Physics Today

Total Page:16

File Type:pdf, Size:1020Kb

Physics Today Physics Today Valentine Louis Telegdi Nicola Close, Peter G. O. Freund, Murray Gell-Mann, Marvin L. Goldberger, Yoichiro Nambu, Reinhard Oehme , Lev Okun, and Roland Winston Citation: Physics Today 59(7), 66 (2006); doi: 10.1063/1.2337842 View online: http://dx.doi.org/10.1063/1.2337842 View Table of Contents: http://scitation.aip.org/content/aip/magazine/physicstoday/59/7?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 131.215.225.131 On: Mon, 24 Aug 2015 19:35:12 physics. To explain the pattern of the vaunted neutrality. Ending up in Lau- baryon SU(3) octet and decuplet repre- sanne, Val attended the legendary lec- sentations required assuming what be- tures in which Ernst Stueckelberg dis- came known as a symmetric quark cussed his causal propagator and those model, in defiance of the established remarkable diagrams that were also in- antisymmetry for fermions. Over the dependently discovered and put to mar- following decades, many other reso- velous and universal use by Richard nances were discovered for both Feynman after World War II. baryons and mesons, in many cases by In 1946 Val moved to ETH Zürich for application of Dalitz plots. During that graduate study in Paul Scherrer’s time, the nonrelativistic quark model, group. His observation of so-called with later incorporation of color SU(3) three-pronged stars, corresponding to effects from quantum chromodynam- the reaction γ+C →α+α+α, deeply ics, became established as an orderly impressed Scherrer. Though offered a description of what had formerly been position at the University of Bristol by a menagerie of particles. C. F. Powell, Val chose to go to the Uni- For Dick, quarks were real, but as his versity of Chicago, where he caught the student in 1968, I found that being tail end of the Fermi years. asked to believe in fractionally charged In line with his broad interests in particles that no one had seen and that physics, Val, together with one of us few outside Oxford took seriously (Gell-Mann) who was a guest in Val’s Valentine Louis Telegdi could be demoralizing. When their re- Chicago lab at the time, published a ality began to emerge in deep inelastic paper on charge independence in nu- ured the muon’s anomalous magnetic scattering data around that time and clear reactions involving photons, relat- moment and provided one of the most Richard Feynman developed his parton ing to the work on isospin selection stringent tests of quantum electrody- model, Dick seemed hesitant to push rules by Luigi Radicati. namics. Val Telegdi, Valya Bargmann, the new area forward. With quarks as The 1956 parity revolution put Val on and Louis Michel constructed the ele- θ−τ with the analysis earlier and the the map as a major player in particle gant, and in this context very useful, rel- eponymous Dalitz plot, he had helped physics. The University of Chicago ex- ativistic theory of the precession of the pave the way in different manners for periment by Val and Jerome Friedman spin of a charged particle moving in a Nobel Prizes, but he never made the on parity violation in the π→μ→e homogeneous electromagnetic field. In final step himself. chain is one of the three independent the latest version of this muonic “g –2” Frank Close and almost simultaneous experiments experiment, parts-per-million accuracy University of Oxford that vindicated the bold idea of T. D. Lee has been reached. Oxford, UK and C. N. Yang that parity conservation Among Val’s other important exper- is violated in weak interactions. A lot of iments were ones on KS regeneration, Valentine Louis acrimony was connected with the time- muonium, and the helicity of the muon ordering of those three independent and neutrino. He also worked on muonic Telegdi brilliant experiments. The Columbia atoms, a field in which Wu, Val’s erst- On 8 April 2006, Valentine Louis Telegdi University–National Bureau of Stan- while competitor, was also active. That died in Pasadena, California, of compli- dards collaboration led by Chien-Shiung shared research interest further fanned cations following surgery for an aortic Wu and the Columbia team of Richard the flames of an outright Telegdi–Wu aneurysm. With his passing the physics Garwin, Leon Lederman, and Marcel feud, which was fought with etiquette community lost one of its most original Weinrich were the first to publish. An that would have passed muster at the and distinguished members. Val’s con- editorial decision was made to publish courts of both the Hapsburg and the tributions to our understanding of weak the Telegdi–Friedman letter in the next Qing emperors, and yet was as harshly and electromagnetic interactions are issue of the journal in question instead of antagonistic as feuds between great sci- seminal. Beyond those contributions, the issue containing the Columbia let- entists can get. though, what made Val unique was the ters. At the time of the parity experiment, In 1976 Val left the University of depth of his understanding of the theo- there was close scientific contact be- Chicago, where he had been the Enrico retical fine points of the physics, which tween Val and one of us (Oehme), who Fermi Distinguished Service Professor of in his fundamental particle-physics ex- discovered that charge-conjugation Physics, for a professorship at ETH periments led him to beautiful and far symmetry must also be violated in the Zürich. Val was elected to the CERN Sci- from obvious ways of testing an idea. A experiments. entific Policy Committee and soon be- Telegdi experiment was always marked The field was now moving fast, and came its chairman. In that capacity he as much by the conceptual cleverness once the so-called V–A theory of the was instrumental in starting a collabo- of its design as by the importance of its weak interactions had been proposed, it ration between CERN and Russia. Over results. became essential to accurately measure the past two decades, he spent much time Val was born on 11 January 1922 in the ratio of the Gamow–Teller and first at Caltech and then at the University Budapest, Hungary. After wandering all Fermi matrix elements in neutron beta of California, San Diego. over Europe, the Telegdis ended up in decay. A classic experiment by a Uni- For his major contributions to Italy. From there they sought wartime versity of Chicago–Argonne National standard-model physics, Val was elected shelter in Switzerland but did not find it Laboratory collaboration led by Val to the national academies of the US, Swe- until 1943, when in the wake of the Ger- found the value 1.25 for this ratio. den, Hungary, and Russia; to the Royal man army’s defeat at Stalingrad, the A fundamental CERN experiment Society in London; and to the Accademia Swiss reoriented the tilt of their much- led by Val and Garwin in 1959–60 meas- dei Lincei in Rome. In 1991 he shared the This66 articleJuly is copyrighted 2006 Physics as indicated Today in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. www.physicstoday.org Downloaded to IP: 131.215.225.131 On: Mon, 24 Aug 2015 19:35:12 Wolf Prize with Maurice Goldhaber, one of his few peers in putting keen theoret- ical knowledge to work in devising very clever experiments. A charismatic lecturer, Val stream- lined his arguments to the point that their conclusions appeared both in- escapable and natural. He would sprin- Breaking New Ground... kle his lectures with marvelous apho- risms, such as “Last year’s sensation is • World’s first commercial HTS (BSSCO-2223) this year’s calibration and next year’s superconducting magnet system for a unwanted background” and “It is easy gyrotron tube application. (2003) to be a child prodigy, but much harder • World’s first commercial 7T liquid cryogen-free to be an adult prodigy.” Val was a de- superconducting magnet system for Ion manding teacher, but he knew how to Cyclotron Resonance research. (2003) nurture talent. Val viewed humans in a straight • World’s first superconducting magnet in black-and-white fashion, with hardly space. (2005) any shadings, a trace maybe of the • World’s first stacked pancake coil wound with old Austro-Hungarian “K.u.K.” dual- long lengths of 2nd Generation HTS (YBCO) monarchy mentality impressed on him in material. (2005) his childhood. That perspective is largely the reason for the feuds he managed to • Latest releases including our new get embroiled in. His wife Lia (generally superconducting magnet recognized as by far the greatest chef in power supply! (2006) the western physics community) once asked Gell-Mann, “In physics is it really necessary to hate as many people as Val does?” He replied, “To tell the truth, I ...Keeping You Ahead don’t know, but if it is a comfort to you, in many cases Val somehow knows how 1006 Alvin Weinberg Drive • Oak Ridge. TN 37830 • Phone: (865) 482-9551 to pick the right people to hate.” Fax: (865) 483-1253 • [email protected] • www.cryomagnetics.com But Val was also capable of friend- ship in the truest sense of the word, and See www.pt.ims.ca/9466-25 those who benefited from Val’s giving friendship cherish it as one of the great things to come their way in life. The physics community has lost a The magazine that helps supremely original master at a time in which large amorphous collaborations scientists to apply high-end are necessarily the rule, and individu- alistic perfectionists of Val’s caliber software in their research! have become extremely rare exceptions.
Recommended publications
  • Why Antihydrogen and Antimatter Are Different As Paul Dirac Realized, the Existence of Antihydrogen Does Not in Itself Prove the Existence of Antimatter
    ANTIMATTER Why antihydrogen and antimatter are different As Paul Dirac realized, the existence of antihydrogen does not in itself prove the existence of antimatter. A look through the history of the subject, and in particular the role played by the CPT theorem, shows that ultimately it came down to experiment to prove the existence of antimatter through the discovery of the antideuteron at CERN in 1965. “Those who say that antihydrogen is antimatter should realize that we are not made of hydrogen and we drink water, not liquid hydro- gen.” These are words spoken by Paul Dirac to physicists gathered around him after his lecture “My life as a Physicist” at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice in 1981 – 53 years after he had, with a single equation, opened new horizons to human knowledge. To obtain water, hydrogen is, of course, not sufficient; oxygen with a nucleus of eight protons and eight neutrons is also needed. Hydrogen is the only element in the Periodic Table to consist of two charged particles (the electron and the proton) without any role being played by the nuclear forces. These two particles need only electromagnetic glue (the photon) to form the hydrogen atom. The antihydrogen atom needs t wo antipar- ticles (antiproton and antielectron) plus electromagnetic antiglue (antiphoton). Quantum electrodynamics (QED) dictates that the photon and the antiphoton are both eigenstates of the C-operator (see later) and therefore electromagnetic antiglue must exist and act like electromagnetic glue. Dirac surrounded by young physicists in Erice after his lecture “My Life If matter were made with hydrogen, the existence of antimatter as a Physicist”.
    [Show full text]
  • Asia Pacific Physics Newsletter
    Asia Pacific Physics Newsletter March 2016 Volume 5 • Number 1 worldscinet.com/appn Takaaki Kajita 2015 Physics Nobel Laureate published by Institute of Advanced Studies, Nanyang Technological University (IAS@NTU) and South East Asia Theoretical Physics Association (SEATPA) South East Asia Theoretical Physics Association Asia Pacific Physics Newsletter March 2016 • Volume 5 • Number 1 A publication of the IAS@NTU Singapore and SEATPA Asia Pacific Physics Newsletter publishes articles reporting frontier discoveries in EDITORIAL physics, research highlights, and news to facilitate interaction, collaboration and 3 cooperation among physicists in Asia Pacific physics community. PEOPLE Editor-in-Chief 4 “Observing the Distant Supernova” — Interview with Kok Khoo Phua Nobel Laureate Prof Brian Schmidt Associate Editor-in-Chief “Discovering the W and Z Bosons” — Interview with Swee Cheng Lim Nobel Laureate Prof Carlo Rubbia SEATPA Committee Christopher C Bernido Phil Chan Leong Chuan Kwek Choy Heng Lai Swee Cheng Lim Ren Bao Liu Hwee Boon Low Anh Ký Nguyên Choo Hiap Oh OPINION AND COMMENTARY Kok Khoo Phua 10 China’s Great Scientific Leap Forward: Completion of a Roh Suan Tung Preecha Yupapin planned ‘Great Collider’ would transform particle physics Hishamuddin Zainuddin Freddy Zen Editorial Team NEWS Sen Mu 12 CityU’s Institute for Advanced Study will Champion Bold New Han Sun Chi Xiong Research Initiatives Case made for 'Ninth Planet' Graphic Designers Chuan Ming Loo Erin Ong Cover Photo: "Takaaki Kajita 5171- 2015" by Bengt Nyman - Own work.
    [Show full text]
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • Nfap Policy Brief » October 2019
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.
    [Show full text]
  • Dispersion Relations in Gauge Theories with Confinement
    EFI 95-54 MPI-Ph/95-82 Dispersion Relations in Gauge Theories with Confinement 1 Reinhard Oehme Enrico Fermi Institute and Department of Physics University of Chicago, Chicago, Illinois, 60637, USA 2 and Max-Planck-Institut f¨ur Physik - Werner-Heisenberg-Institut - 80805 Munich, Germany Abstract The analytic structure of physical amplitudes is considered for gauge the- ories with confinement of excitations corresponding to the elementary fields. Confinement is defined in terms of the BRST algebra. BRST-invariant, local, composite fields are introduced, which interpolate between physical asymp- totic states. It is shown that the singularities of physical amplitudes are arXiv:hep-th/9511007v1 1 Nov 1995 the same as in an effective theory with only physical fields. In particular, there are no structure singularities (anomalous thresholds) associated with confined constituents, like quarks and gluons. The old proofs of dispersion relations for hadronic amplitudes remain valid in QCD. 1Plenary talk presented at the XVIIIth International Workshop on High Energy Physics and Field Theory, Moscow-Protvino, June 1995. To be published in the Proceedings. 2Permanent Address It is the purpose of this talk, to give a survey of the problems involved in the derivation of analytic properties of physical amplitudes in gauge theories with confinement. This report is restricted to a brief resum´eof the essential points discussed in the talk. 3 Dispersion relations for amplitudes describing reactions between hadrons, and for form factors describing the structure of particles, have long played an important rˆole in particle physics [3, 4, 5, 6]. Analytic properties of Green’s functions are fundamental for proving many important results in quantum field theory.
    [Show full text]
  • The Nobel Prize in Physics 2008
    I NFORMATION FOR THE PUBLIC The Nobel Prize in Physics 2008 Why is there something instead of nothing? Why are there so many different elementary particles? This year’s Nobel Laureates in Physics have presented theoretical insights that give us a deeper understanding of what happens far inside the tiniest building blocks of matter. Unravelling the hidden symmetries of nature Nature’s laws of symmetry are at the heart of this subject: or rather, broken symmetries, both those that seem to have existed in our universe from the very beginning and those that have spontaneously lost their original symmetry somewhere along the road. In fact, we are all the children of broken symmetry. It must have occurred immediately after the Big Bang some 14 billion years ago when as much antimatter as matter was created. The meet- ing between the two is fatal for both; they annihilate each other and all that is left is radiation. Evidently, however, matter won against antimatter, otherwise we would not be here. But we are here, and just a tiny deviation from perfect symmetry seems to have been enough – one extra particle of matter for every ten billion particles of antimatter was enough to make our world sur- vive. This excess of matter was the seed of our whole universe, which fi lled with galaxies, stars and planets – and eventually life. But what lies behind this symmetry violation in the cosmos is still a major mystery and an active fi eld of research. An unexplained broken symmetry at the birth of the universe. In the Big Bang, if as much matter as antimatter was created, they should have annihilated each other.
    [Show full text]
  • The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
    ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number.
    [Show full text]
  • Electroweak Symmetry Breaking (Historical Perspective)
    Electroweak Symmetry Breaking (Historical Perspective) 40th SLAC Summer Institute · 2012 History is not just a thing of the past! 2 Symmetry Indistinguishable before and after a transformation Unobservable quantity would vanish if symmetry held Disorder order = reduced symmetry 3 Symmetry Bilateral Translational, rotational, … Ornamental Crystals 4 Symmetry CsI Fullerene C60 ball and stick created from a PDB using Piotr Rotkiewicz's [http://www.pirx.com/iMol/ iMol]. {{gfdl}} Source: English Wikipedia, 5 Symmetry (continuous) 6 Symmetry matters. 7 8 Symmetries & conservation laws Spatial translation Momentum Time translation Energy Rotational invariance Angular momentum QM phase Charge 9 Symmetric laws need not imply symmetric outcomes. 10 symmetries of laws ⇏ symmetries of outcomes by Wilson Bentley, via NOAA Photo Library Photo via NOAA Wilson Bentley, by Studies among the Snow Crystals ... CrystalsStudies amongSnow the ... 11 Broken symmetry is interesting. 12 Two-dimensional Ising model of ferromagnet http://boudin.fnal.gov/applet/IsingPage.html 13 Continuum of degenerate vacua 14 Nambu–Goldstone bosons V Betsy Devine Yoichiro Nambu �� 2 Massless NG boson 1 Massive scalar boson NGBs as spin waves, phonons, pions, … Jeffrey Goldstone 15 Symmetries imply forces. I: scale symmetry to unify EM, gravity Hermann Weyl (1918, 1929) 16 NEW Complex phase in QM ORIGINAL Global: free particle Local: interactions 17 Maxwell’s equations; QED massless spin-1 photon coupled to conserved charge no impediment to electron mass (eL & eR have same charge) James Clerk Maxwell (1861/2) 18 19 QED Fermion masses allowed Gauge-boson masses forbidden Photon mass term 1 2 µ 2 mγ A Aµ violates gauge invariance: AµA (Aµ ∂µΛ) (A ∂ Λ) = AµA µ ⇥ − µ − µ ⇤ µ Massless photon predicted 22 observed: mγ 10− me 20 Symmetries imply forces.
    [Show full text]
  • Highlights of Modern Physics and Astrophysics
    Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of
    [Show full text]
  • Ift Annual Report
    BR98S0288 Instituto de Fisica Teorica IFT Universidade Estadual Paulista ANNUAL REPORT 1997 29-40 Instituto de Fisica Teorica Universidade Estadual Paulista ANNUAL REPORT 1997 INSTITUTO DE FISICA TEORICA DIRECTOR UNIVERSIDADE ESTADUAL PAULISTA JOSE GERALDO PEREIRA RUA PAMPLONA, 145 01405-900 — SAO PAULO VICE-DIRECTOR BRASIL SERGIO FERRAZ NOVAES TEL: 55 (11) 251-5155 FAX: 55 (11) 288-8224 RESEARCH COORDINATOR E-MAIL: [email protected] ROBERTO ANDRE KRAENKEL WEB SITE: HTTP://WWW.IFT.UNESP.BR NEXT PAQE(S) left BLANK Contents 1 General Overview 1 1.1 Brief History 1 1.2 Research Facilities 1 1.2.1 Library 1 1.2.2 Computing Facilities 1 1.3 Main Lines of Research 2 1.3.1 Field Theory 2 1.3.2 Elementary Particle Physics 2 1.3.3 Nuclear Physics 2 1.3.4 Gravitation and Cosmology 2 1.3.5 Mathematical Methods in Physics 2 1.3.6 Non-linear Phenomena 2 1.3.7 Statistical Mechanics 2 1.3.8 Atomic Physics 3 2 Personnel 4 2.1 Faculty 4 2.2 Associate and Postdoctoral Researchers 5 2.3 Visiting Scientists 5 2.4 Staff 6 3 Teaching Activities 7 3.1 Students 7 3.2 Courses 7 3.2.1 First Semester 7 3.2.2 Second Semester 7 3.3 Thesis 8 4 Research Activities 9 4.1 Colloquia and Seminars 9 4.1.1 International 9 4.1.2 National 10 4.2 Research Publications 11 4.2.1 Published Papers 11 4.3 Preprints , 17 1 General Overview 1.1 Brief History The Institute* de Fi'sica Teorica (IFT) was created in 1951 as a Foundation, under the leadership of Jose Hugo Leal Ferreira.
    [Show full text]