Generation of Microsatellite Repeat Families by RTE Retrotransposons in Lepidopteran Genomes BMC Evolutionary Biology 2010, 10:144
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title Butterflies Collected in and Around Lambir Hills National Park
Butterflies collected in and around Lambir Hills National Park, Title Sarawak, Malaysia in Borneo ITIOKA, Takao; YAMAMOTO, Takuji; TZUCHIYA, Taizo; OKUBO, Tadahiro; YAGO, Masaya; SEKI, Yasuo; Author(s) OHSHIMA, Yasuhiro; KATSUYAMA, Raiichiro; CHIBA, Hideyuki; YATA, Osamu Contributions from the Biological Laboratory, Kyoto Citation University (2009), 30(1): 25-68 Issue Date 2009-03-27 URL http://hdl.handle.net/2433/156421 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contn bioL Lab, Kyoto Univ., Vot. 30, pp. 25-68 March 2009 Butterflies collected in and around Lambir Hills National ParK SarawaK Malaysia in Borneo Takao ITioKA, Takuji YAMAMo'rD, Taizo TzucHiyA, Tadahiro OKuBo, Masaya YAGo, Yasuo SEKi, Yasuhiro OHsHIMA, Raiichiro KATsuyAMA, Hideyuki CHiBA and Osamu YATA ABSTRACT Data ofbutterflies collected in Lambir Hills National Patk, Sarawak, Malaysia in Borneo, and in ks surrounding areas since 1996 are presented. In addition, the data ofobservation for several species wimessed but not caught are also presented. In tota1, 347 butterfly species are listed with biological information (habitat etc.) when available. KEY WORDS Lepidoptera! inventory1 tropical rainforesti species diversity1 species richness! insect fauna Introduction The primary lowland forests in the Southeast Asian (SEA) tropics are characterized by the extremely species-rich biodiversity (Whitmore 1998). Arthropod assemblages comprise the main part of the biodiversity in tropical rainforests (Erwin 1982, Wilson 1992). Many inventory studies have been done focusing on various arthropod taxa to reveal the species-richness of arthropod assemblages in SEA tropical rainforests (e.g. Holloway & lntachat 2003). The butterfly is one of the most studied taxonomic groups in arthropods in the SEA region; the accumulated information on the taxonomy and geographic distribution were organized by Tsukada & Nishiyama (1980), Yata & Morishita (1981), Aoki et al. -
Retrotransposon- and Microsatellite Sequence-Associated Genomic Changes in Early Generations of a Newly Synthesized Allotetraploid Cucumis 3 Hytivus Chen & Kirkbride
Plant Mol Biol DOI 10.1007/s11103-011-9804-y Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis 3 hytivus Chen & Kirkbride Biao Jiang • Qunfeng Lou • Zhiming Wu • Wanping Zhang • Dong Wang • Kere George Mbira • Yiqun Weng • Jinfeng Chen Received: 27 May 2011 / Accepted: 27 June 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Allopolyploidization is considered an essential generations of a newly synthesized allotetraploid Cucum- evolutionary process in plants that could trigger genomic is 9 hytivus Chen & Kirkbride (2n = 4x = 38) which was shock in allopolyploid genome through activation of tran- derived from crossing between cultivated cucumber scription of retrotransposons, which may be important in C. sativus L. (2n = 2x = 14) and its wild relative C. hystrix plant evolution. Two retrotransposon-based markers, inter- Chakr. (2n = 2x = 24). Extensive genomic changes were retrotransposon amplified polymorphism and retro- observed, most of which involved the loss of parental DNA transposon-microsatellite amplified polymorphism and a fragments and gain of novel fragments in the allotetraploid. microsatellite-based marker, inter simple sequence repeat Among the 28 fragments examined, 24 were lost while four were employed to investigate genomic changes in early were novel, suggesting that DNA sequence elimination is a relatively frequent event during polyploidization in Cucumis. Interestingly, of the 24 lost fragments, 18 were of C. hystrix origin, four were C. sativus-specific, and the Electronic supplementary material The online version of this remaining two were shared by both species, implying that article (doi:10.1007/s11103-011-9804-y) contains supplementary material, which is available to authorized users. -
Exploitation of Lycaenid-Ant Mutualisms by Braconid Parasitoids
31(3-4):153-168,Journal of Research 1992 on the Lepidoptera 31(3-4):153-168, 1992 153 Exploitation of lycaenid-ant mutualisms by braconid parasitoids Konrad Fiedler1, Peter Seufert1, Naomi E. Pierce2, John G. Pearson3 and Hans-Thomas Baumgarten1 1 Theodor-Boveri-Zentrum für Biowissenschaften, Lehrstuhl Zoologie II, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany 2 Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138-2902, USA 3 Division of Natural Sciences and Mathematics, Western State College, Gunnison, CO 81230, USA Abstract. Larvae of 17 Lycaenidae butterfly species from Europe, North America, South East Asia and Australia were observed to retain at least some of their adaptations related to myrmecophily even after parasitic braconid larvae have emerged from them. The myrme- cophilous glandular organs and vibratory muscles of such larval carcasses remain functional for up to 8 days. The cuticle of lycaenid larvae contains extractable “adoption substances” which elicit anten- nal drumming in their tending ants. These adoption substances, as well, appear to persist in a functional state beyond parasitoid emer- gence, and the larval carcasses are hence tended much like healthy caterpillars. In all examples, the braconids may receive selective advantages through myrmecophily of their host larvae, instead of being suppressed by the ant guard. Interactions where parasitoids exploit the ant-mutualism of their lycaenid hosts have as yet been recorded only from the Apanteles group in the Braconidae- Microgasterinae. KEY WORDS: Lycaenidae, Formicidae, myrmecophily, adoption sub- stances, parasitoids, Braconidae, Apanteles, defensive mechanisms INTRODUCTION Parasitoid wasps or flies are major enemies of the early stages of most Lepidoptera (Shaw 1990, Weseloh 1993). -
Young, L.J., & Hammock E.A.D. (2007)
Update TRENDS in Genetics Vol.23 No.5 Research Focus On switches and knobs, microsatellites and monogamy Larry J. Young1 and Elizabeth A.D. Hammock2 1 Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, 954 Gatewood Road, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA 2 Vanderbilt Kennedy Center and Department of Pharmacology, 465 21st Avenue South, MRBIII, Room 8114, Vanderbilt University, Nashville, TN 37232, USA Comparative studies in voles have suggested that a formation. In male prairie voles, infusion of vasopressin polymorphic microsatellite upstream of the Avpr1a locus facilitates the formation of partner preferences in the contributes to the evolution of monogamy. A recent study absence of mating [7]. The distribution of V1aR in the challenged this hypothesis by reporting that there is no brain differs markedly between the socially monogamous relationship between microsatellite structure and mon- and socially nonmonogamous vole species [8]. Site-specific ogamy in 21 vole species. Although the study demon- pharmacological manipulations and viral-vector-mediated strates that the microsatellite is not a universal genetic gene-transfer experiments in prairie, montane and mea- switch that determines mating strategy, the findings do dow voles suggest that the species differences in Avpr1a not preclude a substantial role for Avpr1a in regulating expression in the brain underlie the species differences in social behaviors associated with monogamy. social bonding among these three closely related species of vole [3,6,9,10]. Single genes and social behavior Microsatellites and monogamy The idea that a single gene can markedly influence Analysis of the Avpr1a loci in the four vole species complex social behaviors has recently received consider- mentioned so far (prairie, montane, meadow and pine voles) able attention [1,2]. -
Short-Term Impact of Disturbance on Genetic Diversity and Structure of Indonesian Populations of the Butterflydrupadia Thedain E
Short-term impact of disturbance on genetic diversity and structure of Indonesian populations of the butterflyDrupadia thedain East Kalimantan C Fauvelot, D Cleary, S Menken To cite this version: C Fauvelot, D Cleary, S Menken. Short-term impact of disturbance on genetic diversity and structure of Indonesian populations of the butterflyDrupadia thedain East Kalimantan. Molecular Ecology, Wiley, 2006, 15, pp.2069 - 2081. 10.1111/j.1365-294x.2006.02920.x. ird-03044126 HAL Id: ird-03044126 https://hal.ird.fr/ird-03044126 Submitted on 7 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Ecology (2006) 15, 2069–2081 doi: 10.1111/j.1365-294X.2006.02920.x Short-termBlackwell Publishing Ltd impact of disturbance on genetic diversity and structure of Indonesian populations of the butterfly Drupadia theda in East Kalimantan C. FAUVELOT,† D. F. R. CLEARY* and S. B. J. MENKEN Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, Universiteit van Amsterdam, PO Box 94062, 1090 GB Amsterdam, The Netherlands Abstract We investigated the short-term impact of disturbance on genetic diversity and structure of the tropical butterfly Drupadia theda Felder (Lepidoptera: Lycaenidae). -
Evaluation of the Effects of Sequence Length and Microsatellite Instability
Int. J. Biol. Sci. 2019, Vol. 15 2641 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(12): 2641-2653. doi: 10.7150/ijbs.37152 Research Paper Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity Changzhi Zhao1*, Yunlong Wang2*, Xiongwei Nie1, Xiaosong Han1, Hailong Liu1, Guanglei Li1, Gaojuan Yang1, Jinxue Ruan1, Yunlong Ma1, Xinyun Li1, 3, Huijun Cheng1, Shuhong Zhao1, 3, Yaping Fang2, Shengsong Xie1, 3 1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China; 2. Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China; 3. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China. *The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors. Corresponding authors: Shengsong Xie, Tel: 086-027-87387480; Fax: 086-027-87280408; Email: [email protected]; Yaping Fang, Tel: 86-28-87285078; Fax: 86-28-87284285; Email: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.09.02; Published: 2019.10.03 Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is effective for genome editing and now widely used in life science research. -
Genome-Wide Mapping and Characterization of Microsatellites In
www.nature.com/scientificreports OPEN Genome-wide mapping and characterization of microsatellites in the swamp eel genome Received: 14 February 2017 Zhigang Li, Feng Chen, Chunhua Huang, Weixin Zheng, Chunlai Yu, Hanhua Cheng & Accepted: 26 April 2017 Rongjia Zhou Published: xx xx xxxx We described genome-wide screening and characterization of microsatellites in the swamp eel genome. A total of 99,293 microsatellite loci were identified in the genome with an overall density of 179 microsatellites per megabase of genomic sequences. The dinucleotide microsatellites were the most abundant type representing 71% of the total microsatellite loci and the AC-rich motifs were the most recurrent in all repeat types. Microsatellite frequency decreased as numbers of repeat units increased, which was more obvious in long than short microsatellite motifs. Most of microsatellites were located in non-coding regions, whereas only approximately 1% of the microsatellites were detected in coding regions. Trinucleotide repeats were most abundant microsatellites in the coding regions, which represented amino acid repeats in proteins. There was a chromosome-biased distribution of microsatellites in non-coding regions, with the highest density of 203.95/Mb on chromosome 8 and the least on chromosome 7 (164.06/Mb). The most abundant dinucleotides (AC)n was mainly located on chromosome 8. Notably, genomic mapping showed that there was a chromosome-biased association of genomic distributions between microsatellites and transposon elements. Thus, the novel dataset of microsatellites in swamp eel provides a valuable resource for further studies on QTL-based selection breeding, genetic resource conservation and evolutionary genetics. Swamp eel (Monopterus albus) taxonomically belongs to teleosts, the family Synbranchidae of the order Synbranchiformes (Neoteleostei, Teleostei, and Vertebrata). -
Variation in MHC Class II B Genes in Marbled Murrelets: Implications for Delineating Conservation Units C
bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units C. Vásquez-Carrillo1*, V. Friesen2, L. Hall3 & M. Z. Peery1 1 Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA 2 Department of Biology, Queen’s University, Kingston, Ontario Canada 3 Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA, USA Keywords Abstract adaptive genetic variation; major histocompatibility complex; marbled Conserving genetic variation is critical for maintaining the evolutionary potential murrelet; conservation units; neutral genetic and viability of a species. Genetic studies seeking to delineate conservation units, variation; selection. however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major Correspondence histocompatibility complex (MHC) class II B genes was characterized in four Catalina Vásquez-Carrillo, Department of populations of marbled murrelets Brachyramphus marmoratus, a threatened Biology, University of Miami, 1301 Memorial species in which little neutral genetic population structure has been detected. High Drive, Coral Gables, FL, 33124, USA. diversity, as well as evidence of balancing selection, was detected in exon 2 of these Tel: 305-284-3013; Fax: 305 284 3039 genes. Genetic population structure based on MHC markers was uncorrelated to Email: [email protected] genetic structure estimated with neutral markers, suggesting that selection played a more important role in shaping population structure at these markers than Editor: Jeff Johnson genetic drift. A high proportion of alleles and inferred peptides were unique to a single population, with the Aleutian Islands and southeast Alaska having the Received 15 March 2013; accepted 1 highest richness of both. -
Sequence-Based Estimation of Minisatellite and Microsatellite Repeat Variability
Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Sequence-based estimation of minisatellite and microsatellite repeat variability Matthieu Legendre,1,4 Nathalie Pochet,1,2,4 Theodore Pak,1 and Kevin J. Verstrepen1,3,5 1FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 2Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 3Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, Katholieke Universiteit Leuven, Faculty of Applied Bioscience and Engineering, B-3001 Leuven (Heverlee), Belgium Variable tandem repeats are frequently used for genetic mapping, genotyping, and forensics studies. Moreover, variation in some repeats underlies rapidly evolving traits or certain diseases. However, mutation rates vary greatly from repeat to repeat, and as a consequence, not all tandem repeats are suitable genetic markers or interesting unstable genetic modules. We developed a model, “SERV,” that predicts the variability of a broad range of tandem repeats in a wide range of organisms. The nonlinear model uses three basic characteristics of the repeat (number of repeated units, unit length, and purity) to produce a numeric “VARscore” that correlates with repeat variability. SERV was experimentally validated using a large set of different artificial repeats located in the Saccharomyces cerevisiae URA3 gene. Further in silico analysis shows that SERV outperforms existing models and accurately predicts repeat variability in bacteria and eukaryotes, including plants and humans. Using SERV, we demonstrate significant enrichment of variable repeats within human genes involved in transcriptional regulation, chromatin remodeling, morphogenesis, and neurogenesis. Moreover, SERV allows identification of known and candidate genes involved in repeat-based diseases. -
FANCJ Suppresses Microsatellite Instability and Lymphomagenesis Independent of the Fanconi Anemia Pathway
Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway Kenichiro Matsuzaki,1 Valerie Borel,1 Carrie A. Adelman,1 Detlev Schindler,2 and Simon J. Boulton1 1DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom; 2Department of Human Genetics, Biozentrum, University of Wurzburg, 97074 Wurzburg, Germany Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA − − structures is largely unaffected in Fancj / mice, high levels of spontaneous MSI occur, which is exacerbated by − − replication inhibition. In contrast, MSI is not observed in Fancd2 / mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway. [Keywords: DNA repair; FANCJ; Fanconi anemia; genome stability; microsatellite instability] Supplemental material is available for this article. Received September 30, 2015; revised version accepted November 13, 2015. Maintenance of genome integrity during DNA replication which are caused by mutations in DNA mismatch repair is of vital importance to ensure that daughter cells inherit (MMR) genes. -
Parallel Responses of Species and Genetic Diversity to El Nin˜O
Ecology Letters, (2006) 9: 304–310 doi: 10.1111/j.1461-0248.2005.00876.x LETTER Parallel responses of species and genetic diversity to El Nin˜ o Southern Oscillation-induced environmental destruction Abstract Daniel F. R. Cleary,1,2 Ce´ cile Species diversity within communities and genetic diversity within species are two Fauvelot,1 Martin J. Genner,3 fundamental levels of biodiversity. Positive relationships between species richness and Steph B. J. Menken1 and Arne Ø. within-species genetic diversity have recently been documented across natural and semi- 4 Mooers * natural habitat islands, leading Vellend to suggest a novel macro-ecological pattern 1 Institute for Biodiversity and termed the species-genetic diversity correlation. We tested whether this prediction holds Ecosystem Dynamics (IBED), for areas affected by recent habitat disturbance using butterfly communities in east University of Amsterdam, PO Kalimantan, Indonesia. Here, we show that both strong spatial and temporal correlations Box 94766, 1090 GT Amsterdam, exist between species and allelic richness across rainforest habitats affected by El Nino The Netherlands ˜ 2National Museum of Natural Southern Oscillation-induced disturbance. Coupled with evidence that changes in species History, Naturalis, PO Box richness are a direct result of local extirpation and lower recruitment, these data suggest 9517, 2300 RA Leiden, that forces governing variation at the two levels operate over parallel and short The Netherlands timescales, with implications for biodiversity recovery following disturbance. Remnant 3Department of Biological communities may be doubly affected, with reductions in species richness being Sciences, University of Hull, associated with reductions in genetic diversity within remnant species. Hull HV6 7RX, UK 4 Department of Biological Keywords Sciences, Simon Fraser Biodiversity, El Nin˜o, extirpation, forest fire, genetic loss, recovery, species loss, species- University, Burnaby, BC, genetic diversity correlation, time scale. -
Microsatellite Instability in Childhood T Cell Acute Lymphoblastic Leukemia a Baccichet1,2, N Benachenhou1,2, F Couture1, J-M Leclerc1,3 and D Sinnett1,2,3
Leukemia (1997) 11, 797–802 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Microsatellite instability in childhood T cell acute lymphoblastic leukemia A Baccichet1,2, N Benachenhou1,2, F Couture1, J-M Leclerc1,3 and D Sinnett1,2,3 1Division of Hematology-Oncology, Centre de Cance´rologie Charles Bruneau and 2Research Center, Sainte-Justine Hospital; 3Department of Pediatrics, University of Montreal, Canada Acute lymphoblastic leukemia (ALL) is the most frequent can- in which malignant cells express diverse phenotypes and cer encountered in children. Little is known about the molecu- respond variably to chemotherapy. Alteration of genes in a lar pathology of childhood T cell ALL. Oncogenesis is a multi- step process that involves alterations in proto-oncogenes and cell-type-specific manner could be associated with the dis- tumor suppressor genes. Recently, a mutator phenotype crepancies in the observed phenotypes. In this regard, the detectable by microsatellite instabilities was shown to be asso- gene p16 was found inactivated in the majority of T cell ciated with predisposition to cancer. This new mechanism for ALL,14 but not in pre-B cell type. Few other specific genetic human carcinogenesis is caused by defects in the DNA alterations have been found in a significant number of T cell replication/repair system. To study the involvement of some of ALL patients investigated. Such a heterogeneity could be these mutational events in the development of T cell ALL, we have initiated a systematic search for losses of heterozygosity partly explained by the observation that mismatch repair- (LOH) and microsatellite instabilities in children affected with deficient cell lines survive from exposure to alkylating agents this disease.