 Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 4 Department of Biological Sciences, University at Buffalo (State University of New York), Cooke Hall, Buffalo, NY 14260 5 Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA 94304-5483 * Corresponding Author: Natesh Parashurama, 907 Furnas Hall, Buffalo, NY 14260; Tel: 716-645-1201; Fax: 716-645-3822; e-mail: [email protected] Running Title: Running Title: Blocking gut and liver differentiation with Foxa1/2 Keywords: Human pluripotent stem cells, gut tube, Foxa1, Foxa2, RNAi, endoderm, liver, hepatic progenitors, gene regulatory network, hepatic nuclear network, endoderm, hypoxia, bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128108; this version posted June 15, 2020.
    [Show full text]