VERGINE (Virgo) Aspetto, Posizione, Composizione
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Distribuição De Matéria De Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas E Observáveis
Universidade Federal do Rio Grande - FURG Instituto de Matemática, Estatística e Física - IMEF Grupo de Astrofísica Teórica e Computacional - GATC Distribuição de Matéria de Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas e Observáveis. Graciana Brum João Rio GrandeRS, 7 de novembro de 2013 Universidade Federal do Rio Grande - FURG Instituto de Matemática, Estatística e Física - IMEF Grupo de Astrofísica Teórica e Computacional - GATC Distribuição de Matéria de Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas e Observáveis. Discente: Graciana Brum João Orientador: Prof. Dr. Fabricio Ferrari Trabalho de Conclusão de Curso apresentado ao curso de Física Bacharelado da Universidade Federal do Rio Grande como requisito parcial para obtenção do tíitulo de bacharel em Física. Rio Grande RS, 7 de novembro de 2013 Sumário 1 Introdução. 4 1.1 Galáxias..........................................5 1.1.1 Galáxias Espirais.................................6 1.1.2 Galáxias Espirais Barradas............................6 1.1.3 Galáxias Irregulares................................7 1.1.4 Galáxias Elípticas.................................7 1.2 Pers de Brilho......................................7 1.3 Fotometria e Massa....................................9 1.3.1 Relação Massa-Luminosidade........................... 11 1.3.2 Distribuição de Brilho supercial......................... 11 1.4 Dinâmica de Galáxias................................... 11 2 Teoria Potencial 13 2.1 Propriedades Dinâmicas, Intrínsecas e Observáveis.................. -
What's in This Issue?
A JPL Image of surface of Mars, and JPL Ingenuity Helicioptor illustration. July 11th at 4:00 PM, a family barbeque at HRPO!!! This is in lieu of our regular monthly meeting.) (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory) This is a pot-luck. Club will provide briskett and beverages, others will contribute as the spirit moves. What's In This Issue? President’s Message Member Meeting Minutes Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night SubReddit and Discord BRAS Member Astrophotos ARTICLE: Astrophotography with your Smart Phone Observing Notes: Canes Venatici – The Hunting Dogs Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 23 July 2021 President’s Message Hey everybody, happy fourth of July. I hope ya’ll’ve remembered your favorite coping mechanism for dealing with the long hot summers we have down here in the bayou state, or, at the very least, are making peace with the short nights that keep us from enjoying both a good night’s sleep and a productive observing/imaging session (as if we ever could get a long enough break from the rain for that to happen anyway). At any rate, we figured now would be as good a time as any to get the gang back together for a good old fashioned potluck style barbecue: to that end, we’ve moved the July meeting to the Sunday, 11 July at 4PM at HRPO. -
Revealing Hidden Substructures in the $ M {BH} $-$\Sigma $ Diagram
Draft version November 14, 2019 A Typeset using L TEX twocolumn style in AASTeX63 Revealing Hidden Substructures in the MBH –σ Diagram, and Refining the Bend in the L–σ Relation Nandini Sahu,1,2 Alister W. Graham2 And Benjamin L. Davis2 — 1OzGrav-Swinburne, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 2Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (Accepted 2019 October 22, by The Astrophysical Journal) ABSTRACT Using 145 early- and late-type galaxies (ETGs and LTGs) with directly-measured super-massive black hole masses, MBH , we build upon our previous discoveries that: (i) LTGs, most of which have been 2.16±0.32 alleged to contain a pseudobulge, follow the relation MBH ∝ M∗,sph ; and (ii) the ETG relation 1.27±0.07 1.9±0.2 MBH ∝ M∗,sph is an artifact of ETGs with/without disks following parallel MBH ∝ M∗,sph relations which are offset by an order of magnitude in the MBH -direction. Here, we searched for substructure in the MBH –(central velocity dispersion, σ) diagram using our recently published, multi- component, galaxy decompositions; investigating divisions based on the presence of a depleted stellar core (major dry-merger), a disk (minor wet/dry-merger, gas accretion), or a bar (evolved unstable 5.75±0.34 disk). The S´ersic and core-S´ersic galaxies define two distinct relations: MBH ∝ σ and MBH ∝ 8.64±1.10 σ , with ∆rms|BH = 0.55 and 0.46 dex, respectively. We also report on the consistency with the slopes and bends in the galaxy luminosity (L)–σ relation due to S´ersic and core-S´ersic ETGs, and LTGs which all have S´ersic light-profiles. -
Download This Article in PDF Format
A&A 439, 487–496 (2005) Astronomy DOI: 10.1051/0004-6361:20042529 & c ESO 2005 Astrophysics Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles, H. R. de Ruiter1,2,P.Parma2, A. Capetti3,R.Fanti4,2, R. Morganti5, and L. Santantonio6 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy 2 INAF – Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy 3 INAF – Osservatorio Astronomico di Torino, Strada Osservatorio 25, 10025 Pino Torinese, Italy 4 Istituto di Fisica, Università degli Studi di Bologna, via Irnerio 46, 40126 Bologna, Italy 5 Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 6 Università degli Studi di Torino, via Giuria 1, 10125 Torino, Italy Received 14 December 2004 / Accepted 12 April 2005 Abstract. We present a study of the optical brightness profiles of early type galaxies, using a number of samples of radio galax- ies and optically selected elliptical galaxies. For the radio galaxy samples – B2 of Fanaroff-Riley type I and 3C of Fanaroff-Riley type II – we determined a number of parameters that describe a “Nuker-law” profile, which were compared with those already known for the optically selected objects. We find that radio active galaxies are always of the “core” type (i.e. an inner Nuker law slope γ<0.3). However, there are core-type galaxies which harbor no significant radio source and which are indistinguishable from the radio active galaxies. We do not find any radio detected galaxy with a power law profile (γ>0.5). -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Star Hopping To
M61 - Messier 61 (NGC 4303), Magnitude 9.7 A face-on spiral in the galaxy rich region of the Virgo Cluster. About 100,000 light years in diameter and lies 60 million light years away. It was discovered in 1779 by Barnabus Oriani while tracking down a comet. Charles Messier encountered it 6 days later, but mistook it for a the same comet. Two days later, Messier realized the object was not moving and added it to his cata- logue. Four supernovae have been detected in this galaxy. Star Hopping to M61 I didn’t set out to identify this galaxy inparticular, just to try and find ANY galaxy within the Virgo Cluster! To repeat and therefore confirm my sighting I jumped from Zaniah (circled) and headed straight up (two full fields of view in the 17mm Ethos, until I found an easily identifyable pattern of six stars (three that form a tight triangle). The brightest star of the group being the Double Star ‘16 Virginis’ that shines at Magnitude 4.96. A further third of a FOV jump had M61 (or something fuzzy) centred... Drawing - Takahashi TSA102s Starry Night Pro Plus 6 N (816mm Focal Length, f/8) 17mm, 100° Televue Ethos eyepiece 48x Magnification Shown below a FOV indicator William Optics EZTouch from the planetarium software - Alt/Az undriven mount White charcoal pencil on black paper. mirror reversed. Saturday 14th April, 2012 W “M61 - One of the most difficult objects I’ve tried to observe to date. VERY faint - even with averted vision. Only the drawing/star field later confirmed sighting. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
The ACS Virgo Cluster Survey. VI. Isophotal Analysis and Surface Brightness Profiles 3 at Odds with Previous Claims in Lauer Et Al
Rochester Institute of Technology RIT Scholar Works Articles 2006 The CA S Virgo Cluster Survey. VI. Isophotal Analysis and the Structure of Early-Type Galaxies Laura Ferrarese National Research Council of Canada Patrick Côté National Research Council of Canada Andrés Jordán European Southern Observatory Eric W. Peng National Research Council of Canada John P. Blakeslee The Johns Hopkins University See next page for additional authors Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Laura Ferrarese et al 2006 ApJS 164 334 https://doi.org/10.1086/501350 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Authors Laura Ferrarese, Patrick Côté, Andrés Jordán, Eric W. Peng, John P. Blakeslee, Slawomir Piatek, Simona Mei, David Merritt, Miloš Milosavljević, John L. Tonry, and Michael J. West This article is available at RIT Scholar Works: http://scholarworks.rit.edu/article/1182 Accepted by The Astrophysical Journal Supplements Preprint typeset using LATEX style emulateapj v. 10/10/03 THE ACS VIRGO CLUSTER SURVEY. VI. ISOPHOTAL ANALYSIS AND THE STRUCTURE OF EARLY-TYPE GALAXIES1 Laura Ferrarese2, Patrick Cotˆ e´2, Andres´ Jordan´ 3,4, Eric W. Peng2, John P. Blakeslee5,6, Slawomir Piatek7, Simona Mei5, David Merritt8, Miloˇs Milosavljevic´9,10, John L. Tonry11, & Michael J. West12 Accepted by The Astrophysical Journal Supplements ABSTRACT We present a detailed analysis of the morphology, isophotal parameters and surface brightness profiles for 100 early-type members of the Virgo Cluster, from dwarfs (MB = −15.1 mag) to giants (MB = −21.8 mag). -
Atlante Grafico Delle Galassie
ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale. -
Line-Of-Sight Velocity Distributions of Low-Luminosity Elliptical Galaxies
Mon. Not. R. Astron. Soc. 326, 473–489 (2001) Line-of-sight velocity distributions of low-luminosity elliptical galaxies C. Halliday,1P† Roger L. Davies,1 Harald Kuntschner,1 M. Birkinshaw,2 Ralf Bender,3 R. P. Saglia3 and Glenn Baggley1 1Department of Physics, University of Durham, Science Labs, South Road, Durham DH1 3LE 2H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL 3Universita¨ts-Sternwarte, Scheinerstr. 1, D-81679 Mu¨nchen, Germany Accepted 2001 March 7. Received 2000 December 21; in original form 2000 December 21 ABSTRACT The shape of the line-of-sight velocity distribution (LOSVD) is measured for a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals. The sample is dominated by galaxies in the Virgo cluster but also contains ellipticals in nearby groups and low-density environments. The parametrization of the LOSVD given by Gerhard and van der Marel & Franx is adopted, which measures the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian by the amplitudes h3 and h4 of the Gauss–Hermite series. Rotation, velocity dispersion, h3 and h4 are determined as a function of radius for both major and minor axes. Non-Gaussian LOSVDs are found for all galaxies along the major axes. Deviations from a Gaussian LOSVD along the minor axis are of much lower amplitude if present at all. Central decreases in velocity dispersion are found for three galaxies. Two galaxies have kinematically decoupled cores: NGC 4458 and the well-known case of NGC 3608. Key words: galaxies: elliptical and lenticular, cD – galaxies: formation – galaxies: kinematics and dynamics.