American Museum Novitates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leader in Metals That Facilitate the Future
Chile Leader in metals that facilitate the future Chile Leader in metals that facilitate the future The Projects section of this document has been prepared based on information provided by third parties. The Ministry of Mining has conducted a review limited to validate the existence and ownership of the projects, but the scope of this process does not confirm the accuracy or veracity of the technical data submitted by the parties. Therefore, the information on each project remains the exclusive responsibility of the interested parties identified on each data sheet. The Ministry of Mining is not responsible for the use and/or misuse of this information, and takes no responsibility for any commercial conditions that may be agreed between sellers and potential purchasers. Second edition Santiago, 2020 Editorial board Francisco Jofré, Ministry of Mining Bastián Espinosa, Ministry of Mining Javier Jara, Ministry of Mining We thank the collaboration of Empresa Nacional de Minería (Enami). Invest Chile. Instituto de Ingenieros en Minas. Colegio de Geólogos. Kura Minerals. Minería Activa. Design, layout and illustration Motif Diseño Integral SpA Photographs Ministry of Mining Printing Imprex Chile Leader in metals that facilitate the future 3 Table of Contents Letter from the Authorities ................................................................ 6 Prologue ............................................................................................. 9 Acknowledgments ........................................................................... -
Zootaxa, Two New Synonymies in the Genus Praocis (Coleoptera
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2386: 65–68 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Two new synonymies in the genus Praocis (Coleoptera: Tenebrionidae) GUSTAVO E. FLORES1 & JAIME PIZARRO-ARAYA2 1Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA, CCT CONICET Mendoza), Casilla de correo 507, 5500 Mendoza, Argentina. E-mail: [email protected] 2Laboratorio de Entomología Ecológica, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile. E-mail: [email protected] The genus Praocis Eschscholtz, 1829 belongs to Praocini, an endemic Neotropical tribe of Pimeliinae from southern South America. According to the last revision (Kulzer 1958) Praocis comprises 77 species and 7 subspecies arranged in ten subgenera, distributed from central Peru to the southern part of Patagonia in Argentina and Chile. Lacordaire (1830) described Praocis rotundatus collected by himself in Mendoza (Argentina): Paramillos de Uspallata. Later, Laporte (1840) described Praocis rotundata from Chile: Coquimbo. Both nominal species are available and they belong to different subgenera according to the current classification of Kulzer (1958). Praocis rotundata Lacordaire, 1830 was interpreted by Solier (1840) as a synonym of P. sulcata Eschscholtz, 1829 (a Chilean species) based on a misidentification: he studied specimens of P. rotundata Lacordaire and concluded they were P. su lc a ta . It is evident because he stated that the specimens were from Argentina, and cited the following character states (among others): clypeal suture as horizontal deep groove covered by frons, and outer and marginal carinae fused forming a wide carina irregularly punctured (wide lateral margin). -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Spider Biodiversity Patterns and Their Conservation in the Azorean
Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae: -
De La Reserva Provincial Iberá, Corrientes, Argentina
Composición de la fauna de Araneae (Arachnida) de la Reserva provincial Iberá, Corrientes, Argentina Gilberto Avalos1, Miryam P. Damborsky1, María E. Bar1, Elena B. Oscherov1 & E. Porcel2 1. Cátedra Biología de los artrópodos, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, W 3404 AAS, Corrientes, Argentina; [email protected], mdambor@exa. unne.edu.ar, [email protected], [email protected] 2. Cátedra de estadística descriptiva, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, W 3404 AAS, Corrientes, Argentina; [email protected] Recibido 27-V-2008. Corregido 17-IX-2008. Aceptado 19-X-2008. Abstract: Composition of the Araneae (Arachnida) fauna of the provincial Iberá Reserve, Corrientes, Argentina. A survey of the spider community composition and diversity was carried out in grasslands and woods in three localities: Colonia Pellegrini, Paraje Galarza and Estancia Rincón (Iberá province Reserve). Pit fall traps, leaf litter sifting, foliage beating, hand collecting and sweep nets were used. Shannon’s diversity index, evenness, Berger-Parker’s dominance index, β and γ diversity were calculated, and a checklist of spider fauna was compiled. Species richness was estimated by Chao 1, Chao 2, first and second order Jack-knife. A total of 4 138 spiders grouped into 150 species from 33 families of Araneomorphae and two species from two families of Mygalomorphae were collected. Five species are new records for Argentina and eleven for Corrientes prov- ince. Araneidae was the most abundant family (39.8%), followed by Salticidae (10.9%), Anyphaenidae (7.9%), Tetragnathidae (7.4%), and Lycosidae (5.5%). -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
Minera Tres Valles Copper Project Salamanca, Coquimbo Region, Chile
MINERA TRES VALLES COPPER PROJECT SALAMANCA, COQUIMBO REGION, CHILE NI 43-101 F1 TECHNICAL REPORT MINERAL RESOURCE ESTIMATE, CHLORIDE LEACH PROCESSING, and DON GABRIEL MANTO PIT EXPANSION Prepared For Minera Tres Valles Sprott Resource Holdings Inc. Qualified Persons: Michael G. Hester, FAusIMM Independent Mining Consultants, Inc. Gabriel Vera President, GV Matallurgy Enrique Quiroga Q & Q Ltda. Report Date: March 29, 2018 Effective Date: March 29, 2018 Minera Tres Valles Copper Project i Salamanca, Coquimbo Region, Chile March 29, 2018 Date and Signature Page The effective date of this report is March 29, 2018. See Appendix A for certificates of the Qualified Persons. (Signed) “Michael G. Hester” March 29, 2018 Michael G. Hester, FAusIMM Date (Signed) “Gabriel Vera” March 29, 2018 Gabriel Vera, QP Date (Signed) “Enrique Quiroga” March 29, 2018 Enrique Quiroga, QP Date INDEPENDENT Technical Report / Form 43-101F1 MINING CONSULTANTS, INC. Minera Tres Valles Copper Project ii Salamanca, Coquimbo Region, Chile March 29, 2018 Table of Contents 1.0 Summary . 1 1.1 General . 1 1.2 Property Description and Ownership . 1 1.3 Geology and Mineralization . 2 1.4 Exploration Status . 3 1.5 Development and Operations . 5 1.6 Mineral Resources . 7 1.7 Mineral Reserves . 9 1.8 Conclusions and Recommendations . 10 2.0 Introduction . 12 2.1 Issuer and Terms of Reference . 12 2.2 Sources of Information . 12 2.3 Qualified Persons and Site Visits . 13 3.0 Reliance on Other Experts. 13 4.0 Property Description and Location . 14 4.1 Property Location . 14 4.2 Land Area and Mining Claim Description . -
Th Em Es of Act Ivit Ies Dur Ing Rep Orti Ng Per
Reporting format for UNESCO’s Water-related Centres on activities for the period October 2018 – March 2021 1. Basic information Water Center for Arid and Semi-Arid Zones of Full Name of the Centre Latin America and the Caribbean (CAZALAC) Name of Centre holder/Director Gabriel Mancilla Escobar Other contacts (other focal points/Deputy Director, etc.) E-mail [email protected] Telephone number +56 51 2204493 Website http://www.cazalac.org Mailing Address Benavente 980, La Serena, Chile Geographic scope 1* ☐ International x regional Specify which Region(s) (if Latin America and Caribbean applicable) Year of establishment 2006 Year of renewal 2016 x groundwater ☐ urban water management x rural water management x arid / semi-arid zones ☐ humid tropics Th ☐ cryosphere (snow, ice, glaciers) em x water related disasters (drought/floods) x Erosion/sedimentation, and landslides es x ecohydrology/ecosystems Of x water law and policy act x social/cultural/gender dimension of water/youth ivit ☐ transboundary river basins/ aquifers ies ☐ mathematical modelling Focal Areas 2♦ dur hydroinformatics ing x remote sensing/GIS x IWRM rep x Watershed processes/management orti x global and change and impact assessment ng ☐ mathematical modelling per x water education iod ☐ water quality ☐ nano-technology x waste water management/re-use ☐ water/energy/food nexus ☐ water systems and infrastructure ☐ Water Diplomacy x Climate Change 1* check on appropriate box 2♦ check all that apply ☐ other: (please specify) ___________________ x vocational training x postgraduate education ☐ continuing education x public outreach x research x institutional capacity-building Scope of Activities 3♦ ☐ advising/ consulting x software development x data-sets/data-bases development xKnowledge/sharing x Policy Advice/Support x Publication and documentation ☐ other: (please specify) __________________ UNESCO Water Family; G-WADI Program Existing networks network; UNCCD;FAO; European Union /cooperation/partnerships 4 (EUROCLIMA project; RALCEA); Technological Consortium Quitai-Anko (Chile). -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Presentación De Powerpoint
Technology Trends in Chilean Research on on Earthquakes and Seismology Sergio Barrientos 26 August 2016 National Seismological Center CONICYT Santiago Universidad de Chile Seismicity of Chile Feb 2010 – Apr 2016 Instrumentally recorded Felt Sismicidad de Chile Seismicity of Chile • High rates of seismic prouctivity - Number of events per unit time - Giant earthquakes • Approx. one magnitude 8 earthquake every decade • Different types of faults and seismogenic regions • Significant number of events followed by tsunamis • Shallow seismicity • Active tectonics close to urban centers and infrastructure In Chile, since 1900, in terms of Disasters of Natural Origin: • 99% fatalities due to earthquakes and tsunamis • 98% economic loss due to earthquakes and tsunamis Subduction Corticales Prisma superficiales Thrust costa Outerise fosa Intraplaca, Prof. intermedia Kausel, 2005 Peyrat, 2006 Maule Earthquake 2010 Kiser and Ishii (2010) Maule Earthquake (2010) CAP M.M. Intensities, Aftershocks Astroza et al., 2010 Horizontal displacements (GPS) Interferometric Synthetic Aperture Radar Recent Earthquakes Schurr Samsonov (2014) Schurr et al. (2014) Pritchard et al. 2013 Ando, 2010 Large Tsunamis in Chile Place year Run-up Arauco - Concepción 1562 Concepción 1570 4 m Concepción Valdivia 1575 4m Corral Sur de Perú 1604 16 m en Arica Concepción 1657 4 m Chile Central 1730 16 m Concepción Concepción 1751 3.5 m Concepción, _ > Is. Juan Fernández Atacama 1819 4 m Caldera Valparaíso 1822 3.5 m Concepción 1835 13 m Isla Quiriquina Valdivia 1837 2 m Ancud Coquimbo - La Serena 1849 5 m Coquimbo Atacama 1851 3 m Huasco Atacama 1859 6 m Caldera Sur de Perú 1868 20 m Arica Norte de Chile 1877 21 m Mejillones Valparaíso 1906 1.5 m Atacama 1918 5 m Caldera Atacama-Vallenar 1922 9 m Chañaral Región del Maule 1928 1.5 m Constitución Illapel 1943 1 m Los Vilos Sur de Chile 1960 25 m Is. -
Texto Completo (Pdf)
Cien. Inv. Agr. 46(1):40-49. 2019 www.rcia.uc.cl PLANT ENTOMOLOGY DOI 10.7764/rcia.v46i1.1907 RESEARCH NOTE Arthropods of forestry and medical-veterinary importance in the Limarí basin (Coquimbo region, Chile) Jaime Pizarro-Araya1,2,3, Fermín M. Alfaro1,2,3, Rodrigo A. Muñoz-Rivera4,5, Juan E. Barriga-Tuñón6, and Luis Letelier7,8 1Universidad de La Serena, Facultad de Ciencias, Departamento de Biología, Laboratorio de Entomología Ecológica. Casilla 554, La Serena, Chile. 2Universidad de La Serena, Instituto de Investigación Multidisciplinar en Ciencia y Tecnología. Casilla 554, La Serena, Chile. 3Grupo de Artrópodos, Sistema Integrado de Monitoreo y Evaluación de Ecosistemas Forestales Nativos (SIMEF), Chile. 4Universidad de La Serena, Facultad de Ciencias, Departamento de Agronomía, Laboratorio de Prospección, Monitoreo y Modelación de Recursos Agrícolas y Ambientales (PROMMRA). Ovalle, Chile. 5Departamento de Investigación y Desarrollo, AnRos Asesorías Agronómicas SpA. Gordon Steel 3849 Costa Palermo 2, Coquimbo, Chile. 6Universidad Católica del Maule, Facultad de Ciencias, Agrarias y Forestales, Departamento de Ciencias Agrarias. Casilla 139, Curicó, Chile. 7Universidad Bernardo O’Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS). Casilla 913322, Santiago, Chile. 8Universidad de Talca, Instituto de Ciencias Biológicas y Núcleo Científico Multidisciplinario. 1 Poniente 1141, Casilla 747-721, Talca, Chile. Abstract J. Pizarro-Araya, F.M. Alfaro, R.A. Muñoz-Rivera, J.E. Barriga-Tuñon, and L. Letelier. 2019. Arthopods of forestry and medical-veterinary importance in the Limarí basin (Coquimbo region, Chile). Cien. Inv. Agr. 46(1): 40-49. The Limarí River valley, located in the Coquimbo Region of Chile, is an important area for agricultural production that pertains to the transverse valleys ecoregion, known as Norte Chico. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4