The Stereoselective Synthesis of Neolignans

Total Page:16

File Type:pdf, Size:1020Kb

The Stereoselective Synthesis of Neolignans REVIEW 2595 The Stereoselective Synthesis of Neolignans TheMichael Stereoselective Synthesis of Neolignans Sefkow Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany. Fax +49(331)9775067; E-mail: [email protected]. Received 5 September 2003 cohol (2), or isoeugenol (3) (see Scheme 3).4 The Abstract: Neolignans, dehydrodimers of phenylpropenes, are im- portant natural products with high structural diversity and various classification of dehydrodimers of phenylpropenes into biological properties. Several diastereo- and enantioselective syn- lignans and neolignans is based on their coupling pattern: thesis of neolignans have been developed in the past, either specific lignans are connected between C(8) and C(8¢) whereas all for each of the various neolignan skeletons or randomized. This re- other possible dimerization products of phenylpropenes view summarizes the efforts towards the synthesis of chiral neolig- are called neolignans.5 nans, racemic and optically active, and provides a brief outlook for future developments. The initial step of the oxidative dimerization is the gener- ation of a radical by the abstraction of a proton and an 1 Introduction 2 8,5¢-Neolignans with Dihydrobenzofuran Skeleton electron. This radical is highly stabilized by resonance, 2.1 Diastereoselective Synthesis of Dihydrobenzofuran Neolig- represented by the formulas A–E (Scheme 1). The subse- nans quent C–C bond-forming reaction is usually described as 2.2 Enantioselective Synthesis of Dihydrobenzofuran Neolign- the coupling of two radicals although evidence for this ans mechanism is still lacking.6 The newly created C–C bond 3 8,3¢-Neolignans can be positioned between different carbons of either of ¢ 4 8,1 -Neolignans the phenylpropenes affording structurally diverse cou- 5 8-O-4¢-Neolignans 5.1 Diastereoselective Synthesis of 8-O-4¢-Neolignans pling products, e.g. AA, AB, BB, or AD. Some prominent 5.2 Enantioselective Synthesis of 8-O-4¢-Neolignans examples of possible lignan and neolignan skeletons, 6 Benzodioxane-Neolignans found in natural products (e. g. steganacin, conocarpan, 6.1 Diastereoselective Synthesis of Benzodioxane-Neolignans diferulic acid, kadsurenone) are displayed in Figure 1. 6.2 Enantioselective Synthesis of Benzodioxane-Neolignans 1 7 Bicyclo[3.2.1]Octane-Neolignans An alternative mechanism for the formation of lignans 8 Conclusion and Outlook and neolignans is shown in Scheme 2. It is based on the consideration that highly reactive radicals are usually gen- Key words: natural products, neolignans, stereoselective synthesis, dihydrobenzofurans, enantioselective synthesis erated in low concentrations and on the finding that struc- tures AB–AE but not BB are the most abundant substructures in lignins.7 If this is taken into account then it is more likely that the dimerization process involves the 1 Introduction electrophilic attack of a radical to a phenylpropene. This mechanism is further supported by the fact that the in vitro Lignans and neolignans are important secondary plant dimerization of phenylpropenes either with metal salts or metabolites possessing a variety of different biological ac- with enzymes yields dimers such as AB or AC as major tivities.1,2 Since the pioneering work of Erdtman3 it is products, which can be explained by the formation of a widely accepted that both, lignans and neolignans stabilized benzyl radical when the double bond is attacked (Figure 1), are produced in nature by oxidative dimeriza- at C(8) (Scheme 2). tion of phenylpropenes, e.g. ferulic acid (11), coniferyl al- CO2H CO2H CO2H CO2H CO2H CO2H -H+ -e− MeO MeO MeO MeO MeO MeO OH O O O O O ferulic acid (1) A B C D E Scheme 1 Stabilized radical derived from ferulic acid (1) with resonance structures A–E. SYNTHESIS 2003, No. 17, pp 2595–2625xx.xx.2003 Advanced online publication: 21.11.2003 DOI: 10.1055/s-2003-42482; Art ID: E09803SS © Georg Thieme Verlag Stuttgart · New York 2596 M. Sefkow REVIEW Figure 1 Lignans and neolignans with different skeletons. Many reviews and accounts have been published on the 2 8,5¢-Neolignans with Dihydrobenzofuran stereo- and enantioselective synthesis of lignans1,2 but Structure only a few gave an overview on the strategies for the syn- thesis of neolignans.8 It is the aim of this article to close 8,5¢-Neolignans containing a dihydrobenzofuran skeleton this gap. Several neolignans (e. g. benzofuran-neolignans) are the most abundant neolignans in nature. One reason are achiral compounds. The synthesis of these compounds may be the mechanism of their biosynthesis (Scheme 2). will not be reviewed in this article. It is restricted to the As mentioned, enzymatic or metal salt induced oxidative synthesis of chiral neolignans, in particular 8,5¢-, 8,3¢-, dimerization of several phenylpropenes afford predomi- 8,1¢-, 8-O-4¢-, benzodioxane-, and bicyclo[3.2.1]octane- nantly the dihydrobenzofuran neolignans. The ubiquitary neolignans. occurrence and the various biological properties of dihy- -e− -H+ MeO -H+ MeO MeO MeO O O HO OMe HO OMe MeO OH O OH MeO OH Scheme 2 Possible mechanism of the oxidative dimerization of phenylpropenes. Biographical Sketch Michael Sefkow (born vard University with Prof. include the stereoselective 1966, Berlin, Germany) D. A. Evans (1994–1995), synthesis of lignans and studied chemistry at the he went to GBF (1996– neolignans, the transition Technical University of 1997) working the epo- metal catalyzed cyclo- Berlin. He obtained his PhD thilones. In 1998 he started additions, and the reactivity in 1994 from the ETH his independent research at of non-solvated carbenium Zürich under the guidance the University of Potsdam ions. of Prof. D. Seebach. After funded by a DFG-fellow- postdoctoral study at Har- ship. His research interests Synthesis 2003, No. 17, 2595–2625 © Thieme Stuttgart · New York REVIEW The Stereoselective Synthesis of Neolignans 2597 X drobenzofuran neolignans make them attractive for syn- X thesis. In fact, about 50% of all publications concerned with the synthesis of neolignans describe the preparation X 9 of 8,5¢-neolignans. oxidizing agent Y O Y 2.1 Diastereoselective Synthesis of Dihydroben- OH OH zofuran Neolignans 3 X = CH3, Y = OMe 14 13 X = CH2OH, Y = H 15 Y 2 X = CH2OH, Y = OMe 16 Many diastereoselective syntheses of neolignans with di- 4 X = CO2H, Y = H 17 hydrobenzofuran skeleton have been published.2,9 The 9 X = CO2Me, Y = H 18 5 X = CO2H, Y = OH 19 vast majority of these syntheses is based on the biomimet- 10 X = CO2Me, Y = OH 20 ic oxidation of phenylpropenes, following Erdtman’s pro- 11 X = CO2Et, Y = OH 21 3 12 X = CO2tBu, Y = OH 22 cedure. Since the oxidative dimerization requires a 1 X = CO2H, Y = OMe 23 phenolic hydroxy group in the para position, only a few 6 X = CO2Me, Y = OMe 24 7 X = CO2Et, Y = OMe 25 phenylpropenes can been used as substrates. In fact, 8 X = CO2Ara, Y = OMe 26 ferulic (1), coumaric (4), and caffeic acid (5), their esters 6–12, coumaryl (13), coniferyl alcohol (2), and isoeu- Scheme 3 Ara = arabinosyl. genol (3) were the only phenylpropenes, which have been employed for the diastereoselective oxidative coupling nans and benzodioxane-neolignans were the predominant (Scheme 3). In all cases, the dihydrobenzofurans with side product. Evidently, benzodioxanes can only be pro- trans-configuration, compounds 14–26, were isolated, duced when o-dihydroxy-phenylpropenes have been em- this is also found in nature. A few neolignans were deter- ployed (see chapter 6). mined to have a cis-configuration.10 The structures of most of these neolignans had to be revised after analysis Two less common propenylphenols were also used for the 55 of a pure cis-8,5¢-neolignan which was prepared by hydro- oxidative dimerization: 4-hydroxy-phenyl-propene 27 11 56 genation of a benzofuran. and 4-hydroxy-2-methoxycinnamate 28. Compound 27 was oxidized by FeCl3 to insecticidal conocarpan (29) in Various oxidation reagents have been used for the dimer- 27% yield. Oxidation of compound 28 afforded the 8,5¢- ization of phenylpropenes, most of them based on two neolignan 30 alongside several other dimers and higher general strategies: (a) enzymatic oxidation (peroxidases,12 13 14 oligomers (Scheme 4). The yields were dependent on the laccases ) and (b) oxidation with metal salts (Ag2O, 15 16 oxidizing agent. Oxidation of 28 with K3Fe(CN)6–K2CO3 FeCl3 ). Other oxidizing agents were nitrous acid, oxy- produced the dihydrobenzofuran in 31% yield, whereas n 17 18 19 gen/h , stable radicals, and periodinanes (with this oxidation with Ag O gave only 21% of dimer 30. reagent, presumably a cationic mechanism is involved). In 2 recent years advances have been made to control the class R' of neolignans20 and to optimize the yield of the desired 12 product. However, the oxidative dimerization of phenyl- R' propenes produced in all cases several neolignans and R 21 higher oligomers with various ratios. The combined FeCl3 for 27 R yields of all dimers were, with few exceptions, in the R' K Fe(CN) range of 10–70%.3,12–54 Interestingly, Lewis et al. reported 3 6 O or Ag2O for 28 that the dimerization of isoeugenol (3) with horseradish OH R peroxidase/H2O2 (HRP/H2O2) gave dimer 14 in 99% yield.32 A summary of reaction conditions, starting mate- 27 R = H, R' = Me 29 (27%) OH rials and 8,5¢-neolignans is given in Table 1. 28 R = OMe, R' = CO2Me 30 (31/21%) As shown in Table 1, the dihydrobenzofuran-neolignans, Scheme 4 prepared by oxidative dimerization, were in most cases accompanied by substantial amounts of 8-O-4¢-neolig- Several dihydrobenzofuran-neolignans have been pre- nans no matter which phenylpropene was used as sub- pared involving alternative strategies. The strategies for strate or which oxidation method was employed.
Recommended publications
  • Pinoresinol Reductase 1 Impacts Lignin Distribution During Secondary Cell Wall Biosynthesis in Arabidopsis
    Phytochemistry xxx (2014) xxx–xxx Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis Qiao Zhao a, Yining Zeng b,e, Yanbin Yin c, Yunqiao Pu d,e, Lisa A. Jackson a,e, Nancy L. Engle e,f, Madhavi Z. Martin e,f, Timothy J. Tschaplinski e,f, Shi-You Ding b,e, Arthur J. Ragauskas d,e, ⇑ Richard A. Dixon a,e,g, a Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA b Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA c Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA d Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA e BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA f Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA g Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA article info abstract Article history: Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (À)-pinoresinol to (À)-lariciresinol in Available online xxxx Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detect- Keywords: able in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized Lignan genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different Lignin set of genes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. N0.: US 2014/0221426 A1 Gerk Et Al
    US 20140221426A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2014/0221426 A1 Gerk et al. (43) Pub. Date: Aug. 7, 2014 (54) SELECTIVE METABOLIC APPROACH TO A61K 31/216 (2006.01) INCREASING ORAL BIOAVAILABILITY OF A61K 31/09 (2006.01) PHENYLEPHRINE AND OTHER PHENOLIC A61K 31/05 (2006.01) BIOACTIVITIES A61K 31/353 (2006.01) A61K 31/4525 (2006.01) (71) Applicant: VIRGINIA COMMONWEALTH A61 K 31/3 75 (2006.01) UNIVERSITY, Richmond, VA (US) A61K 31/121 (2006.01) _ _ _ (52) US. Cl. (72) Inventorsl Ph_lll_lP M- Gerk’ Rthmond, VA (Us); CPC ........... .. A61K 31/137 (2013.01); A61K 31/3 75 Wllllam H- Fa", R10hm°nda VA (Us); (2013.01); A61K 31/235 (2013.01); A61K J"sellh K- thter’ Rlchmond, VA (Us) 31/11 (2013.01); A61K 31/085 (2013.01); _ A61K 31/121 (2013.01); A61K 31/09 (21) APP1~ NO" 14/345,689 (2013.01); A61K31/05 (2013.01); A61K . _ 31/353 (2013.01);A61K31/4525 (2013.01); (22) PCT Filed. Sep. 27, 2012 A61K31/216 (201301) USPC ......... .. 514/321' 514/653' 514/474' 514/544' ( 86 ) PCT N 0 .: PCT/U52012/057588 ’ ’ 514/456;’ 514/532’ § 371 (0X1), Related US“ Application Data Presystemic metabolism in intestine of bioactives such as (60) Provisional application No. 61/539,530, ?led on Sep. phenylephrine 1? avoided by administering a Sllbject (human 27, 2011, provisional application No. 61/544,396, 0r 21111111211) the bloactlve(e-g-,Pheny1ephr1ne)1n comblnatlon ?led on Oct 7, 201 1_ With one or more inhibitors of sulfation (e.g., sulfotransferase enzymes aka SULTs).
    [Show full text]
  • Single Laboratory Validation of a Quantitative Core Shell-Based LC
    Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.) Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, Clothilde Ferroud, Joël Doussot, Jean Vanier, Christophe Hano To cite this version: Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, et al.. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Sily- marin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules, MDPI, 2018, 23 (4), pp.904. 10.3390/molecules23040904. hal-02538464 HAL Id: hal-02538464 https://hal.archives-ouvertes.fr/hal-02538464 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Article Single Laboratory Validation of a Quantitative Core Shell-Based
    [Show full text]
  • 1.25 Lignans: Biosynthesis and Function
    1.25 Lignans: Biosynthesis and Function NORMAN G. LEWIS and LAURENCE B. DAVIN Washington State University, Pullman, WA, USA 0[14[0 INTRODUCTION 539 0[14[1 DEFINITION AND NOMENCLATURE 539 0[14[2 EVOLUTION OF THE LIGNAN PATHWAY 531 0[14[3 OCCURRENCE 534 0[14[3[0 Li`nans in {{Early|| Land Plants 534 0[14[3[1 Li`nans in Gymnosperms and An`iosperms "General Features# 536 0[14[4 OPTICAL ACTIVITY OF LIGNAN SKELETAL TYPES AND LIMITATIONS TO THE FREE RADICAL RANDOM COUPLING HYPOTHESIS 536 0[14[5 707? STEREOSELECTIVE COUPLING] DIRIGENT PROTEINS AND E!CONIFERYL ALCOHOL RADICALS 541 0[14[5[0 Diri`ent Proteins Stipulate Stereoselective Outcome of E!Coniferyl Alcohol Radical Couplin` in Pinoresinol Formation 541 0[14[5[1 Clonin` of the Gene Encodin` the Diri`ent Protein and Recombinant Protein Expression in Heterolo`ous Systems 543 0[14[5[2 Sequence Homolo`y Comparisons 543 0[14[5[3 Comparable Systems 543 0[14[5[4 Perceived Biochemical Mechanism of Action 546 0[14[6 PINORESINOL METABOLISM AND ASSOCIATED METABOLIC PROCESSES 547 0[14[6[0 Sesamum indicum] "¦#!Piperitol\ "¦#!Sesamin\ and "¦#!Sesamolinol Synthases 547 0[14[6[1 Magnolia kobus] Pinoresinol and Pinoresinol Monomethyl Ether O!Methyltransferase"s# 550 0[14[6[2 Forsythia intermedia and Forsythia suspensa 551 0[14[6[2[0 "¦#!Pinoresinol:"¦#!lariciresinol reductase 552 0[14[6[2[1 "−#!Secoisolariciresinol dehydro`enase 554 0[14[6[2[2 Matairesinol O!methyltransferase 556 0[14[6[3 Linum usitatissimum] "−#!Pinoresinol:"−#!Lariciresinol Reductase and "¦#!Secoisolariciresinol Glucosyltransferase"s# 557
    [Show full text]
  • Natural and Semi-Synthetic Compounds with Biocidal Activity Against Arthropods of Public Health Importance
    AN ABSTRACT OF THE DISSERTATION OF Mohammad A. Khasawneh for the degree of Doctor of PhilosoDhy in Chemistry presented on December 5, 2003. Title: Natural and Semi-Synthetic Compounds With Biocidal Activity Against Arthropods Of Public Health Importance. Abstract approved:Redacted for privacy JosephfJ Karchesy This study identified new compounds with pest control activities. The two sources of candidates that were followed here were the main heartwood extract of Alaska Yellow Cedar (AYC) constituents and several semi-synthetic counterparts. Five compounds were isolated and identified for the first time in AYC heartwood in this research: two monoterpenes, two sesquiterpenes, and one lignan. The two monoterpenes were (1 S)-2-oxo-3-p-menthenol (41) and (4R)-4- hydroxy-4-isopropyl-cyclohex-l-enecarboxylic acid (63). The two sesquiterpenes were (5 S,7R, 1 OR, 11 R)-eudesm-4(l 4)-ene- 11,1 2-diol (46) and (4R,5S,7R)- 1(10)- eremohpilen-1 1,12-diol (59). The lignan was (1R,2S,5R,6S)-2,6-bis-(3,5- dimethoxy-4-hydroxyphenyl)-3 ,7-dioxabicyclo- [3.3.01 Qctafle, (67). Structures for these compounds were confirmedon the basis of spectroscopic techniques such as 1- and 2-D NMR, high resolution MS and JR. The pest control activity studies of 15 compounds isolatedor semi- synthesized from AYC heartwood were conducted at the Centers for Disease Control and Prevention (CDC). Two types of studieswere conducted - short-term (24h) and residual (over 1-4 weeks) activity for application against threetypes of pests related to human health- nymphal I. scapularis ticks, adult X cheopis fleas and adult Ae.
    [Show full text]
  • Evaluation of the Anti-Cancer Potential of Cedrus Deodara Total Lignans By
    Shi et al. BMC Complementary and Alternative Medicine (2019) 19:281 https://doi.org/10.1186/s12906-019-2682-6 RESEARCH ARTICLE Open Access Evaluation of the anti-cancer potential of Cedrus deodara total lignans by inducing apoptosis of A549 cells Xiaofeng Shi1,2*, Ruiqin Du1, Junmin Zhang3, Yanping Lei2 and Hongyun Guo2 Abstract Background: Cedrus deodara (Roxb.) Loud (normally called as deodar), one out of four species in the genus Cedrus, exhibits widely biological activities. The Cedrus deodara total lignans from the pine needles (CTL) were extracted. The aim of the study was to investigate the anticancer potential of the CTL on A549 cell line. Methods: We extracted the CTL by ethanol and assessed the cytotoxicity by CCK-8 method. Cell cycle and apoptosis were detected by a FACS Verse Calibur flow cytometry. Results: The CTL were extracted by means of ethanol hot refluxing and the content of total lignans in CTL was about 55.77%. By the CCK-8 assays, CTL inhibited the growth of A549 cells in a dose-dependent fashion, with the IC50 values of 39.82 ± 1.74 μg/mL. CTL also inhibited the growth to a less extent in HeLa, HepG2, MKN28 and HT-29 cells. Conclusion: At low doses, the CTL effectively inhibited the growth of A549 cells. By comparison of IC50 values, we found that A549 cells might be more sensitive to the treatment with CTL. In addition, CTL were also able to increase the population of A549 cells in G2/M phase and the percentage of apoptotic A549 cells. CTL may have therapeutic potential in lung adenocarcinoma cancer by regulating cell cycle and apoptosis.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Podophyllotoxin: History, Recent Advances and Future Prospects
    biomolecules Review Podophyllotoxin: History, Recent Advances and Future Prospects Zinnia Shah 1 , Umar Farooq Gohar 1, Iffat Jamshed 1, Aamir Mushtaq 2 , Hamid Mukhtar 1 , Muhammad Zia-UI-Haq 3,*, Sebastian Ionut Toma 4,*, Rosana Manea 4,*, Marius Moga 4 and Bianca Popovici 4 1 Institute of Industrial Biotechnology (IIB), Government College University, Lahore 54000, Pakistan; [email protected] (Z.S.); [email protected] (U.F.G.); [email protected] (I.J.); [email protected] (H.M.) 2 Gulab Devi Institute of Pharmacy, Gulab Devi Educational Complex, Lahore 54000, Pakistan; [email protected] 3 Office of Research, Innovation & Commercialization, Lahore College for Women University, Lahore 54000, Pakistan 4 Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; [email protected] (M.M.); [email protected] (B.P.) * Correspondence: [email protected] (M.Z.-U.-H.); [email protected] (S.I.T.); [email protected] (R.M.) Abstract: Podophyllotoxin, along with its various derivatives and congeners are widely recognized as broad-spectrum pharmacologically active compounds. Etoposide, for instance, is the frontline chemotherapeutic drug used against various cancers due to its superior anticancer activity. It has recently been redeveloped for the purpose of treating cytokine storm in COVID-19 patients. Podophyllotoxin and its naturally occurring congeners have low bioavailability and almost all these initially discovered compounds cause systemic toxicity and development of drug resistance. Citation: Shah, Z.; Gohar, U.F.; Moreover, the production of synthetic derivatives that could suffice for the clinical limitations of Jamshed, I.; Mushtaq, A.; Mukhtar, these naturally occurring compounds is not economically feasible.
    [Show full text]
  • Ce Document Est Le Fruit D'un Long Travail Approuvé Par Le Jury De Soutenance Et Mis À Disposition De L'ensemble De La Communauté Universitaire Élargie
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm U. F. R. ENSTIB Ecole Doctorale Sciences et Ingénierie des Ressources Procédés Produits et Environnement Département de Formation Doctorale Sciences du Bois Thèse Présentée pour l’obtention du titre de Docteur de l’Université Henri Poincaré, Nancy-I Par Peter Kipkosgei SIRMAH Valorisation du Prosopis juliflora comme alternative à la diminution des ressources forestières au Kenya Towards valorisation of Prosopis juliflora as an alternative to the declining wood resource in Kenya Soutenue publiquement le 17 juin 2009 devant la commission d'examen : Rapporteurs: Marko Petri6, Professeur, Université de Ljubjana Rapporteurs : Alain Castellan, Professeur, Université de Bordeaux 1 Président : André Merlin, Professeur, Université Henri Poincaré, Nancy 1 Examinateur : Jean Gérard, Directeur de Recherche, CIRAD, Montpellier Examinateur : Philippe Gérardin,
    [Show full text]
  • The Lignan Macromolecule from Flaxseed Structure and Bioconversion of Lignans
    The lignan macromolecule from flaxseed Structure and bioconversion of lignans Karin Struijs Promotor: Prof. Dr. Ir. H. Gruppen Hoogleraar Levensmiddelenchemie Wageningen Universiteit Co-promotor: Dr. Ir. J.-P. Vincken Universitair docent, leerstoelgroep Levensmiddelenchemie Wageningen Universiteit Promotiecommissie: Prof. Dr. R.F. Witkamp Wageningen Universiteit Prof. M. Blaut German Institute of Human Nutrition Potsdam-Rehbruecke Dr. A. Kamal-Eldin Swedish University of Agricultural Sciences, Uppsala Dr. Ir. P.C.H. Hollman RIKILT-Instituut voor Voedselveiligheid, Wageningen Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelentechnologie, Agrobiotechnologie en Gezondheid). The lignan macromolecule from flaxseed Structure and bioconversion of lignans Karin Struijs Proefschrift Ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 17 november 2008 des namiddags te vier uur in de Aula. Struijs, Karin The lignan macromolecule from flaxseed Structure and bioconversion of lignans Ph.D. thesis Wageningen Universiteit, The Netherlands, 2008 ISBN: 978-90-8585-247-6 _________________________________________________________________________________________________________________ Abstract Lignans are diphenolic compounds, which are of interest because of their positive health effects. The aims of the research described in this thesis are to identify the precise composition and structure of the lignan macromolecule from flaxseeds, to convert plant lignans into the bioactive mammalian lignans by fermentation, and to investigate how the bioconversion of lignans influences their estrogenicity. In order to be able to reach these goals, analytical and preparative protocols were developed. The lignan macromolecule from flaxseed was found to consist of mainly secoisolariciresinol diglucoside (SDG) ester-linked via 3-hydroxy-3-methylglutaric acid (HMGA).
    [Show full text]
  • Lignan Contents of Dutch Plant Foods: a Database Including Lariciresinol
    Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2005), 93, 393–402 DOI: 10.1079/BJN20051371 q The Authors 2005 Lignan contents of Dutch plant foods: a database including lariciresinol, . IP address: pinoresinol, secoisolariciresinol and matairesinol 170.106.40.40 Ivon E. J. Milder1,2, Ilja C. W. Arts1, Betty van de Putte1, Dini P. Venema1 and Peter C. H. Hollman1* 1RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, The Netherlands 2Centre for Nutrition and Health, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, , on The Netherlands 01 Oct 2021 at 20:15:27 (Received 7 July 2004 – Revised 1 November 2004 – Accepted 9 November 2004) Enterolignans (enterodiol and enterolactone) can potentially reduce the risk of certain cancers and cardiovascular diseases. Enterolignans are formed by the intes- , subject to the Cambridge Core terms of use, available at tinal microflora after the consumption of plant lignans. Until recently, only secoisolariciresinol and matairesinol were considered enterolignan precursors, but now several new precursors have been identified, of which lariciresinol and pinoresinol have a high degree of conversion. Quantitative data on the contents in foods of these new enterolignan precursors are not available. Thus, the aim of this study was to compile a lignan database including all four major enterolignan precursors. Liquid chromatography–tandem mass spectrometry was used to quantify lariciresinol, pinoresinol, secoisolariciresinol and matairesinol in eighty- three solid foods and twenty-six beverages commonly consumed in The Netherlands. The richest source of lignans was flaxseed (301 129 mg/100 g), which con- tained mainly secoisolariciresinol.
    [Show full text]
  • David José Souto Patinha Análise De Compostos Triterpénicos Na Casca
    Universidade de Aveiro Departamento de Química 2011 David José Souto Análise de compostos triterpénicos na Patinha casca de espécies de Eucalyptus Analysis of triterpenic compounds in the bark of Eucalyptus species Universidade de Aveiro Departamento de Química 2011 David José Souto Análise de compostos triterpénicos na Patinha casca de espécies de Eucalyptus Analysis of triterpenic compounds in the bark of Eucalyptus species Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Química, realizada sob a orientação científica da Doutora Carmen Freire, Investigadora Auxiliar do CICECO da Universidade de Aveiro e do Doutor Juan José Villaverde Mella, Estagiário de Pós-Doutoramento do CICECO e do Departamento de Química da Universidade de Aveiro. Apoio financeiro do projecto AFORE (CP-IP 228589-2) no âmbito do VII Quadro Comunitário de Apoio . Dedico este trabalho aos meus pais, irmã, namorada e amigos pelo incansável apoio. o júri presidente Prof. Doutor Artur Manuel Soares da Silva Professor Catedrático do Departamento de Química da Universidade de Aveiro Doutora Paula Cristina de Oliveira Rodrigues Pinto Investigadora Auxiliar do LSRE da Faculdade de Engenharia da Universidade do Porto Doutora Carmen Sofia da Rocha Freire Barros Investigadora Auxiliar do CICECO do Departamento de Química da Universidade de Aveiro Doutor Juan José Villaverde Mella Estagiário de Pós-Doutoramento do CICECO e do Departamento de Química da Universidade de Aveiro agradecimentos Quero agradecer à Dra. Carmen Freire e ao Dr. Juan Villaverde pela excelente orientação científica, dedicação, compreensão, incentivo e paciência ao longo de todo o tempo. Um agradecimento especial ao Prof.
    [Show full text]