Phylogenetics and Evolution of the Aphid Genus Uroleucon Based on Mitochondrial and Nuclear DNA Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
More Than Weeds: Non-Crop Plants, Arthropod Predators and Conservation Biological Control
DANY SILVIO SOUZA LEITE AMARAL MORE THAN WEEDS: NON-CROP PLANTS, ARTHROPOD PREDATORS AND CONSERVATION BIOLOGICAL CONTROL Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Doctor Scientiae. VIÇOSA MINAS GERAIS - BRASIL 2014 DANY SILVIO SOUZA LEITE AMARAL MORE THAN WEEDS: NON-CROP PLANTS, ARTHROPOD PREDATORS AND CONSERVATION BIOLOGICAL CONTROL Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Doctor Scientiae. APROVADA: 27 de fevereiro 2014. Irene Maria Cardoso Cleide Maria Ferreira Pinto (UFV) (EPAMIG) Angelo Pallini Filho Edison Ryoiti Sujii (Co-orientador) (Co-orientador) (UFV) (EMBRAPA – CENARGEN) Madelaine Venzon (Orientadora) (EPAMIG) De noite há uma flor que corrige os insetos Manoel de Barros – Livro: Anotações de Andarilho. A esperança não vem do mar Nem das antenas de TV A arte de viver da fé Só não se sabe fé em quê Paralamas do Sucesso – Música: Alagados. … a Universidade deve ser flexível, pintar-se de negro, de mulato, de operário, de camponês, ou ficar sem porta, pois o povo a arrombará e ele mesmo a pintará, a Universidade. com as cores que lhe pareça mais adequadas. Ernesto “Che” Guevara – Discurso: Universidade de Las Villas, dezembro de 1959. ii À Fê, que tem sido o amor que inspira minha vida, Ao João, meu filho, meu “Gesù Bambino”, meu “Sítio do Pica-Pau Amarelo”, dedico cada letra, pingo e ponto desta tese. Sem vocês nada aqui faria sentido. iii À tudo aquilo que não sabemos o que é, mas mesmo assim vive, pulsa e movimenta dentro de nós, da natureza e do universo; Aos meus pais, Carlos e Maria Helena, pelo amor, carinho e dedicação irrestritos que sempre tiveram comigo. -
Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138. -
Brown Ambrosia Aphid
Pest Profile Photo credit: Kansas Department of Agriculture, Bugwood.org Common Name: Brown Ambrosia Aphid Scientific Name: Uroleucon ambrosiae Order and Family: Hemiptera, Aphididae Size and Appearance: Length (mm) Appearance Egg Larva/Nymph Adult Red-brown to dark brown or dark red in color. 2.5-3.5 mm Pupa (if applicable) Type of feeder (Chewing, sucking, etc.): Piercing/sucking mouthparts Host plant/s: Primarily feeds on plants in the Asteraceae family. Preference for the giant ragweed, Ambrosia trifida. Description of Damage (larvae and adults): Adults and nymphs feed primarily on their host plants, but geographically different groups of this species will feed on other plants. Accounts of feeding on lettuces, papaya, and beans indicate that this species will become a pest if given the chance. U. ambrosiae has been implicated as a vector of common bean mosaic virus. References: Blackman, R., & Eastop, V. (N.D.). Uroleucon ambrosiae. Aphids on the worlds plants: An online identification and information guide. http://www.aphidsonworldsplants.info/d_APHIDS_U.htm Bottenberg, H., & Irwin, M. E. (1991). Influence of Wind Speed on Residence Time of Uroleucon ambrosiae Alatae (Homoptera: Aphididae) on Bean Plants in Bean Monocultures and Bean–Maize Mixtures. Environmental Entomology, 20(5), 1375-1380. De Conti, B. F., Bueno, V. H. P., & Sampaio, M. V. (2008). The parasitoid Praon volucre (Hymenoptera: Braconidae: Aphidiinae) as a potential biological control agent of the aphid Uroleucon ambrosiae (Hemiptera: Aphididae) on lettuce in Brazil. European Journal of Entomology, 105(3). Funk, D. J., & Bernays, E. A. (2001). Geographic variation in host specificity reveals host range evolution in Uroleucon ambrosiae aphids. -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Two New Species of the Aphid Genus Uroleucon (Hemiptera: Aphididae) Living on Grindelia in the USA
European Journal of Taxonomy 729: 42–53 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.729.1189 www.europeanjournaloftaxonomy.eu 2020 · Barjadze S. & Kanturski M. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:5D9A5938-4858-4F8D-A50D-6E2CF5623E69 Two new species of the aphid genus Uroleucon (Hemiptera: Aphididae) living on Grindelia in the USA Shalva BARJADZE 1 & Mariusz KANTURSKI 2, * 1 Institute of Zoology, Ilia State University, Giorgi Tsereteli 3, 0162, Tbilisi 0159, Georgia. 2 Zoology Research Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland. * Corresponding author: [email protected] 1 Email: [email protected] 1 urn:lsid:zoobank.org:author:63ABE1B2-8A56-42C8-BC34-1119D3A2ECBC 2 urn:lsid:zoobank.org:author:78C290A3-D07B-4AF9-9358-ED8C05A702BF Abstract. Here, we present descriptions of two new aphid species of the genus Uroleucon Mordvilko, 1914 (Hemiptera: Aphididae: Macrosiphini), which are associated with the plant genus Grindelia Willd. (Asteraceae). An apterous viviparous female of Uroleucon (Lambersius) robinsoni sp. nov. from Oregon and apterous and alate viviparous females of Uroleucon (Lambersius) grindeliae sp. nov. from Colorado are described and illustrated. Taxonomical notes of the new and other Grindelia-feeding taxa of Uroleucon are given and an updated key to the apterae of the Grindelia-feeding species of Uroleucon in the world is provided. Keywords. Macrosiphini, Uroleucon, Lambersius, new taxa, North America. Barjadze S. & Kanturski M. 2020. Two new species of the aphid genus Uroleucon (Hemiptera: Aphididae) living on Grindelia in the USA. -
Artemisia Vulgaris (Mugwort)
Artemisia vulgaris Artemisia vulgaris Mugwort Introduction The genus Artemisia includes more than 300 species, which are distributed Photo unavailable primarily in temperate regions and subtropics of Asia, Europe and North America. In China, there are 186 species and 44 varieties belonging to 2 subgenera with a nationwide distribution. Members of the genus Artemisia are well-known as aromatic herbs[103]. Species of Artemisia in China (see next page) long densely ciliate hairs at the top of Leaves of Artemisia vulgaris. Taxonomy the style. Fruits, appearing from August Family: Compositae to October together with flowers, are [103] Economic Importance (Asteraceae) obovate or ovate achenes . In addition to the volatile oil psilostachyin, Genus: Artemisia L. which contributes to its strong aroma, Habitat mugwort also contains other medically Description Mugwort grows in high-elevation pastures, active ketones and alkaloids. Mugwort Commonly known as mugwort, Artemisia forest edges, valleys, hillside wasteland, is also used as a livestock feed[103]. [112][103] vulgaris is a perennial herb that can ditches, and roadsides . reach 60-160 cm high, with many thin Related Species lateral roots. The branched, purplish- Distribution In China, mugwort, the common name brown stems are parallel grooved, with In China, mugwort has been reported of Artemisia vulgaris is often confused ascending twigs covered with short to occur in Shaanxi and Qinghai at with A. argyi, which is a common hairs. Leaves are papery, pubescent, elevations above 2,500 m, as well inhabitant of wastelands, roadsides, dark green on the upper surface, and as in western Gansu and Xinjiang at riversides, and hilly slopes, as well [103] have various shapes depending on elevations of 1,500 to 2,100 m . -
Biodiversity – Economy Or Ecology? Long-Term Study of Changes in the Biodiversity of Aphids Living in Steppe-Like Grasslands in Central Europe
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 140–146, 2017 http://www.eje.cz doi: 10.14411/eje.2017.019 ORIGINAL ARTICLE Biodiversity – economy or ecology? Long-term study of changes in the biodiversity of aphids living in steppe-like grasslands in Central Europe BARBARA OSIADACZ 1, ROMAN HAŁAJ 2 and DAMIAN CHMURA3 1 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego St. 159, PL 60-594 Poznań, Poland; e-mail: [email protected] 2 The Upper Silesian Nature Society, Huberta St. 35, PL 40-543 Katowice, Poland; e-mail: [email protected] 3 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, PL 43-309 Bielsko-Biała, Poland; e-mail: [email protected] Key words. Hemiptera, Aphidoidea, bio-ecological groups, community structure, protected habitats, loss of biodiversity, human impact, NMDS methods, regional hotspots Abstract. This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the fi rst analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their eco- logical functional groups. Over the period of more than 25 years, there has been a signifi cant decrease in aphid α-diversity, from 171 to 105 species. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
(Takahashi) (Homoptera: Aphididae) Found Onyoungia Japonica (L.) DC on Guam and Rota in the Mariana Islands
UPROCROLEUCON. HAWAIIAN FORMOSANUM ENTOMOL .ON SOC YOUNGIA. (2003) JAPONICA 36:125–127 125 SCIENTIFIC NOTE Uroleucon formosanum (Takahashi) (Homoptera: Aphididae) Found onYoungia japonica (L.) DC on Guam and Rota in the Mariana Islands R.H. Miller1, O. Idechiil1, R.G. Foottit2 and K.S. Pike3 1University of Guam, CALS, AES, UOG Station, Mangilao, Guam 96923. 2Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, KW Neatby Bldg., 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada. 3Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N Bunn Road, Prosser, WA 99350, USA Abstract. Uroleucon formosanum (Homoptera: Aphididae) was collected from Asi- atic (Oriental) hawksbeard, Youngia japonica, on Guam and Rota in 2003. These col- lections constitute a significant range expansion for U. formosanum into the western Pacific region. The aphid and its host plant were likely accidentally introduced to the islands in cargo or by travelers returning from known host regions in eastern Asia and Japan. Key words: Guam, Rota, Mariana Islands, Aphididae, Uroleucon formosanum, Youngia japonica, Micronesia Uroleucon formosanum (Takahashi) (Homoptera: Aphididae) was collected from Asiatic (Oriental) hawksbeard, Youngia japonica (L.) DC, on Guam on 21 February 2003 and from the neighboring island of Rota on 27 February 2003. The collection site on Guam was located near the University of Guam Marine Biology Laboratory in Mangilao (13.426554 N, 144.80000 E) in a shaded area north of the main laboratory and administration building at an elevation of about 3m. On Rota U. formosanum was collected from Y. japonica grow- ing at the base of boulders in a WWII memorial park (14.14646 N, 145.18508 E) on the elevated Sabana Plateau in the south of the island at an elevation of approximately 400 m. -
Hymenoptera: Braconidae: Aphidiinae) from India
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 3-11-2011 A catalogue of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from India Mir Samim Akhtar Division of Entomology, IARI, Pusa Campus, [email protected] Debjani Dey Division of Entomology, IARI, Pusa Campus Mohd. Kamil Usmani Aligarh Muslim University, India Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Akhtar, Mir Samim; Dey, Debjani; and Usmani, Mohd. Kamil, "A catalogue of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from India" (2011). Insecta Mundi. 670. https://digitalcommons.unl.edu/insectamundi/670 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0151 A catalogue of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from India Mir Samim Akhtar and Debjani Dey Division of Entomology, IARI Pusa Campus New Delhi- 110012 (India) Mohd. Kamil Usmani Department of Zoology Aligarh Muslim University Aligarh- 202002 (India) Date of Issue: March 11, 2011 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Mir Samim Akhtar, Debjani Dey, and Mohd. Kamil Usmani A catalogue of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from India Insecta Mundi 0151: 1-31 Published in 2011 by Center for Systematic Entomology, Inc. -
Species Identification of Aphids (Insecta: Hemiptera: Aphididae) Through DNA Barcodes
Molecular Ecology Resources (2008) 8, 1189–1201 doi: 10.1111/j.1755-0998.2008.02297.x DNABlackwell Publishing Ltd BARCODING Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes R. G. FOOTTIT,* H. E. L. MAW,* C. D. VON DOHLEN† and P. D. N. HEBERT‡ *National Environmental Health Program, Invertebrate Biodiversity, Agriculture and Agri-Food Canada, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, ON, Canada K1A 0C6, †Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA, ‡Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Abstract A 658-bp fragment of mitochondrial DNA from the 5′ region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification. Keywords: Aphididae, COI, DNA barcoding, mitochondrial DNA, parthenogenesis, species identification Received 28 December 2007; revision accepted 3 June 2008 of numerous plant diseases (Eastop 1977; Harrewijn & Introduction Minks 1987; Blackman & Eastop 2000; Harrington & van The aphids (Insecta: Hemiptera: Aphididae) and related Emden 2007). Aphids are also an important invasive risk families Adelgidae and Phylloxeridae are a group of because their winged forms are easily dispersed by wind approximately 5000 species of small, soft-bodied insects that and because feeding aphids are readily transported with feed on plant phloem using piercing/sucking mouthparts. -
The Performance of Macrosiphoniella Millefolii and Myzus Persicae on Achillea Collina
Bulletin of Insectology 64 (1): 135-143, 2011 ISSN 1721-8861 The performance of Macrosiphoniella millefolii and Myzus persicae on Achillea collina 1 2 1 1 Pablo MORLACCHI , Annamaria GIORGI , Giuseppe Carlo LOZZIA , Johann BAUMGÄRTNER 1Dipartimento di Protezione dei Sistemi Agroalimentare e Urbano e Valorizzazione delle Biodiversità, Università degli Studi di Milano, Italy 2Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Italy Abstract This paper compares the development of the polyphagous aphid Myzus persicae Sulzer, considered as a generalist, and the oligo- phagous aphid Macrosiphoniella millefolii (De Geer), considered as a specialist, on yarrow (Achillea collina Becker ex Reichen- bach). Yarrow is a medicinal plant rich in bioactive secondary metabolites that have possible effects on the development of phy- tophages, including aphids. Age specific life tables for cohorts developing under different constant temperatures were constructed and analyzed using standard techniques, and complemented with Jackknife estimates of the intrinsic rate of increase and its stan- dard error. The parthenogenetic wingless morphs of the two species differed in the immature developmental time and survival, and in adult fecundity and life span. At high temperatures, the intrinsic rate of increase as the overall metric of performance tended to be higher for the generalist than for the specialist aphid species, while the opposite appears to occur at low and medium temperatures. Further insight into the complex interactions between yarrow and aphids requires that their genetic diversity is taken into account. The study of yarrow-aphid-natural enemy population interactions requires additional information on biomass dy- namics, aphid morph differentiation and the performance of biological control agents.