Genome-Wide Analysis Reveals a Role for TDG in Estrogen Receptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amplitude Modulation of Androgen Signaling by C-MYC
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Amplitude modulation of androgen signaling by c-MYC Min Ni,1,2 Yiwen Chen,3,4 Teng Fei,1,2 Dan Li,1,2 Elgene Lim,1,2 X. Shirley Liu,3,4,5 and Myles Brown1,2,5 1Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 2Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 4Harvard School of Public Health, Boston, Massachusetts 02215, USA Androgen-stimulated growth of the molecular apocrine breast cancer subtype is mediated by an androgen receptor (AR)-regulated transcriptional program. However, the molecular details of this AR-centered regulatory network and the roles of other transcription factors that cooperate with AR in the network remain elusive. Here we report a positive feed-forward loop that enhances breast cancer growth involving AR, AR coregulators, and downstream target genes. In the absence of an androgen signal, TCF7L2 interacts with FOXA1 at AR-binding sites and represses the basal expression of AR target genes, including MYC. Direct AR regulation of MYC cooperates with AR-mediated activation of HER2/HER3 signaling. HER2/HER3 signaling increases the transcriptional activity of MYC through phosphorylation of MAD1, leading to increased levels of MYC/MAX heterodimers. MYC in turn reinforces the transcriptional activation of androgen-responsive genes. These results reveal a novel regulatory network in molecular apocrine breast cancers regulated by androgen and AR in which MYC plays a central role as both a key target and a cooperating transcription factor to drive oncogenic growth. -
An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
Tbx3 Controls the Sinoatrial Node Gene Program and Imposes Pacemaker Function on the Atria
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria Willem M.H. Hoogaars,1,3 Angela Engel,2,3 Janynke F. Brons,1,3 Arie O. Verkerk,2 Frederik J. de Lange,1 L.Y. Elaine Wong,1 Martijn L. Bakker,1 Danielle E. Clout,1 Vincent Wakker,1 Phil Barnett,1 Jan Hindrik Ravesloot,2 Antoon F.M. Moorman,1 E. Etienne Verheijck,2 and Vincent M. Christoffels1,4 1Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; 2Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression. -
TBX3 Acts As Tissue-Specific Component of the Wnt/Β
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TBX3 acts as tissue-specific component of the Wnt/b-catenin enhanceosome Dario Zimmerli1,6#, Costanza Borrelli2#, Amaia Jauregi-Miguel3,4#, Simon Söderholm3,4, Salome Brütsch1, Nikolaos Doumpas1, Jan Reichmuth1, Fabienne Murphy-Seiler5, Michel Aguet5, Konrad Basler1*, Andreas E. Moor2*, Claudio Cantù3,4* 1 Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland, CH-8057 2 Institute of Molecular Cancer Research, University of Zurich, Zürich, Switzerland, CH-8057 3 Wallenberg Centre for Molecular Medicine, Linköping University 4 Department of Biomedical and Clinical Sciences, Faculty of Health Science, SE-581 83 Linköping, Sweden 5Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, CH-1015 Lausanne, Switzerland 6 Current address: Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands # These authors contributed equally to this work * For correspondence: [email protected] [email protected] [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.053561; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. -
The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations May 2019 The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Dai, Yunkai, "The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes" (2019). All Dissertations. 2377. https://tigerprints.clemson.edu/all_dissertations/2377 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ROLE OF TBX5 IN SINOATRIAL NODE DIFFERENTIATION IN MOUSE EMBRYONIC STEM CELL DERIVED CARDIOMYOCYTES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Bioengineering by Yunkai Dai May 2019 Accepted by: Dr Ann Foley, Committee Chair Dr Agneta Simionescu Dr Robin C. Muise-Helmericks Dr Ying Mei ABSTRACT The sinoatrial node of the mouse embryo arises from the wall of the right atrium near the border of the sinus venosus. Early in development this region expresses the transcription factor Tbx5. Because of this, Tbx5 is thought to sit at the apex of a transcriptional cascade leading to sinoatrial node (SAN) differentiation. To test this we produced a mouse embryonic stem cell line B1 (pTripZ-mTbx5; αMHC::GFP) that conditionally overexpresses Tbx5, to determine if this would lead to enhanced SAN differentiation. We found that ES cells overexpressing Tbx5 showed enhanced overall cardiac differentiation and that cardiac cells showed increased beat rates as compared control embryos. -
Oestrogen Receptor α AF-1 and AF-2 Domains Have Cell
ARTICLE DOI: 10.1038/s41467-018-07175-0 OPEN Oestrogen receptor α AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium Stéphanie Cagnet1, Dalya Ataca 1, George Sflomos1, Patrick Aouad1, Sonia Schuepbach-Mallepell2, Henry Hugues3, Andrée Krust4, Ayyakkannu Ayyanan1, Valentina Scabia1 & Cathrin Brisken 1 α α 1234567890():,; Oestrogen receptor (ER ) is a transcription factor with ligand-independent and ligand- dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expres- sion of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity. 1 Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2 Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland. 3 Centre Hospitalier Universitaire Vaudois, Department of Laboratory Medecine, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland. -
Differential Spatio-Temporal Regulation of T-Box Gene Expression by Micrornas During Cardiac Development
Journal of Cardiovascular Development and Disease Article Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development Mohamad Alzein, Estefanía Lozano-Velasco , Francisco Hernández-Torres , Carlos García-Padilla , Jorge N. Domínguez , Amelia Aránega and Diego Franco * Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; [email protected] (M.A.); [email protected] (E.L.-V.); [email protected] (F.H.-T.); [email protected] (C.G.-P.); [email protected] (J.N.D.); [email protected] (A.A.) * Correspondence: [email protected] Abstract: Cardiovascular development is a complex process that starts with the formation of symmet- rically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcrip- tional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA–mRNA expression pro- Citation: Alzein, M.; Lozano-Velasco, files. -
A High-Throughput Genome-Integrated Assay Reveals Spatial Dependencies Governing Tcf7l2 Binding
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.993204; this version posted March 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A high-throughput genome-integrated assay reveals spatial dependencies governing Tcf7l2 binding Tomasz Szczesnik1,2,3, Lendy Chu4, Joshua W. K. Ho1,2,5, Richard Sherwood4,6,7 March 16, 2020 1 Author affiliations 1. Victor Chang Cardiac Research Institute, NSW 2010 Darlinghurst, Australia. 2. St Vincent’s Clinical School, University of New South Wales, NSW 2010 Darlinghurst, Australia. 3. Department of Biosystems Science and Engineering, ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland. 4. Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, MA 02115 Boston, USA. 5. School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. 6. Hubrecht Institute, 3584 CT Utrecht, the Netherlands. 7. Corresponding author, [email protected] 2 Summary Predicting where transcription factors bind in the genome from their in-vitro DNA binding affinity is confounded by the large number of possible interactions with nearby transcription factors. To characterise the binding logic for the Wnt effector transcription factor Tcf7l2, we have developed a high-throughput screening platform in which thousands of 99-bp synthesised DNA sequences are inserted into a specific genomic locus through CRISPR/Cas9-based homology-directed repair, followed by measurement of Tcf7l2 binding by DamID. Using this platform at two genomic loci in mouse embryonic stem cells, we show that while the binding of Tcf7l2 closely follows the in-vitro motif binding strength and is influenced by local chromatin accessibility, it is also strongly affected by the surrounding 99-bp of sequence. -
ORIGINAL ARTICLE Correlation Between Density of CD8 + T Cell
Author Manuscript Published OnlineFirst on June 9, 2015; DOI: 10.1158/0008-5472.CAN-14-3051 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ORIGINAL ARTICLE Correlation between density of CD8+ T cell infiltrates in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy Running title: CD8+ cell density correlates with mutations in MSI-CRCs Pauline Maby1; David Tougeron1,2,3; Mohamad Hamieh1; Bernhard Mlecnik4,5,6; Hafid Kora1; Gabriela Bindea4,5,6; Helen K Angell4,5,6,7; Tessa Fredriksen4,5,6; Nicolas Elie8; Emilie Fauquembergue1; Aurélie Drouet1; Jérôme Leprince9; Jacques Benichou10; Jacques Mauillon11,12; Florence Le Pessot13; Richard Sesboüé1; Thierry Frébourg1,11; Jérôme Galon4,5,6; Jean-Baptiste Latouche1,11 1Inserm U1079, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France; 2Gastroenterology Department, Poitiers University Hospital, Poitiers, France; 3Laboratoire Inflammation Tissus Epithéliaux et Cytokines, EA 4331, Poitiers University, Poitiers, France; 4 Inserm U1138, Laboratory of Integrative Cancer Immunology, Paris, France; 5Université Paris Descartes, Paris, France; 6Cordeliers Research Centre, Université Pierre et Marie Curie, Paris 6, Paris, France; 7AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK 8Imaging Core Facility, CMABIO, Caen University Hospital, Caen, France; 9Inserm U982, Institute for Research and Innovation in Biomedecine (IRIB), Rouen University, France 1 Downloaded from -
Nuclear Receptor Reverbα Is a State-Dependent Regulator of Liver Energy Metabolism
Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism A. Louise Huntera,1, Charlotte E. Pelekanoua,1, Antony Adamsonb, Polly Downtona, Nichola J. Barrona, Thomas Cornfieldc,d, Toryn M. Poolmanc,d, Neil Humphreysb,2, Peter S. Cunninghama, Leanne Hodsonc,d, Andrew S. I. Loudona, Mudassar Iqbale, David A. Bechtolda,3,4, and David W. Rayc,d,3,4 aCentre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom; bGenome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom; cOxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, United Kingdom; dNational Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom; and eDivision of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom Edited by David D. Moore, Baylor College of Medicine, Houston, TX, and approved August 25, 2020 (received for review April 3, 2020) The nuclear receptor REVERBα is a core component of the circadian motifs (paired AGGTCA hexamers with a two-nucleotide spacer) clock and proposed to be a dominant regulator of hepatic lipid metab- or two closely situated RORE sites (16–19) or, as has more re- olism. Using antibody-independent ChIP-sequencing of REVERBα in cently been proposed, when tethered to tissue-specific transcrip- mouse liver, we reveal a high-confidence cistrome and define direct tion factors (e.g., HNF6) through mechanisms independent of target genes. REVERBα-binding sites are highly enriched for consensus direct DNA binding (20). -
Diversity of Human Clock Genotypes and Consequences
UCSF UC San Francisco Previously Published Works Title Diversity of human clock genotypes and consequences. Permalink https://escholarship.org/uc/item/4125b7mv Authors Zhang, Luoying Ptáček, Louis J Fu, Ying-Hui Publication Date 2013 DOI 10.1016/b978-0-12-396971-2.00003-8 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CHAPTER THREE Diversity of Human Clock Genotypes and Consequences Luoying Zhang*, Louis J. Ptáček*,†, Ying-Hui Fu* *Department of Neurology, University of California, San Francisco, California, USA †Howard Hughes Medical Institute, University of California, San Francisco, California, USA Contents 1. Introduction 52 2. BMAL1 53 3. CLOCK 54 4. NPAS2 57 5. PER1 58 6. PER2 58 7. PER3 62 8. CRY1 64 9. CRY2 64 10. REV-ERBa 65 11. CK1e 65 12. CK1d 66 13. CUL1 67 14. b-TrCP 67 15. DEC1 68 16. DEC2 68 17. TIMELESS 70 18. Concluding Remarks 70 References 74 Abstract The molecular clock consists of a number of genes that form transcriptional and post- transcriptional feedback loops, which function together to generate circadian oscilla- tions that give rise to circadian rhythms of our behavioral and physiological processes. Genetic variations in these clock genes have been shown to be associated with phenotypic effects in a repertoire of biological processes, such as diurnal prefer- ence, sleep, metabolism, mood regulation, addiction, and fertility. Consistently, rodent models carrying mutations in clock genes also demonstrate similar phenotypes. Taken together, these studies suggest that human clock-gene variants contribute to the phe- notypic differences observed in various behavioral and physiological processes, # Progress in Molecular Biology and Translational Science, Volume 119 2013 Elsevier Inc.