Loons and Their Wings

Total Page:16

File Type:pdf, Size:1020Kb

Loons and Their Wings NOTES AND COMMENTS LOONS AND THEIR WINGS ROBERT W. STORER University of Michigan Museum of Zoology, Ann Arbor In his interesting article on adaptive evolu­ Like the Hesperornithes and the grebes, the tion in birds' wings, Savile (1957) makes sev­ loons are foot-propelled diving birds. While eral statements about the loons and their evolu­ they may swim by alternate strokes of the feet tion which I feel require further discussion. when on the surface, they move the feet simul­ The idea that loons were relatives of the taneously when they are below the surface. Upper Cretaceous Hesperornithes and are there­ Ordinarily the wings are kept folded and under fore primitive has persisted in the literature for the flank feathers while the birds are under . many years, although in my opinion it is quite water; however, in turning sharply or when unjustified. As I have recently pointed out wounded or pressed, loons use their wings under (1956) the best known of the early fossil loons water (Townsend, 1924). The speed with which (Colymboides minutus) was a small species loons normally move under water is indicative which, compared with modern loons, had legs of the size and power of their hind limb mus­ only moderately adapted for propulsion under culature, which, compared with other birds, water and relatively large wings, enabling it to forms a relatively high proportion of the total fly strongly. Loons as we know them evolved body weight. Yet loons can and do perform between the time of Colymboides minutus (late long migrations. Thus loons appear to be Oligocene or early Miocene) and the Upper adapted for sustained flight with a minimum Middle Miocene (Calvert formation), the age weight of wings and pectoral muscles. An im­ of occurrence of the earliest recorded fossil of portant evolutionary factor is the conservatism the Recent genus Cavia (Wetmore, 1941). of wing proportions within the loons (and many Loons probably evolved from gull-like ances­ other groups of birds). I have shown the re­ tors; certainly they evolved from strong-flying markable similarity in the proportional lengths ones. of the wing elements between Colymboides As has been pointed out by Stolpe (1935) minutus and the Recent loons (1956: 415), and and others, the similarities shared by the Hes­ it is evident through what is known of their perornithes, the grebes, and the loons result evolution that loons' wings have changed little from convergent evolution. I see no valid rea­ if any in their proportions. There has, how­ son for believing that they had a common ever, been a reduction in relative size of the swimming ancestor. The Hesperornithes were fore limb as the hind limb has become increas­ highly specialized end products of a very early ingly heavy. What we have in modern loons adaptive radiation of birds. There is no con­ is an adaptive balance; the selective advantages clusive proof that any other known Cretaceous of an increasingly strong (and heavy) hind birds possessed teeth. The retention of these limb being opposed by the disadvantage of the structures in the Hesperornithes was of un­ accompanying increase in wing-loading. doubted selective advantage-witness the evolu­ Speed in flight is a compensation for a high tion of analagous structures in the bills of wing-loading, and I suggest that the form of mergansers. Neither the adaptive "disadvan­ loons' wings is an adaptation for speed in flight tage" of weight nor the "substitution" of a :'necessitated" by an increase in wing-loading, muscular gizzard discussed by Dilger (1957) as In turn brought about by the strong develop­ reasons for the loss of teeth in birds applied to ment of the legs for propulsion under water. these flightless birds which presumably used In using data on weights and wing areas it their teeth to hold their prey. should be emphasized that the weights of mi­ gratory birds, and hence the corresponding Thus loons were derived from birds which figures for wing-loading, are extremely variable. flew well, and they were not related to the I have been collecting data on the grebes and Hesperornithes, which died out long before have found more than 100 per cent variation in loons became their ecological counterparts. The wing-loading in the Pied-billed Grebe. Two wings of loons must therefore be thought of as males of this species, each having a wing area either in the process of "degeneration," or as of 52 square inches, weighed 282 grams and being adapted to a particular set of conditions. 576 grams. The figures for wing loading are I would like to present evidence for the latter 1.75 and 3.55 pounds per square foot respec- view. tively. ' 262 NOTES AND COMMENTS 263 LITERATURE CITED STORER, ROBERT W. 1956. The fossil loon, DILGER, WILLIAM C. 1957. The loss of teeth Colymboides minutus. Condor, 58: 413-426. in birds. Auk, 74: 103-104. TOWNSEND, CHARLES W. 1924. Diving of SAVILE, D. B. O. 1957. Adaptive evolution in grebes and loons. Auk, 41 : 29-41. avian wing. EVOLUTION, 11: 212-224. STOLPE, M. 1935. Colymbus, Hesperornis, WETMORE, ALEXANDER. 1941. An unknown Podiceps: ein Vergleich ihrer hinteren Ex­ loon from the Miocene beds of Maryland. trernitat, Jour. fur Ornith., 83: 115-128. Auk, S8: 567. THE LOON WING D. B. O. SAVILE Botany and Plant Pathology Laboratory, Science Service, Ottawa, Ontario I regret that, in following Heilmann (The from a line that, although capable of flight, origin of birds. Witherby, London. 1926), I failed to develop a really efficient wing. In par­ unwittingly perpetuated an error concerning the ticular, I find it difficult to believe that the relationship of H esperornis. I wish to thank poorly developed loon alula is anything but Dr. Storer for drawing attention to this error, primitively inefficient; for, as long as a bird of and I trust that his correction will be widely substantial size flies at all, a functional alula is noted. very valuable, and it is hard to believe that it is Dr. Storer's interpretation invalidates the detrimental in swimming or diving. chronology of my speculative interpretation of I am grateful to the many correspondents who the origin of the loon wing. Whether it upsets have written to me about this problem, but it it in other respects is a moot point. I still feel must be admitted that none has yet presented a that it is quite possible that the loons arose convincing alternative solution. CROSSING RELATIONSHIPS IN THE GENUS CARICA ANAND C. SAWANT The cultivated papaya (Carica papaya) is na­ work was undertaken, therefore, to study the tive to Central America (1) and in the post­ crossing compatibility relations of wild species Columbus period it spread to other tropical of Carica with cultivated papaya, a prerequisite parts of the world. Papaya cultivation is sub­ to the transfer of any desirable characters from ject to serious depredations primarily from wild species to cultivated papaya. many fungus, bacteria and virus diseases. In Many successful, as well as unsuccessful, inter­ subtropical countries, on the fringes of tropics, specific crosses have been reported. Warmke the papaya cannot be grown because it is very and others (2) reported a new interspecific susceptible to temperatures below 400 F. Ef­ cross, C. goudotiana X C. monoica, the latter forts are being made therefore to develop va­ being used as a male parent. Addison (3) had rieties resistant to diseases prevalent in the succeeded in making the interspecific cross, C. particular area, and to develop varieties for papaya X C. monoica. Still earlier successful subtropical climates. crosses were made between C. candamarcensis The papaya belongs to the genus Carica, X C. papaya, C. caulifioro X C. papaya, C. which has some 40 species native to Central erythrocarpa X C. candamarcensis, C. papaya X America and Northern part of South America. C. gracilis (4). Seany and Wieland have been C. monoica shows some tolerance to one of the successful to cross C. candamarcensis X C. virulent papaya diseases called virus Bunchy monoica and to study F, and F. (personal cor­ Top, which is common in Puerto Rico and the respondence) . In the present work crosses be­ adjoining Carribean area. C. candamarcensis, tween four species, namely C. papaya, C. on the other hand, grows only at an altitude of monoica, C. goudotiana and C. caulifiora were 4,000 feet or more, which has much cooler attempted. climate for papayas. The fruit of C. cando­ C. papaya is a tree growing 10 to 25 feet or marcensis is edible. The present exploratory more. Usually unbranched, it bears large melon-.
Recommended publications
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • External Examination of Seabirds: Plumage & Morphometrics
    External Examination of Seabirds: Plumage & Morphometrics Quantitative analysis of form, encompasses size and shape Seabird Topography ➢ Naming Conventions: • Parts of the body • Types of feathers (Harrison 1983) Types of Feathers Coverts: Rows bordering and overlaying the edges of the tail and wings on both the lower and upper sides of the body. Help streamline shape of the wings and tail and provide the bird with insulation. Feather Tracks ➢ Feathers are not attached randomly. • They occur in linear tracts called pterylae. • Spaces on bird's body without feather tracts are called apteria. • Densest area for feather tracks is head and neck. • Feathers arranged in distinct layers: contour feathers overlay down. Generic Pterylae Types of Feathers Contour feathers: outermost feathers. Define the color and shape of the bird. Contour feathers lie on top of each other, like shingles on a roof. Shed water, keeping body dry and insulated. Each contour feather controlled by specialized muscles which control their position, allowing the bird to keep the feathers in clean and neat condition. Specialized contour feathers used for flight: delineate outline of wings and tail. Types of Feathers Flight feathers – special contour feathers Define outline of wings and tail Long and stiff Asymmetrical those on wings are called remiges (singular remex) those on tail are called retrices (singular retrix) Types of Flight Feathers Remiges: Largest contour feathers (primaries / secondaries) Responsible for supporting bird during flight. Attached by ligaments or directly to the wing bone. Types of Flight Feathers Flight feathers – special contour feathers Rectrices: tail feathers provide flight stability and control. Connected to each other by ligaments, with only the inner- most feathers attached to bone.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 Pp., 15 Figures May 4, 1999
    AMERICANt MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 pp., 15 figures May 4, 1999 An Oviraptorid Skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, Preserved in an Avianlike Brooding Position Over an Oviraptorid Nest JAMES M. CLARK,I MARK A. NORELL,2 AND LUIS M. CHIAPPE3 ABSTRACT The articulated postcranial skeleton of an ovi- presence of a single, ossified ventral segment in raptorid dinosaur (Theropoda, Coelurosauria) each rib as well as ossified uncinate processes from the Late Cretaceous Djadokhta Formation associated with the thoracic ribs. Remnants of of Ukhaa Tolgod, Mongolia, is preserved over- keratinous sheaths are preserved with four of the lying a nest. The eggs are similar in size, shape, manal claws, and the bony and keratinous claws and ornamentation to another egg from this lo- were as strongly curved as the manal claws of cality in which an oviraptorid embryo is pre- Archaeopteryx and the pedal claws of modern served, suggesting that the nest is of the same climbing birds. The skeleton is positioned over species as the adult skeleton overlying it and was the center of the nest, with its limbs arranged parented by the adult. The lack of a skull pre- symmetrically on either side and its arms spread cludes specific identification, but in several fea- out around the nest perimeter. This is one of four tures the specimen is more similar to Oviraptor known oviraptorid skeletons preserved on nests than to other oviraptorids. The ventral part of the of this type of egg, comprising 23.5% of the 17 thorax is exceptionally well preserved and pro- oviraptorid skeletons collected from the Dja- vides evidence for other avian features that were dokhta Formation before 1996.
    [Show full text]
  • Screaming Biplane Dromaeosaurs of the Air. June/July
    5c.r~i~ ~l'tp.,ne pr~tl\USp.,urs 1tke.A-ir Written & illustrated by Gregory s. Paul It is questionable whether anyone even speculated that some dinosaurs were feathered until Ostrom detailed the evidence that birds descended from predatory avepod theropods a third of a century ago. The first illustration of a feathered dinosaur was a nice little study of a well ensconced Syntarsus dashing down a dune slope in pursuit of a gliding lizard in Robert Bakker's classic "Dinosaur Renaissance" article in the April 1975 Scientific American by Sarah Landry (can also be seen in the Scientific American Book of the Dinosaur I edited). My first feathered dinosaur was executed shortly after, an inappropriately shaggy Allosaurus attacking a herd of Diplodocus. I was soon doing a host of small theropods in feathers. Despite the logic of feath- / er insulation on the group ancestral birds and showing evidence of a high level energetics, images of feathered avepods were often harshly and unsci- Above: Proposed relationships based on flight adaptations of entifically criticized as unscientific in view of the lack of evidence for their preserved skeletons and feathers of Archaeopteryx, a generalized presence, ignoring the equal fact that no one had found scales on the little Sinornithosaurus, and Confuciusornis, with arrows indicating dinosaurs either. derived adaptations not present in Archaeopteryx as described in In the 1980s I further proposed that the most bird-like, avepectoran text. Not to scale. dinosaurs - dromaeosaurs, troodonts, oviraptorosaurs, and later ther- izinosaurs _were not just close to birds and the origin of flight, but were see- appear to represent the remnants of wings converted to display devices.
    [Show full text]
  • The Fossil Remains of a Species of Hesperornis Found in Montana
    290 SHUFELDT,Remains of Hesperornis. [July[ Auk THE FOSSIL REMAINS OF A SPECIES OF HESPERORNIS FOUND IN MONTANA. BY R. W. SHUFELD% M.D. Plate XI7III. ExR•,¾ in November, 1914, Mr. Charles W. Gihnore, who has chargeof the fossilbirds and reptiles in the Divisionof Palmontology of the United States National Museum, Washington, D.C., sent me a fossil vertebra, which was collected when he was associated with Dr. T. W. Stanton on an expeditionin Montana during the early autumnof 1914. This vertebra,when received by me, was labeled thus: "Coniornis altus Marsh, Lumbar vertebra, Dog Creek, I mi. above its mouth, Fergus County, Montana. CretaceousClagget formation(upper yellowish sandstone) September 26, 1914." T. W. Stanton, C. W. Gilmore. All. No." There being no proper material in the collectionsof the U.S. National Museum wherewith to comparethis vertebra, I studiedit as best I couldthrough comparing the fossilbone with the figures givenby Marsh in his Odontornithes.This comparisonconvinced me of the fact that the vertebra belongedto some medium-sized Hesperorn'is;further, that it more closelyresembled the 23d vertebra of the spinal colmnnof Hesperornisregalis than it did any other vertebra, and I was therefore led to believe that it was the correspondingvertebra of somespecies of Hcsperornis,smaller than H. regalis,probably of a speciesheretofore unclescribed. As I knew that Doctor Richard S. Lull, of the PeabodyMuseum, wasengaged upon a studyof the Hesperornithide*,at the time this bone came to me for study, I determinedto refer it to hi•n for an opinion. This 1 did with a letter datedat Washington,D.C., the 10th of November, 1914.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Alula Characteristics As Indicators of Golden-Cheeked Warbler Age
    Alula Characteristics as Indicators of Golden-cheeked Warbler Age Rebecca G. Peak and Daniel J. Lusk (SY) birds from older age classes. Dwight (1900) P.O. Box 5190 first illustrated the utility of molt limits in ageing Fort Hood, TX 76544 passerines. More recent literature on the use of molt [email protected] limits to age North American passerines provide detailed descriptions ofhow to distinguish different feather generations from each other for a variety of ABSTRACT species (Yunick 1984, Pyle et al. 1987, Mulvihill 1993, Pyle 1997a, Pyle 1997b ). We assessed the alula ofGolden-cheeked Warblers (Dendroica chrysoparia) to determine its usefulness Dendroica warblers retain greater primary coverts as a criterion for age determination. We compared (hereafter "primary coverts") from the juvenal the alula to the greater secondary coverts for color plumage but replace greater secondary coverts contrast and examined it for presence of white. (hereafter "greater coverts") during the first Overall, 98.2% ofsecond-year birds had an alula/ prebasic molt (Pyle et al. 1987). Hence, greater secondary covert contrast; whereas, I 00% comparison of color and extent of wear between of after-second-year birds did not have a contrast these feather groups is useful for ageing members between these feather groups. All after-second­ of this genus. The contrast between primary and year birds had white on the alula. Our data greater coverts can be challenging for inexperi­ demonstrate that these characteristics are reliable enced banders to recognize. These feather groups indicators of age for Golden-cheeked Warblers. are small, the color difference is often difficult for Still, we advocate using them in combination with the untrained eye to discern, and some of these existing ageing criteria to enhance the confidence species replace the inner greater coverts during of banders' age determinations, especially during prealternate molts.
    [Show full text]
  • On the Role of the Alula in the Steady Flight of Birds
    Ardeola 48(2), 2001, 161-173 ON THE ROLE OF THE ALULA IN THE STEADY FLIGHT OF BIRDS J. C. ÁLVAREZ*1, J. MESEGUER*, E. MESEGUER* & A. PÉREZ** SUMMARY.—On the role of the alula on the steady flight of birds. The alula is a high lift device located at the leading edge of the birds wings that allows these animals to fly at larger angles of attack and lower speeds without wing stalling. The influence of the alula in the wing aerodynamics is similar, to some extent, to that of leading edge slats in aircraft wings, which are only operative during take-off and landing operations. In this paper, representative parameters of the wing geometry including alula position and size of forty species of birds, are reported. The analysis of the reported data reveals that both alula size and position depend on the ae- rodynamic characteristics (wing load and aspect ratio) of the wing. In addition, aiming to clarify if the alula is deflected voluntarily by birds or if the deflection is caused by pressure forces, basic experimental results on the influence of the wing aerodynamics on the mechanism of alula deflection at low velocities are presented. Experimental results seem to indicate that the alula is deflected by pressure forces and not voluntarily. Key words: Alula, high lift devices, steady flight, wing load. RESUMEN.—El papel del álula en el vuelo estacionario de las aves. El álula es un dispositivo hipersus- tentador situado en el borde de ataque de las alas de los pájaros que permite que estos animales vuelen a altos ángulos de ataque y bajas velocidades sin que se produzca la entrada en pérdida del ala (el ala deja de sus- tentar si el ángulo de ataque es muy grande).
    [Show full text]
  • Anatomical Network Analyses Reveal Oppositional Heterochronies in Avian Skull Evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,;
    ARTICLE https://doi.org/10.1038/s42003-020-0914-4 OPEN Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,; In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther- opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non- avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy- logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. ✉ 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland. email: [email protected] COMMUNICATIONS BIOLOGY | (2020) 3:195 | https://doi.org/10.1038/s42003-020-0914-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0914-4 fi fi irds represent highly modi ed reptiles and are the only length (L), quality of identi ed modular partition (Qmax), par- surviving branch of theropod dinosaurs.
    [Show full text]
  • Avialan Status for Oviraptorosauria
    Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes.
    [Show full text]
  • Reproduction in Mesozoic Birds and Evolution of the Modern Avian Reproductive Mode Author(S): David J
    Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode Author(s): David J. Varricchio and Frankie D. Jackson Source: The Auk, 133(4):654-684. Published By: American Ornithological Society DOI: http://dx.doi.org/10.1642/AUK-15-216.1 URL: http://www.bioone.org/doi/full/10.1642/AUK-15-216.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Volume 133, 2016, pp. 654–684 DOI: 10.1642/AUK-15-216.1 REVIEW Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode David J. Varricchio and Frankie D. Jackson Earth Sciences, Montana State University, Bozeman, Montana, USA [email protected], [email protected] Submitted November 16, 2015; Accepted June 2, 2016; Published August 10, 2016 ABSTRACT The reproductive biology of living birds differs dramatically from that of other extant vertebrates.
    [Show full text]
  • Breeding Seasons, Molt Patterns, and Gender and Age Criteria for Selected Northeastern Costa Rican Resident Landbirds
    The Wilson Journal of Ornithology 121(3):556–567, 2009 BREEDING SEASONS, MOLT PATTERNS, AND GENDER AND AGE CRITERIA FOR SELECTED NORTHEASTERN COSTA RICAN RESIDENT LANDBIRDS JARED D. WOLFE,1,2,4 PETER PYLE,3 AND C. JOHN RALPH2 ABSTRACT.—Detailed accounts of molt and breeding cycles remain elusive for the majority of resident tropical bird species. We used data derived from a museum review and 12 years of banding data to infer breeding seasonality, molt patterns, and age and gender criteria for 27 common landbird species in northeastern Costa Rica. Prealternate molts appear to be rare, only occurring in one species (Sporophila corvina), while presupplemental molts were not detected. Most of our study species (70%) symmetrically replace flight feathers during the absence of migrant birds; molting during this period may limit resource competition during an energetically taxing phase of the avian life-cycle. Received 30 August 2008. Accepted 19 February 2009. Temporal patterns of molt and breeding sea- of the avian life cycle, but other factors including sonality are largely unknown for many resident climate and resource availability may also affect tropical species (Dickey and van Rossem 1938, timing of molt (Aidley and Wilkinson 1987, Snow and Snow 1964, Snow 1976) in contrast to Bensch et al. 1991, Jones 1995). Little has been Nearctic-Neotropic migrants (hereafter ‘mi- published concerning temporal patterns of molt grants’). One might assume differential molt among resident tropical species in relation to sequences and extent between latitudes given competition from overwintering migrants despite different natural histories of resident tropical birds continued interest in factors influencing timing of in relation to their migrant counterparts.
    [Show full text]