Redalyc.Biologically Active Lignans and Neolignans from Magnolia

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Biologically Active Lignans and Neolignans from Magnolia Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Song, Qi; Fischer, Nikolaus H. Biologically active lignans and neolignans from Magnolia species Journal of the Mexican Chemical Society, vol. 43, núm. 6, noviembre-diciembre, 1999, pp. 211-218 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47543607 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de la Sociedad Química de México, Vol. 43, Núm. 6 (1999) 211-218 Revisión Biologically Active Lignans and Neolignans from Magnolia Species Qi Song and Nikolaus H. Fischer* Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA Resumen. Algunos miembros del género Magnolia (familia Magno- Abstract. Members of the genus Magnolia (family Magnoliaceae), liaceae), que tienen un amplio uso en la medicina tradicional, son which have long been used in folk medicine, are rich in lignans, ricos en lignanos, neolignanos, sus oligómeros y en estructuras híbri- neolignans, their oligomers and hybrid structures. This review covers das. Esta revisión cubre la distribución y las actividades biológicas de the distribution and biological activities of this class of natural prod- este grupo de productos naturales. Se incluyen las estructuras quími- ucts. Also, the chemical structures of lignans, neolignans, oligomeric cas de los lignanos, neolignanos, lignanos oligoméricos y lignanos lignans and biosynthetically “mixed” terpenoid lignans from 19 dif- terpenoidales biosintéticamente mixtos, y se discuten sus bioactivi- ferent Magnolia species are summarized and their bioactivities are dades. discussed. Introduction These phenylpropanoid dimers are formed biogenetically through the shikimate pathway [14]. Norlignans are defined as Various taxa of the genus Magnolia (family Magnoliaceae) a group of related natural compounds, usually found to co- have long been used in folk medicine, and have attracted con- occur with lignans or neolignans, which have a C16 to C17 core siderable interest with respect to structural determinations of structure, and they are apparently biosynthetically derived their biologically active metabolites for their potential use as from two arylpropane units by loss of one or two carbons, pharmaceuticals and/or agrochemicals. Members of this genus probably through decarboxylations. As summarized in Figs. 1 are known to be rich in a wide variety of biologically active and 2, in this review the lignans, neolignans as well as compounds including lignans, neolignans, terpenoids as well oligomeric lignans, hybrid lignans and norlignans are divided as alkaloids [1]. In many Magnolia species, lignans and into twelve subgroups (A-L) dependent upon common struc- neolignans represent the major chemical constituents. Several tural features. Group B represents substituted tetrahydrofurans reviews covering the structural aspects of lignans are available including 2,5-diaryl-3,4-dimethyltetrahydrofurans and 2,4- [2-7] and their biological activities have also been reviewed diaryl-3,5-dimethyltetrahydrofurans. Hybrid neolignans [8]. However, no comprehensive review of lignans and neolig- (group I) consist of monoterpene- and sesquiterpene-neolig- nans from the genus Magnolia is available. This summary of nans, and group J includes di- and tri-lignans. The skeletal the distribution and chemical structure of lignans and neolig- types of these twelve groups are presented in Figs. 1 and 2. nans from Magnolia also includes a discussion of their biolog- An earlier comprehensive review on the distribution of ical activities. lignans and neolignans in the plant Kingdom is available [15]. As shown in Figs. 1 and 5, lignans are defined as dimers Lignans and neolignans from the genus Magnolia are summa- of phenylpropanoid (C6-C3) units linked by the central carbons rized in Table 1, which lists compounds from 19 different b-b’ (C8-C8’) (A-D) of their side chains [9, 11]. In contrast, species. Lignans have been isolated from various parts of naturally occurring dimers that exhibit linkages other than this Magnolias: tree bark [16, 17], leaves and stems [18-20], root b-b’-type linkage are known as neolignans (Fig. 2) [12, 13]. bark [21], flower buds [22], and seeds [23]. A wide spectrum of biological activities of lignans and neolignans have been reported. This includes cytotoxic, anti-tumor, anti-leukaemia, * Corresponding author. New address: Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences. School of Pharmacy, The anti-viral, anti-microbial, anti-inflammatory, anti-allergy, as University of Mississippi, University, MS 38677, USA. Fax: 662-915-7026; well as anti-fungal, insecticidal and miscellaneous physiologi- E-mail: [email protected] cal effects [5, 8]. They may also play a significantly ecological 212 Rev. Soc. Quím. Méx. Vol. 43, Núm. 6 (1999) Qi Song and Nikolaus H. Fischer role as mediators in plant-fungi, plant-plant, and plant-insect interactions [8]. At the molecular level, they interrupt the syn- thesis of DNA and the transport of nucleotides and are inhibitors of key enzymes [8, 24]. Lignans and neolignans: structure and biological activity Fig. 1. Structural Types of Lignans. Flower buds of Magnolia salicifolia Maxim. have been used in traditional Kampo and Chinese medicines, especially for Pinoresinol (18) was reported to be responsible for the piscici- nasal allergy and nasal empyema. Chloroform extracts of this dal activity of this plant [34], while syringaresinol (25) and its medicinal plant exhibited a remarkable anti-allergy activity in 4’-O-b-D-glucopyranoside (26) from in M. officinalis exhibit- passive cutaneous anaphylaxis (PCA) tests [25, 26]. Along ed remarkable cytotoxic and anti-leukaemic activities [16, 35]. with two other neolignans, magnosalin (1) (Fig. 3) was isolat- Other biological activities of this group of compounds also ed in the course of a search for biologically active principles include the germination inhibitory activity of fargesin (14) from this plant [25, 26]. However, none of the pure com- [36], enhancing toxicity of insecticides of sesamin (22) [37] pounds were active [22]. and anti-hypertensive activity of pinoresinol (18) [38]. A number of substituted tetrahydrofuran-type lignans (2- Only two compounds of the arylnaphthalene group, gua- 10) have been isolated from Magnolia species. Magnosalicin iacin (28) [45] and magnoshinin (29) [25, 26] have been iso- (7) was isolated from M. salicifolia [25, 26]. The root bark of lated from M. kachirachira and M. salicifolia, respectively, M. acuminata L., a tall native forest tree of the eastern and but no biological activity was reported. mainly southern United States, which was used in the treat- The spirocyclohexadienone denudatone (30) and futoe- ment of malaria and rheumatism in the past, afforded three none (31) are the only two spiro- (5,5)- undecanoids neolig- compounds, galgravin (2), calopiptin (3) and veraguensin (5) nans found in family Magnoliaceae [3, 6]. They were isolated [21], the latter compound also being present in M. liliflora from the aerial parts of the Japanese ornamental plants M. [20], M. denudata [21] and M. saulangiana [39]. The 2,4- denudata and M. liliflora Desr. [20, 39]. Biogenetically, the diaryl-dimethyltetrahydrofurans fargesol (6) from M. fargesii formation of denudatone (30) can be formulated as an oxida- [27], magnostellin A (8) and B (9) from M. stellata Maxim. tive coupling of propenylphenol or allylphenol derivatives fol- [28] appear to be formed by the formal cleavage of a C-O lowed by stereoselective reactions of a quinone methide inter- bond. Such cleavages might in some cases be a mode of mediate [40]. biosynthesis. Magnostellin B (9) is included here since its Benzofuranoids and hydrobenzofuranoids are well repre- structure can be formally derived from a dioxabicyclooctane sented in the genus Magnolia. In search for Ca2+ -antagonist (C, Figure 1) by C-C cleavage. The determination of the stere- activity on the taenia coli of the guinea pig from the Chinese ochemistry for these types of compounds made extensive use herb hsin-i (M. fargesii), fargesones A (47), B (48), and C of NMR studies, X-ray analysis, chemical interconversions, (49), in which a resorcinol nucleus appears as a substituted and structural comparisons with compounds of known cyclohexenone, were isolated from the flower buds of M. far- absolute configuration [29]. The 2,3-diaryl-3,7-dioxabicyclo[3.3.0]octanes-type lig- nans (Fig. 1, C) represent one of the largest groups of lignans found in the genus Magnolia (Table 1). Among seventeen compounds, aschantin (11), demethoxyaschantin (12), far- gesin (14), magnolin (16), pinoresinol dimethyl ether (19) and liroresinol-B, isolated from flower buds of M. biondii Pump., have demonstrated antagonistic activities against platelet acti- vating factor in the [3H]PAF receptor binding bioassay, which may have potential use in the treatment of inflammation, car- diovasular and pulmonary diseases [30]. Some of these com- pounds are also present in other Magnolia species (Table 1), M. stellata Maxim. [28], M. fargesii [31], M. kobus [19], M. pterocarpa [32], M. officinalis Rehd. et Wils. [33], and M. saulangiana [33]. Flower buds of M. fargesii are also
Recommended publications
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Lyme Disease (Chronic)
    Dr.
    [Show full text]
  • Pinoresinol Reductase 1 Impacts Lignin Distribution During Secondary Cell Wall Biosynthesis in Arabidopsis
    Phytochemistry xxx (2014) xxx–xxx Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis Qiao Zhao a, Yining Zeng b,e, Yanbin Yin c, Yunqiao Pu d,e, Lisa A. Jackson a,e, Nancy L. Engle e,f, Madhavi Z. Martin e,f, Timothy J. Tschaplinski e,f, Shi-You Ding b,e, Arthur J. Ragauskas d,e, ⇑ Richard A. Dixon a,e,g, a Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA b Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA c Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA d Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA e BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA f Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA g Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA article info abstract Article history: Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (À)-pinoresinol to (À)-lariciresinol in Available online xxxx Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detect- Keywords: able in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized Lignan genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different Lignin set of genes.
    [Show full text]
  • Chemical Structures of Lignans and Neolignans Isolated from Lauraceae
    Review Chemical Structures of Lignans and Neolignans Isolated from Lauraceae Ya Li 1,*, Shuhan Xie 2, Jinchuan Ying 1, Wenjun Wei 1 and Kun Gao 1,* 1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; [email protected] (J.Y.); [email protected] (W.W.) 2 Lanzhou University High School, Lanzhou 730000, China; [email protected] * Correspondences: [email protected] (Y.L.); [email protected] (K.G.); Tel.: +86-931-8912500 (Y.L.) Academic Editor: David Barker Received: 09 November 2018; Accepted: 29 November 2018; Published: 30 November 2018 Abstract: Lauraceae is a good source of lignans and neolignans, which are the most chemotaxonomic characteristics of many species of the family. This review describes 270 naturally occurring lignans and neolignans isolated from Lauraceae. Keywords: lignans; neolignans; Lauraceae; chemical components; chemical structures 1. Introduction Lignans are widely distributed in the plant kingdom, and show diverse pharmacological properties and a great number of structural possibilities. The Lauraceae family, especially the genera of Machilus, Ocotea, and Nectandra, is a rich source of lignans and neolignans, and neolignans represent potential chemotaxonomic significance in the study of the Lauraceae. Lignans and neolignans are dimers of phenylpropane, and conventionally classified into three classes: lignans, neolignans, and oxyneolignans, based on the character of the C–C bond and oxygen bridge joining the two typical phenyl propane units that make up their general structures [1]. Usually, lignans show dimeric structures formed by a β,β’-linkage (8,8’-linkage) between two phenylpropanes units. Meanwhile, the two phenylpropanes units are connected through a carbon–carbon bond, except for the 8,8’-linkage, which gives rise to neolignans.
    [Show full text]
  • Redalyc.Chemical Constituents from Zanthoxylum Setulosum (Rutaceae)
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MORA, Soledad; CASTRO, Víctor; POVEDA, Luis; CHAVARRÍA, Max; MURILLO, Renato Chemical constituents from Zanthoxylum setulosum (Rutaceae) Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 10, núm. 2, marzo, 2011, pp. 155-158 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85617384009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2011 The Authors © 2011 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 10 (2): 155 - 158 BLACPMA ISSN 0717 7917 Artículo Original | Original Article Chemical constituents from Zanthoxylum setulosum (Rutaceae) [Costituyentes químicos de Zanthoxylum setulosum (Rutaceae)] Soledad MORA1, Víctor CASTRO1, Luis POVEDA2, Max CHAVARRÍA1 & Renato MURILLO1 1Escuela de Química and CIPRONA, Universidad de Costa Rica, 2060, San José, Costa Rica. 2Escuela de Ciencias Ambientales, Facultad de Ciencias de la Tierra y el Mar, Universidad Nacional, 3000, Costa Rica. Contactos | Contacts: Max CHAVARRIA E-mail address [email protected] Abstract Following our phytochemical studies of Costa Rican plants, in this work we report the isolation and identification of eight compounds from aerial parts of Zanthoxylum setulosum (Rutaceae). They were identified as the alkaloid skimmianine, the lignans savinin, kusunokinin, sesamin, syringaresinol and the isopentenyl ether of pluviatol, the amide aurantiamide acetate, and the triterpen lupeol.
    [Show full text]
  • Single Laboratory Validation of a Quantitative Core Shell-Based LC
    Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.) Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, Clothilde Ferroud, Joël Doussot, Jean Vanier, Christophe Hano To cite this version: Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, et al.. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Sily- marin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules, MDPI, 2018, 23 (4), pp.904. 10.3390/molecules23040904. hal-02538464 HAL Id: hal-02538464 https://hal.archives-ouvertes.fr/hal-02538464 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Article Single Laboratory Validation of a Quantitative Core Shell-Based
    [Show full text]
  • Therapeutic Applications of Compounds in the Magnolia Family
    Pharmacology & Therapeutics 130 (2011) 157–176 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate Editor: I. Kimura Therapeutic applications of compounds in the Magnolia family Young-Jung Lee a, Yoot Mo Lee a,b, Chong-Kil Lee a, Jae Kyung Jung a, Sang Bae Han a, Jin Tae Hong a,⁎ a College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea b Reviewer & Scientificofficer, Bioequivalence Evaluation Division, Drug Evaluation Department Pharmaceutical Safety Breau, Korea Food & Drug Administration, Republic of Korea article info abstract Keywords: The bark and/or seed cones of the Magnolia tree have been used in traditional herbal medicines in Korea, Magnolia China and Japan. Bioactive ingredients such as magnolol, honokiol, 4-O-methylhonokiol and obovatol have Magnolol received great attention, judging by the large number of investigators who have studied their Obovatol pharmacological effects for the treatment of various diseases. Recently, many investigators reported the Honokiol anti-cancer, anti-stress, anti-anxiety, anti-depressant, anti-oxidant, anti-inflammatory and hepatoprotective 4-O-methylhonokiol effects as well as toxicities and pharmacokinetics data, however, the mechanisms underlying these Cancer Nerve pharmacological activities are not clear. The aim of this study was to review a variety of experimental and Alzheimer disease clinical reports and, describe the effectiveness, toxicities and pharmacokinetics, and possible mechanisms of Cardiovascular disease Magnolia and/or its constituents. Inflammatory disease © 2011 Elsevier Inc. All rights reserved. Contents 1. Introduction .............................................. 157 2. Components of Magnolia ........................................ 159 3. Therapeutic applications in cancer ...................................
    [Show full text]
  • 1.25 Lignans: Biosynthesis and Function
    1.25 Lignans: Biosynthesis and Function NORMAN G. LEWIS and LAURENCE B. DAVIN Washington State University, Pullman, WA, USA 0[14[0 INTRODUCTION 539 0[14[1 DEFINITION AND NOMENCLATURE 539 0[14[2 EVOLUTION OF THE LIGNAN PATHWAY 531 0[14[3 OCCURRENCE 534 0[14[3[0 Li`nans in {{Early|| Land Plants 534 0[14[3[1 Li`nans in Gymnosperms and An`iosperms "General Features# 536 0[14[4 OPTICAL ACTIVITY OF LIGNAN SKELETAL TYPES AND LIMITATIONS TO THE FREE RADICAL RANDOM COUPLING HYPOTHESIS 536 0[14[5 707? STEREOSELECTIVE COUPLING] DIRIGENT PROTEINS AND E!CONIFERYL ALCOHOL RADICALS 541 0[14[5[0 Diri`ent Proteins Stipulate Stereoselective Outcome of E!Coniferyl Alcohol Radical Couplin` in Pinoresinol Formation 541 0[14[5[1 Clonin` of the Gene Encodin` the Diri`ent Protein and Recombinant Protein Expression in Heterolo`ous Systems 543 0[14[5[2 Sequence Homolo`y Comparisons 543 0[14[5[3 Comparable Systems 543 0[14[5[4 Perceived Biochemical Mechanism of Action 546 0[14[6 PINORESINOL METABOLISM AND ASSOCIATED METABOLIC PROCESSES 547 0[14[6[0 Sesamum indicum] "¦#!Piperitol\ "¦#!Sesamin\ and "¦#!Sesamolinol Synthases 547 0[14[6[1 Magnolia kobus] Pinoresinol and Pinoresinol Monomethyl Ether O!Methyltransferase"s# 550 0[14[6[2 Forsythia intermedia and Forsythia suspensa 551 0[14[6[2[0 "¦#!Pinoresinol:"¦#!lariciresinol reductase 552 0[14[6[2[1 "−#!Secoisolariciresinol dehydro`enase 554 0[14[6[2[2 Matairesinol O!methyltransferase 556 0[14[6[3 Linum usitatissimum] "−#!Pinoresinol:"−#!Lariciresinol Reductase and "¦#!Secoisolariciresinol Glucosyltransferase"s# 557
    [Show full text]
  • Determinants of Dietary Lignan Intake in a Representative Sample of Young Spaniards: Association with Lower Obesity Prevalence Among Boys but Not Girls
    European Journal of Clinical Nutrition (2012) 66, 795–798 & 2012 Macmillan Publishers Limited All rights reserved 0954-3007/12 www.nature.com/ejcn ORIGINAL ARTICLE Determinants of dietary lignan intake in a representative sample of young Spaniards: association with lower obesity prevalence among boys but not girls JL Pen˜ alvo1, B Moreno-Franco1, L Ribas-Barba2 and L Serra-Majem2,3 BACKGROUND/OBJECTIVES: Lignan-rich diets have been associated with favorable health effects through improved metabolic profile. In this study, we hypothesized that dietary lignan intake could be also associated with childhood obesity. SUBJECTS/METHODS: We studied prevalent obesity in relation to lignan intake within the enKid study that involved 3438 children, adolescents and young adults (2–24 years old). Participant’s dietary records were used to calculate lignan dietary intake using a lignan composition database adapted to the Spanish diet. RESULTS: The mean intake of the dietary lignans was calculated as B1 mg/day, corresponding mainly (37%) to pinoresinol. No gender differences were found, but lignan intake was positively associated with age, physical activity level and dietary fiber intake, and negatively with the intake of polyunsaturated and saturated fatty acids. The main sources of dietary lignans were refined wheat, olive oil and whole-wheat bread. A strong association between dietary lignan intake and prevalent obesity was found only for boys, with odds ratio (highest versus lowest quartile of lignan intake) of 0.34 (95% confidence interval, 0.17–0.70) after adjusting for main confounders, including dietary fiber. CONCLUSIONS: Boys with the highest lignan-rich products including cereals, whole-grain products and olive oil, presented less cases of obesity in this representative sample of Spanish children and adolescents.
    [Show full text]
  • Evaluation of the Anti-Cancer Potential of Cedrus Deodara Total Lignans By
    Shi et al. BMC Complementary and Alternative Medicine (2019) 19:281 https://doi.org/10.1186/s12906-019-2682-6 RESEARCH ARTICLE Open Access Evaluation of the anti-cancer potential of Cedrus deodara total lignans by inducing apoptosis of A549 cells Xiaofeng Shi1,2*, Ruiqin Du1, Junmin Zhang3, Yanping Lei2 and Hongyun Guo2 Abstract Background: Cedrus deodara (Roxb.) Loud (normally called as deodar), one out of four species in the genus Cedrus, exhibits widely biological activities. The Cedrus deodara total lignans from the pine needles (CTL) were extracted. The aim of the study was to investigate the anticancer potential of the CTL on A549 cell line. Methods: We extracted the CTL by ethanol and assessed the cytotoxicity by CCK-8 method. Cell cycle and apoptosis were detected by a FACS Verse Calibur flow cytometry. Results: The CTL were extracted by means of ethanol hot refluxing and the content of total lignans in CTL was about 55.77%. By the CCK-8 assays, CTL inhibited the growth of A549 cells in a dose-dependent fashion, with the IC50 values of 39.82 ± 1.74 μg/mL. CTL also inhibited the growth to a less extent in HeLa, HepG2, MKN28 and HT-29 cells. Conclusion: At low doses, the CTL effectively inhibited the growth of A549 cells. By comparison of IC50 values, we found that A549 cells might be more sensitive to the treatment with CTL. In addition, CTL were also able to increase the population of A549 cells in G2/M phase and the percentage of apoptotic A549 cells. CTL may have therapeutic potential in lung adenocarcinoma cancer by regulating cell cycle and apoptosis.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Podophyllotoxin: History, Recent Advances and Future Prospects
    biomolecules Review Podophyllotoxin: History, Recent Advances and Future Prospects Zinnia Shah 1 , Umar Farooq Gohar 1, Iffat Jamshed 1, Aamir Mushtaq 2 , Hamid Mukhtar 1 , Muhammad Zia-UI-Haq 3,*, Sebastian Ionut Toma 4,*, Rosana Manea 4,*, Marius Moga 4 and Bianca Popovici 4 1 Institute of Industrial Biotechnology (IIB), Government College University, Lahore 54000, Pakistan; [email protected] (Z.S.); [email protected] (U.F.G.); [email protected] (I.J.); [email protected] (H.M.) 2 Gulab Devi Institute of Pharmacy, Gulab Devi Educational Complex, Lahore 54000, Pakistan; [email protected] 3 Office of Research, Innovation & Commercialization, Lahore College for Women University, Lahore 54000, Pakistan 4 Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; [email protected] (M.M.); [email protected] (B.P.) * Correspondence: [email protected] (M.Z.-U.-H.); [email protected] (S.I.T.); [email protected] (R.M.) Abstract: Podophyllotoxin, along with its various derivatives and congeners are widely recognized as broad-spectrum pharmacologically active compounds. Etoposide, for instance, is the frontline chemotherapeutic drug used against various cancers due to its superior anticancer activity. It has recently been redeveloped for the purpose of treating cytokine storm in COVID-19 patients. Podophyllotoxin and its naturally occurring congeners have low bioavailability and almost all these initially discovered compounds cause systemic toxicity and development of drug resistance. Citation: Shah, Z.; Gohar, U.F.; Moreover, the production of synthetic derivatives that could suffice for the clinical limitations of Jamshed, I.; Mushtaq, A.; Mukhtar, these naturally occurring compounds is not economically feasible.
    [Show full text]
  • Bioavailability of Lignans in Human Subjects
    Nutrition Research Reviews (2006), 19, 187–196 DOI: 10.1017/NRR2006129 q The Authors 2006 Bioavailability of lignans in human subjects Thomas Clavel1,2, Joe¨l Dore´2 and Michael Blaut1* 1Department of Gastrointestinal Microbiology, Institute of Human Nutrition Potsdam-Rehbru¨cke, Arthur-Scheunert-Allee 155, 14558 Nuthetal, Germany 2Unit of Ecology and Physiology of the Digestive Tract, National Institute for Research in Agriculture, Jouy-en-Josas, France Dietary lignans are phyto-oestrogens that possibly influence human health. The present review deals with lignan bioavailability, the study of which is crucial to determine to what extent metabolism, absorption and excretion of lignans alter their biological properties. Since intestinal bacteria play a major role in lignan conversion, for instance by producing the enterolignans enterodiol and enterolactone, emphasis is put on data obtained in recent bacteriological studies. Phyto-oestrogens: Lignans: Enterolignans: Bioavailability: Human intestinal microbiota Introduction enterodiol (ED) and enterolactone (EL) (Borriello et al. 1985), the biological properties of which are proposed to be Phyto-oestrogens are dietary compounds of plant origin that more potent than those of plant lignans (Brooks & mainly include flavonoids and lignans. Since their chemical Thompson, 2005; Jacobs et al. 2005). Numerous data structure is similar to those of oestrogens, they have been presented in the present review deal primarily with SDG. studied for their involvement in hormone-related disorders, However, it must be emphasised that enterolignans are such as reproductive failure and breast cancer (Setchell & produced from plant lignans other than SDG and Adlercreutz, 1988). Meanwhile, it has become clear that it is MAT (Axelson et al.
    [Show full text]