Polarisasi Spin Lambda 0 Pada Peluruhan Lambda 0 => P+Pi

Total Page:16

File Type:pdf, Size:1020Kb

Polarisasi Spin Lambda 0 Pada Peluruhan Lambda 0 => P+Pi Penentuan Polarisasi Spin Λ0 pada Peluruhan Λ0 → p + π− JA Simanullang 0399020454 Universitas Indonesia Fakultas Matematika dan Ilmu Pengetahuan Alam Jurusan Fisika Depok Penentuan Polarisasi Spin Λ0 pada Peluruhan Λ0 → p + π− Skripsi Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains JA Simanullang 0399020454 Depok 2003 Halaman Persetujuan Skripsi : Penentuan Polarisasi Spin Λ0 pada Peluruhan Λ0 → p + π− Nama : Jansen Agustinus Simanullang NPM : 0399020454 Skripsi ini telah diperiksa dan disetujui, Depok, ... Agustus 2003. Mengetahui, Dr T.Mart Pembimbing Dr. M. Hikam Penguji I Dr.L.T. Handoko Penguji II iii Kata Pengantar Skripsi ini merupakan persyaratan mendapatkan gelar S.Si, sarjana sains. Semoga karya yang pernah dikerjakan ini berguna. Saya mengucapkan terima kasih kepada Dr. T. Mart yang membimbing saya dalam pembuatan skripsi ini. Terima kasih kepada dewan penguji, Dr. M. Hikam dan Dr. L.T. Handoko. Penulis iv Intisari Abstrak Simetri paritas (P) dahulu dianggap kekal pada semua interaksi. Jika paritas kekal maka alam tidak memiliki preferensi arah. Ternyata alam tidak seperti demikian. Kekekalan paritas pada interaksi lemah ditumbangkan oleh T.D. Lee dan C.N Yang, serta Wu. Paritas tidak kekal pada semua interaksi lemah termasuk pada peluruhan Λ0 → p+π−. Jika paritas tidak kekal dalam peluruhan Λ, polarisasinya dapat diukur dengan menggunakan proses peluruhan Λ0 → p + π−. Kata kunci: peluruhan, polarisasi. Abstract Parity (P) symmetry was assumed to be conserved in all interactions. If parity were conserved then nature would not have any directional preference. Nature, however, is not so. Conservation of parity in weak interaction had been proven not always true by T.D Lee and C.N. Yang, with Wu. Parity is not conserved in all weak interactions including in the decay of Λ0 → p + π−. If parity were not conserved in decay of Λ, the polarization can be measured using the decay process of Λ0 → p+π−. Keywords: decay, polarization v Daftar Isi Halaman Persetujuan iii Kata Pengantar iv Intisari v Daftar Isi vii Daftar Gambar viii Daftar Tabel ix 1 Pendahuluan 1 1.1 Latar Belakang . 1 1.2 Metode Penelitian . 2 1.3 Tujuan Penelitian . 2 1.4 Sistematika Penulisan . 2 2 Tinjauan Pustaka 4 2.1 Tumbangnya Kekekalan Paritas . 4 2.2 Peluruhan Nonleptonik Hyperon . 5 3 Hasil dan Pembahasan 7 3.1 Amplitudo . 8 3.2 Kuadrat Amplitudo . 9 3.2.1 Kontribusi Gelombang-s ..................... 10 3.2.2 Kontribusi Gelombang-p ..................... 10 3.2.3 Suku Interferensi-sp ........................ 11 3.3 Polarisasi dan Laju Peluruhan . 12 3.4 Metode Pengkopelan Momentum Angular . 14 vi Daftar Isi Daftar Isi 4 Kesimpulan dan Saran 20 4.1 Kesimpulan . 20 4.2 Saran Penelitian ke Depan . 21 A Notasi Umum 22 A.1 Aljabar Dirac . 22 B Kopling Momentum Angular 25 C Parameter Peluruhan Baryon 27 C.1 Peluruhan Hyperon . 27 C.2 Sifat Peluruhan Hyperon . 30 Bibliografi 31 vii Daftar Gambar 3.1 Diagram Feynman Peluruhan Hyperon Nonleptonik . 8 3.2 Definisi sumbu dan arah pada peluruhan Λ . 15 3.3 Plot 1 − αP cos θ terhadap θ. ...................... 16 3.4 Distribusi angular proton peluruhan Λ dalam kerangka diam Λ . 18 viii Daftar Tabel 3.1 Hasil Perhitungan Data . 19 C.1 Sifat-sifat Peluruhan Hyperon . 30 ix Bab 1 Pendahuluan Manusia merupakan suatu keberadaan yang mempertanyakan keberadaan. Sejak zaman dahulu, manusia telah menyelidiki segala sesuatu baik yang ada maupun yang dianggap ada. Dalam penyelidikan itu manusia mencari simetri. Simetri merupakan suatu hal yang amat membantu dalam mempelajari segala sesuatu. Di dalam Fisika pun demikian. Para fisikawan mengejar simetri seba- gai suatu hal yang diidam-idamkan. Keberadaan simetri bisa membuat kagum para ilmuwan atas struktur alam semesta yang penuh misteri. Dari banyak simetri yang dikejar oleh para fisikawan terdapat tiga simetri diskret yang menggambarkan simetri partikel-antipartikel, simetri kiri-kanan, dan simetri maju-mundur. Ketiga simetri tersebut dikenal dengan nama konjugasi muatan, paritas dan pembalikan waktu. 1.1 Latar Belakang Eksperimen telah membuktikan bahwa simetri paritas tidak kekal pada semua in- teraksi. Pada interaksi lemah nyata-nyata hukum kekekalan paritas dilanggar. Se- andainya paritas kekal maka alam tidak akan memilih membedakan kiri dan kanan, alam tidak memiliki preferensi arah. Tetapi dalam interaksi lemah, alam tidak berlaku demikian. Alam betul-betul membedakan kiri dan kanan, dan memilih arah yang disukainya. Setelah eksperimen dari C.S. Wu memberikan bukti positif ketidakkekalan paritas, para fisikawan menyadari bahwa alam berlaku sedemikian sehingga dalam interaksi lemah alam mempunyai aturan yang berbeda untuk kiri 1 1.2. Metode Penelitian Bab 1. Pendahuluan dan kanan. Alam membedakan kiri dan kanan. Jika alam membedakan kiri dan kanan, akan terjadi berbagai hal yang menjadi konsekuensi pembedaan tersebut. Jika paritas tidak kekal, akan terjadi percampuran antara partikel yang memiliki paritas yang biasa dikenal dengan partikel serupa yang memiliki paritas yang berlawanan (yang tidak biasanya). Jika paritas tidak kekal, akan terjadi polarisasi spin yang menciptakan keberadaan momen dipol magnetik. Jika ketidakkekalan paritas ini terjadi dalam proses peluruhan hyperon, maka kedua konsekuensi ini memiliki makna bahwa polarisasi spin dapat dihitung melalui proses peluruhannya. 1.2 Metode Penelitian Penelitian ini bersifat teoretis, sehingga yang pertama diperlukan untuk menger- jakan penelitian ini adalah kerangka kerja teori yang memadai untuk dapat digu- nakan sebagai kerangka kerja kalkulasional. Kerangka kerja teori yang masih berlaku dan bekerja sampai saat ini adalah teori kuantum dan teori medan kuantum (Quan- tum Field Theory). Yang kedua yang diperlukan untuk mengerjakan penelitian ini adalah akses ke sumber informasi yang secara khusus berkaitan dengan tema peneli- tian. Sumber informasi yang dapat diakses dalam penelitian ini adalah buku teks dan jurnal. 1.3 Tujuan Penelitian Dalam penelitian ini ingin diperlihatkan bagaimana kaitan antara polarisasi spin Λ0 dengan proses peluruhannya, Λ0 → p + π−. Melalui penelitian ini, pembaca akan mendapati bahwa polarisasi Λ0 dapat dihitung dari laju peluruhannya. Hal ini dipakai oleh para eksperimentalis untuk mengukur polarisasi spin Λ0 tanpa meng- gunakan polarimeter. 1.4 Sistematika Penulisan Tulisan ini dibagi menjadi empat bab. Pembaca akan melihat tinjauan pustaka dalam Bab 2 yang akan memberikan gambaran perkembangan penelitian mengenai 2 1.4. Sistematika Penulisan Bab 1. Pendahuluan topik ketidakkekalan paritas dalam peluruhan hyperon. Tinjauan tersebut berisikan perkembangan pemikiran para fisikawan hingga mendapatkan kesimpulan bahwa ji- ka paritas tidak kekal maka polarisasi hyperon dapat diukur dengan menggunakan proses peluruhannya. Peninjauan hasil secara umum dalam penelitian ini dituliskan dalam Bab 3 yang akan memperlihatkan kaitan antara polarisasi spin dengan proses peluruhan. Selanjutnya, diperlihatkan metode perhitungan alternatif dalam kerang- ka kerja teoretis yang berbeda tetapi tetap menunjukkan pengaitan polarisasi dengan proses peluruhan. Terakhir, kelanjutan penelitian yang mungkin dilakukan di masa mendatang sekitar topik pelanggaran simetri pada peluruhan hyperon dipaparkan dalam Bab 4. Dalam bagian tersebut, ditegaskan bahwa penelitian ini hanya mem- pertimbangkan pelanggaran simetri paritas. Pelanggaran terhadap simetri gabun- gan antara konjugasi muatan dengan paritas belum dilakukan. Hal ini menjadi peluang untuk mengembangkan penelitian ini lebih lanjut ke dalam tema yang lebih luas. 3 Bab 2 Tinjauan Pustaka 2.1 Tumbangnya Kekekalan Paritas Dahulu orang menganggap bahwa paritas kekal pada semua interaksi, tetapi semua bukti eksperimental kekekalan paritas yang ada diperoleh dalam interaksi kuat dan elektromagnetik saja, dalam interaksi lemah belum ada bukti eksperimental. Per- tanyaan mengenai konservasi paritas dalam interaksi lemah dilontarkan pertama kali oleh Lee dan Yang [1]. Lee dan Yang menyarankan agar eksperimen dilakukan untuk mendapatkan bukti yang sahih atas kekekalan atau ketidakkekalan paritas. Berbagai eksperimen pun mulai dilakukan mengikuti saran Lee dan Yang. Lee dan Yang kemudian mengajukan pertanyaan lagi bersama dengan Oehme, kali ini mengenai invariansi mutlak terhadap konjugasi muatan karena bukti eksperimen- talnya pun belum ada [2]. Pada saat tulisan mereka dipublikasikan, ketidakkekalan paritas telah memperoleh bukti eksperimentalnya melalui eksperimen Co 60 yang dilakukan oleh Mme. CS Wu. Lee, Yang dan Wu mendapatkan penghargaan No- bel atas keberhasilan mereka menumbangkan kekekalan paritas. Paritas tidak kekal pada semua interaksi. Interaksi lemah tidak mengekalkan paritas. Tumbangnya kekekalan paritas memiliki banyak konsekuensi yang telah dipredik- si oleh Lee dan Yang. Apabila paritas tidak kekal pada interaksi lemah, maka par- itas hanya didefinisikan dan diukur pada interaksi kuat dan elektromagnetik saja. Jika paritas tidak kekal, semua keadaan atomik dan nuklir menjadi percampuran yang terdiri dari keadaan dengan paritas yang biasa dikenal bersama-sama dengan persentase kecil keadaan yang mempunyai paritas yang berlawanan. Ketidakkekalan 4 2.2. Peluruhan Nonleptonik Hyperon Bab 2. Tinjauan Pustaka paritas mengimplikasikan keberadaan interaksi yang mencampur paritas [1]. 2.2 Peluruhan Nonleptonik Hyperon Beberapa eksperimen lain semakin mengokohkan ketidakkekalan paritas. Peluruhan β, peluruhan π, dan peluruhan µ menyatakan ketidakkekalan paritas. Lee dan Yang kembali menginginkan klarifikasi ketidakkekalan paritas dalam
Recommended publications
  • Why Antihydrogen and Antimatter Are Different As Paul Dirac Realized, the Existence of Antihydrogen Does Not in Itself Prove the Existence of Antimatter
    ANTIMATTER Why antihydrogen and antimatter are different As Paul Dirac realized, the existence of antihydrogen does not in itself prove the existence of antimatter. A look through the history of the subject, and in particular the role played by the CPT theorem, shows that ultimately it came down to experiment to prove the existence of antimatter through the discovery of the antideuteron at CERN in 1965. “Those who say that antihydrogen is antimatter should realize that we are not made of hydrogen and we drink water, not liquid hydro- gen.” These are words spoken by Paul Dirac to physicists gathered around him after his lecture “My life as a Physicist” at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice in 1981 – 53 years after he had, with a single equation, opened new horizons to human knowledge. To obtain water, hydrogen is, of course, not sufficient; oxygen with a nucleus of eight protons and eight neutrons is also needed. Hydrogen is the only element in the Periodic Table to consist of two charged particles (the electron and the proton) without any role being played by the nuclear forces. These two particles need only electromagnetic glue (the photon) to form the hydrogen atom. The antihydrogen atom needs t wo antipar- ticles (antiproton and antielectron) plus electromagnetic antiglue (antiphoton). Quantum electrodynamics (QED) dictates that the photon and the antiphoton are both eigenstates of the C-operator (see later) and therefore electromagnetic antiglue must exist and act like electromagnetic glue. Dirac surrounded by young physicists in Erice after his lecture “My Life If matter were made with hydrogen, the existence of antimatter as a Physicist”.
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]
  • Dispersion Relations in Gauge Theories with Confinement
    EFI 95-54 MPI-Ph/95-82 Dispersion Relations in Gauge Theories with Confinement 1 Reinhard Oehme Enrico Fermi Institute and Department of Physics University of Chicago, Chicago, Illinois, 60637, USA 2 and Max-Planck-Institut f¨ur Physik - Werner-Heisenberg-Institut - 80805 Munich, Germany Abstract The analytic structure of physical amplitudes is considered for gauge the- ories with confinement of excitations corresponding to the elementary fields. Confinement is defined in terms of the BRST algebra. BRST-invariant, local, composite fields are introduced, which interpolate between physical asymp- totic states. It is shown that the singularities of physical amplitudes are arXiv:hep-th/9511007v1 1 Nov 1995 the same as in an effective theory with only physical fields. In particular, there are no structure singularities (anomalous thresholds) associated with confined constituents, like quarks and gluons. The old proofs of dispersion relations for hadronic amplitudes remain valid in QCD. 1Plenary talk presented at the XVIIIth International Workshop on High Energy Physics and Field Theory, Moscow-Protvino, June 1995. To be published in the Proceedings. 2Permanent Address It is the purpose of this talk, to give a survey of the problems involved in the derivation of analytic properties of physical amplitudes in gauge theories with confinement. This report is restricted to a brief resum´eof the essential points discussed in the talk. 3 Dispersion relations for amplitudes describing reactions between hadrons, and for form factors describing the structure of particles, have long played an important rˆole in particle physics [3, 4, 5, 6]. Analytic properties of Green’s functions are fundamental for proving many important results in quantum field theory.
    [Show full text]
  • Ift Annual Report
    BR98S0288 Instituto de Fisica Teorica IFT Universidade Estadual Paulista ANNUAL REPORT 1997 29-40 Instituto de Fisica Teorica Universidade Estadual Paulista ANNUAL REPORT 1997 INSTITUTO DE FISICA TEORICA DIRECTOR UNIVERSIDADE ESTADUAL PAULISTA JOSE GERALDO PEREIRA RUA PAMPLONA, 145 01405-900 — SAO PAULO VICE-DIRECTOR BRASIL SERGIO FERRAZ NOVAES TEL: 55 (11) 251-5155 FAX: 55 (11) 288-8224 RESEARCH COORDINATOR E-MAIL: [email protected] ROBERTO ANDRE KRAENKEL WEB SITE: HTTP://WWW.IFT.UNESP.BR NEXT PAQE(S) left BLANK Contents 1 General Overview 1 1.1 Brief History 1 1.2 Research Facilities 1 1.2.1 Library 1 1.2.2 Computing Facilities 1 1.3 Main Lines of Research 2 1.3.1 Field Theory 2 1.3.2 Elementary Particle Physics 2 1.3.3 Nuclear Physics 2 1.3.4 Gravitation and Cosmology 2 1.3.5 Mathematical Methods in Physics 2 1.3.6 Non-linear Phenomena 2 1.3.7 Statistical Mechanics 2 1.3.8 Atomic Physics 3 2 Personnel 4 2.1 Faculty 4 2.2 Associate and Postdoctoral Researchers 5 2.3 Visiting Scientists 5 2.4 Staff 6 3 Teaching Activities 7 3.1 Students 7 3.2 Courses 7 3.2.1 First Semester 7 3.2.2 Second Semester 7 3.3 Thesis 8 4 Research Activities 9 4.1 Colloquia and Seminars 9 4.1.1 International 9 4.1.2 National 10 4.2 Research Publications 11 4.2.1 Published Papers 11 4.3 Preprints , 17 1 General Overview 1.1 Brief History The Institute* de Fi'sica Teorica (IFT) was created in 1951 as a Foundation, under the leadership of Jose Hugo Leal Ferreira.
    [Show full text]
  • 'Vague, but Exciting'
    I n t e r n at I o n a l Jo u r n a l o f HI g H -en e r g y PH y s I c s CERN COURIERV o l u m e 49 nu m b e r 4 ma y 2009 ‘Vague, but exciting’ ACCELERATORS COSMIC RAYS COLLABORATIONS FFAGs enter the era of PAMELA finds a ATLAS makes a smooth applications p5 positron excess p12 changeover at the top p31 CCMay09Cover.indd 1 14/4/09 09:44:43 CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August. The views expressed are not necessarily those of the CERN management. Editor Christine Sutton Editorial assistant Carolyn Lee CERN CERN, 1211 Geneva 23, Switzerland E-mail [email protected] Fax +41 (0) 22 785 0247 Web cerncourier.com Advisory board James Gillies, Rolf Landua and Maximilian Metzger COURIERo l u m e u m b e r a y Laboratory correspondents: V 49 N 4 m 2009 Argonne National Laboratory (US) Cosmas Zachos Brookhaven National Laboratory (US) P Yamin Cornell University (US) D G Cassel DESY Laboratory (Germany) Ilka Flegel, Ute Wilhelmsen EMFCSC (Italy) Anna Cavallini Enrico Fermi Centre (Italy) Guido Piragino Fermi National Accelerator Laboratory (US) Judy Jackson Forschungszentrum Jülich (Germany) Markus Buescher GSI Darmstadt (Germany) I Peter IHEP, Beijing (China) Tongzhou Xu IHEP, Serpukhov (Russia) Yu Ryabov INFN (Italy) Romeo Bassoli Jefferson Laboratory (US) Steven Corneliussen JINR Dubna (Russia) B Starchenko KEK National Laboratory (Japan) Youhei Morita Lawrence Berkeley Laboratory (US) Spencer Klein Seeing beam once again p6 Dirac was right about antimatter p15 A new side to Peter Higgs p36 Los Alamos National Laboratory (US) C Hoffmann NIKHEF Laboratory (Netherlands) Paul de Jong Novosibirsk Institute (Russia) S Eidelman News 5 NCSL (US) Geoff Koch Orsay Laboratory (France) Anne-Marie Lutz FFAGs enter the applications era.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title SOME ANALYTIC PROPERTIES OF THE VERTEX FUNCTION Permalink https://escholarship.org/uc/item/2qp1x7v8 Author Oehme, Reinhard. Publication Date 1959-07-31 eScholarship.org Powered by the California Digital Library University of California UCRL -8838 UNIVERSITY OF TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. ,V \ UCRL-8838 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No. W -7405-eng-48 and Enrico Fermi Institute for Nuclear Studies and Department of Physics University of Chicago Chicago, Illinois SOME ANALYTIC PROPER TIES OF THE VERTEX FUNCTION Reinhard Oehme July 3 1 , 1 9 59 I ~~~~¥~~~ ' -..~ ·~., .
    [Show full text]
  • The University of Chicago, Chicago, Illinois 60637 <
    V# COO 264-579 EFI 71-32 *fAW# " = 2 8.W#..3 HIGH ENERGY SCATTERING OF HADRONS Reinhard Oehme The Enrico Fermi Institute 1 and the Department of Physics i The University of Chicago, Chicago, Illinois 60637 1 May, 1971 1 Contract No. AT (11-1)-264 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liabUity or responsibility for the accuracy, com- < productpleteness or usefulness of any information, apparatus, or process disclosed, or represents that its use · would not infringe privately owned rights. PISIRIBIET.oN w IHIS DOCUMENT IS UNLIMm /\\\, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • SUPERCONVERGENCE RELATIONS Are Sum Rules for the Discontinuity Ρ(K2) of a Structure Function D(K2) in Gauge Theories [1]
    EFI 2000-59 Superconvergence Relations 1 Reinhard Oehme 2 Enrico Fermi Institute and Department of Physics University of Chicago Chicago, Illinois, 60637, USA Abstract For a limited number of matter fields, the discontinuity of the transverse gauge field propagator can satisfy an exact sum rule. With controlled and limited gauge dependence, this superconvergence relation is of physical interest. arXiv:hep-th/0104033v1 3 Apr 2001 1For the ‘Concise Encyclopedia of SUPERSYMMETRY’, Kluwer Academic Publishers, Dortrecht, (Editors: Jon Bagger, Steven Duplij and Warren Siegel) 2001. 2E-mail: [email protected] SUPERCONVERGENCE RELATIONS are sum rules for the discontinuity ρ(k2) of a structure function D(k2) in gauge theories [1]. The transverse gauge field propagator is considered here as a characteristic example. From Lorentz covarriance and a minimal spectral condition, it follows that D(k2) is the boundary value of a function which is holomorphic in the complex k2 plane with a cut along the positive real axis. A priori, with the space-time propagator being a tempered distribution, this function is bounded by a polynomial for k2 → ∞. But for regions in the parameter space where the theory is asymptotically free, the asymptotic forms can be calculated in terms of the weak coupling limit. Using renormalization group methods, one finds for the structure function 2 −γ00/β0 2 2 2 α 2 k − k D(k , κ ,g,α) ≃ + C(g ,α) −β0 ln 2 + ··· , (1) α0 κ ! and the asymptotic term for the discontinuity along the positive, real k2-axis is given by 2 −γ00/β0−1 2 2 2 γ00 2 k − k ρ(k , κ ,g,α) ≃ C(g ,α) −β0 ln 2 + ··· .
    [Show full text]
  • Superconvergence Relations 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE EFI 2000-59 provided by CERN Document Server Superconvergence Relations 1 Reinhard Oehme 2 Enrico Fermi Institute and Department of Physics University of Chicago Chicago, Illinois, 60637, USA Abstract For a limited number of matter fields, the discontinuity of the transverse gauge field propagator can satisfy an exact sum rule. With controlled and limited gauge dependence, this superconvergence relation is of physical interest. 1For the `Concise Encyclopedia of SUPERSYMMETRY', Kluwer Academic Publishers, Dortrecht, (Editors: Jon Bagger, Steven Duplij and Warren Siegel) 2001. 2E-mail: [email protected] SUPERCONVERGENCE RELATIONS are sum rules for the discontinuity ρ(k2) of a structure function D(k2) in gauge theories [1]. The transverse gauge field propagator is considered here as a characteristic example. From Lorentz covarriance and a minimal spectral condition, it follows that D(k2) is the boundary value of a function which is holomorphic in the complex k2 plane with a cut along the positive real axis. A priori, with the space-time propagator being a tempered distribution, this function is bounded by a polynomial for k2 . But for regions in the →∞ parameter space where the theory is asymptotically free, the asymptotic forms can be calculated in terms of the weak coupling limit. Using renormalization group methods, one finds for the structure function γ00/β0 α k2 − k2D(k2,κ2,g,α) + C(g2,α) β ln + , (1) 0 2 − ' α0 − κ ! ··· and the asymptotic term for the discontinuity along the positive, real k2-axisisgiven by γ00/β0 1 2 − − 2 2 2 γ00 2 k k ρ(k ,κ ,g,α) C(g ,α) β0 ln + .
    [Show full text]
  • Analytic Structure of Amplitudes in Gauge Theories with Confinement
    EFI 94-39 MPI-Ph/94-52 Analytic Structure of Amplitudes in Gauge Theories with Confinement 1 Reinhard Oehme Enrico Fermi Institute and Department of Physics University of Chicago, Chicago, Illinois, 60637, USA 2 and Max-Planck-Institut f¨ur Physik - Werner-Heisenberg-Institut - 80805 Munich, Germany Abstract For gauge theories with confinement, the analytic structure of amplitudes is explored. It is shown that the analytic properties of physical amplitudes are the same as those obtained on the basis of an effective theory involving only the composite, physical fields. The corresponding proofs of dispersion relations remain valid. Anomalous thresholds are considered. They are re- arXiv:hep-th/9412040v1 5 Dec 1994 lated to the composite structure of particles. It is shown, that there are no such thresholds in physical amplitudes which are associated with con- fined constituents, like quarks and gluons in QCD. Unphysical amplitudes are considered briefly, using propagator functions as an example. For gen- eral, covariant, linear gauges, it is shown that these functions must have singularities at finite, real points, which may be associated with confined states. 1Based on an invited talk presented at the Conference on New Problems in the General Theory of Fields and Particles of the International Congress of Mathematical Physics, La Sorbonne, Paris, July 1994. 2Permanent Address I. INTRODUCTION The analytic structure of amplitudes is of considerable importance in all quantum field theories, from a physical as well as a conceptional point of view. It has been studied extensively over many years, but mainly for field theories with a state space of definite metric, and in situations where the in- terpolating Heisenberg fields are closely related to the observable excitations of the theory.
    [Show full text]
  • Analytic Structure of Amplitudes in Gauge Theories with Con Nement 1
    EFI 94-39 MPI-Ph/94-52 Analytic Structure of Amplitudes 1 in Gauge Theories with Con nement Reinhard Oehme EnricoFermi Institute and Department of Physics 2 University of Chicago, Chicago, Il linois, 60637, USA and Max-Planck-Institut fur Physik - Werner-Heisenberg-Institut - 80805 Munich, Germany Abstract For gauge theories with con nement, the analytic structure of amplitudes is explored. It is shown that the analytic prop erties of physical amplitudes are the same as those obtained on the basis of an e ective theory involving only the comp osite, physical elds. The corresp onding pro ofs of disp ersion relations remain valid. Anomalous thresholds are considered. They are re- lated to the comp osite structure of particles. It is shown, that there are no such thresholds in physical amplitudes which are asso ciated with con- ned constituents, like quarks and gluons in QCD. Unphysical amplitudes are considered brie y, using propagator functions as an example. For gen- eral, covariant, linear gauges, it is shown that these functions must have singularities at nite, real p oints, whichmay b e asso ciated with con ned states. 1 Based on an invited talk presented at the Conference on New Problems in the General Theory of Fields and Particles of the International Congress of Mathematical Physics,La Sorb onne, Paris, July 1994. 2 Permanent Address HEP-TH-9412040 I. INTRODUCTION The analytic structure of amplitudes is of considerable imp ortance in all quantum eld theories, from a physical as well as a conceptional p ointof view. It has b een studied extensively over manyyears, but mainly for eld theories with a state space of de nite metric, and in situations where the in- terp olating Heisenb erg elds are closely related to the observable excitations of the theory.
    [Show full text]
  • EFI 95-54 MPI-Ph/95-82 Dispersion Relations in Gauge
    EFI 95-54 MPI-Ph/95-82 Dispersion Relations in Gauge Theories with Confinement 1 Reinhard Oehme Enrico Fermi Institute and Department of Physics University of Chicago, Chicago, Illinois, 60637, USA 2 and Max-Planck-Institut f¨ur Physik - Werner-Heisenberg-Institut - 80805 Munich, Germany Abstract Theanalyticstructureofphysical amplitudes is considered for gauge the- ories with confinement of excitations corresponding to the elementary fields. Confinement is defined in terms of the BRST algebra. BRST-invariant, local, composite fields are introduced, which interpolate between physical asymp- totic states. It is shown that the singularities of physical amplitudes are the same as in an effective theory with only physical fields. In particular, there are no structure singularities (anomalous thresholds) associated with confined constituents, like quarks and gluons. The old proofs of dispersion relations for hadronic amplitudes remain valid in QCD. 1Plenary talk presented at the XVIIIth International Workshop on High Energy Physics and Field Theory, Moscow-Protvino, June 1995. To be published in the Proceedings. 2Permanent Address It is the purpose of this talk, to give a survey of the problems involved in the derivation of analytic properties of physical amplitudes in gauge theories with confinement. This report is restricted to a brief resum´e of the essential points discussed in the talk. 3 Dispersion relations for amplitudes describing reactions between hadrons, and for form factors describing the structure of particles, have long played an important rˆole in particle physics [3, 4, 5, 6]. Analytic properties of Green’s functions are fundamental for proving many important results in quantum field theory. With physical amplitudes being boundary values of holomorphic functions of several complex variables, appropriate different amplitudes can be associated with the same analytic function.
    [Show full text]