bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units C. Vásquez-Carrillo1*, V. Friesen2, L. Hall3 & M. Z. Peery1 1 Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA 2 Department of Biology, Queen’s University, Kingston, Ontario Canada 3 Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA, USA Keywords Abstract adaptive genetic variation; major histocompatibility complex; marbled Conserving genetic variation is critical for maintaining the evolutionary potential murrelet; conservation units; neutral genetic and viability of a species. Genetic studies seeking to delineate conservation units, variation; selection. however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major Correspondence histocompatibility complex (MHC) class II B genes was characterized in four Catalina Vásquez-Carrillo, Department of populations of marbled murrelets Brachyramphus marmoratus, a threatened Biology, University of Miami, 1301 Memorial species in which little neutral genetic population structure has been detected. High Drive, Coral Gables, FL, 33124, USA. diversity, as well as evidence of balancing selection, was detected in exon 2 of these Tel: 305-284-3013; Fax: 305 284 3039 genes. Genetic population structure based on MHC markers was uncorrelated to Email:
[email protected] genetic structure estimated with neutral markers, suggesting that selection played a more important role in shaping population structure at these markers than Editor: Jeff Johnson genetic drift. A high proportion of alleles and inferred peptides were unique to a single population, with the Aleutian Islands and southeast Alaska having the Received 15 March 2013; accepted 1 highest richness of both.