Hymenoptera: Braconidae: Aphidiinae) from India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphids Associated with Papaya Plants in Puerto Rico and Florida12
Aphids associated with papaya plants in Puerto Rico and Florida12 Alberto Pantoja3, Jorge Peña4, Wilfredo Robles5, Edwin Abreu6, Susan Halbert7, María de Lourdes Lugo8, Elias Hernández9 and Juan Ortiz10 J. Agrie. Univ. P.R. 90(l-2):99-107 (2006) ABSTRACT Aphids associated with papaya plants were collected from two sites in Puerto Rico (Isabela and Corozal) and three farms in Homestead, Florida. Between the two regions, Florida and Puerto Rico, twenty-one species of aphids from 12 genera were identified: Aphis sp., Aphis illinoisensis Shimer, Aphis spiraecola Patch, Aphis gossypii Glover, Aphis craccivora Koch, Aphis /dd/ef on/7 (Thomas), Aphis ner/7'Boyer de Fonscolombe, Hyperomyzus carduellinus (Theobald), Hysteroneura setariae (Thomas), Lipaphis pseudo- brassicae (Davis), Picturaphis sp., Pentalonia nigronervosa Coquerel, Schizaphis graminum (Rondani), Sarucallis kahawaluokalani (Kirkaldy), Shinjia orientalis (Mordvilko), Schizaphis rotundiventris (Signoret), Tox- optera citricida (Kilkardy), Toxoptera aurantii (Boyer de Fonscolombe), Tetra- neura nigriabdominalis (Sasaki), Uroleucon ambrosiae (Thomas), and Uroleucon pseudoambrosiae (Olive). The number of species was greater in Florida (n = 14) than in Puerto Rico (n = 11). Differences among species were also found between sites in Puerto Rico, with 10 species in Corozal and six in Isabela. Only one species, A. illinoisensis, was common at all sites sam pled, whereas three additional species, A. spiraecola, A. gossypii, and A. craccivora were collected in both the Corozal, Puerto Rico, and the Florida areas. The difference in species composition between Puerto Rican sites 'Manuscript submitted to Editorial Board 12 July 2005. 2The authors wish to recognize T. Adams and D. Fielding, USDA-ARS, Fairbanks, Alaska, for critical reviews of an earlier version of this manuscript. -
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
More Than Weeds: Non-Crop Plants, Arthropod Predators and Conservation Biological Control
DANY SILVIO SOUZA LEITE AMARAL MORE THAN WEEDS: NON-CROP PLANTS, ARTHROPOD PREDATORS AND CONSERVATION BIOLOGICAL CONTROL Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Doctor Scientiae. VIÇOSA MINAS GERAIS - BRASIL 2014 DANY SILVIO SOUZA LEITE AMARAL MORE THAN WEEDS: NON-CROP PLANTS, ARTHROPOD PREDATORS AND CONSERVATION BIOLOGICAL CONTROL Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Doctor Scientiae. APROVADA: 27 de fevereiro 2014. Irene Maria Cardoso Cleide Maria Ferreira Pinto (UFV) (EPAMIG) Angelo Pallini Filho Edison Ryoiti Sujii (Co-orientador) (Co-orientador) (UFV) (EMBRAPA – CENARGEN) Madelaine Venzon (Orientadora) (EPAMIG) De noite há uma flor que corrige os insetos Manoel de Barros – Livro: Anotações de Andarilho. A esperança não vem do mar Nem das antenas de TV A arte de viver da fé Só não se sabe fé em quê Paralamas do Sucesso – Música: Alagados. … a Universidade deve ser flexível, pintar-se de negro, de mulato, de operário, de camponês, ou ficar sem porta, pois o povo a arrombará e ele mesmo a pintará, a Universidade. com as cores que lhe pareça mais adequadas. Ernesto “Che” Guevara – Discurso: Universidade de Las Villas, dezembro de 1959. ii À Fê, que tem sido o amor que inspira minha vida, Ao João, meu filho, meu “Gesù Bambino”, meu “Sítio do Pica-Pau Amarelo”, dedico cada letra, pingo e ponto desta tese. Sem vocês nada aqui faria sentido. iii À tudo aquilo que não sabemos o que é, mas mesmo assim vive, pulsa e movimenta dentro de nós, da natureza e do universo; Aos meus pais, Carlos e Maria Helena, pelo amor, carinho e dedicação irrestritos que sempre tiveram comigo. -
The Aphid Genus Aphthargelia Hottes (Hemiptera: Aphididae), with One New Species
Zootaxa 3701 (3): 381–392 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3701.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:9228518D-31C3-4F8B-9FDD-4F2FB0EEA606 The aphid genus Aphthargelia Hottes (Hemiptera: Aphididae), with one new species ANDREW S. JENSEN Adjunct Faculty, Department of Entomology, Washington State University, Pullman, WA, USA. E-mail: [email protected] Abstract A new species of the previously monotypic aphid genus Aphthargelia is described and the genus reviewed. The new spe- cies, A. rumbleboredomia is heteroecious, alternating between host plants in Symphoricarpos and Aconogonon in the mountains of northwestern North America. Descriptive notes on A. symphoricarpi are given, along with diagnostic fea- tures for separating the two species of the genus. A key to related genera is presented, and biological information on both species of Aphthargelia is summarized. Key words: Symphoricarpos, Lonicera, Polygonum, Aconogonon, Idaho, Washington, heteroecy, balsam, Macrosiphini, Landisaphis, Hyadaphis, Hayhurstia, Brevicoryne, Rhopalomyzus, Lipaphis Introduction Aphthargelia symphoricarpi (Thomas) is a widespread, easily recognized aphid species which exploits several species of Symphoricarpos (Caprifoliaceae) as hosts. Aphthargelia has been monotypic since it was created by Hottes (1958) for A. symphoricarpi, which had previously been placed in Brevicoryne van der Goot by Palmer (1952) and others. In 2010 the author found a species of Aphthargelia living on Aconogonon phytolaccifolium in the mountains of northern Idaho. Although this host association between Aphthargelia and Polygonaceae had escaped notice of most aphid specialists, Andersen (1991) reported ecological experiments involving an aphid species, feeding on Aconogonon davisiae, identified at that time as A. -
Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138. -
2021 North American Forest Insect Work Conference
2021 North American Forest Insect Work Conference Shaping Forests: Action in a Changing World May 26-28, 2021 1 2021 North American Forest Insect Work Conference Organizers Organizing Committee: Jess Hartshorn (Chair) – Clemson University, Clemson, SC Brian Aukema – University of Minnesota, St. Paul, MN Rachael Arango – USDA Forest Service, Madison, WI Jeff Garnas – University of New Hampshire, Durham, NH Rich Hofstetter – Northern Arizona University, Flagstaff, AZ Kier Klepzig – The Jones Center at Ichauway, Newton, GA Robert Rabaglia – USDA Forest Service, Washington, DC Program Committee: Kier Klepzig (Co-Chair) – The Jones Center at Ichauway, Newton, GA Rich Hostetter (Co-Chair) – Northern Arizona University, Flagstaff, AZ Deepa Pureswaran – Canadian Forest Service, Quebec, QC Jeff Garnas – University of New Hampshire, Durham, NH Sponsorship: Kevin Chase - Bartlett Tree Experts, Charlotte, NC Posters: Rich Hofstetter - Northern Arizona University 2 Tuesday, May 25 2:00 Forest Health Task Force 4:00 SFIWC Business Meeting WFIWC Business Meeting Wednesday, May 26 8:00 Welcome Remarks 8:15 Plenary Session 1 A. Shannon Lotthammer, Assistant Forestry Commissioner, Minnesota Department of Natural Resources B. EAB impacts: what does the loss of ash mean for wildlife? - Alexis Grinde, Wildlife Ecologist, Natural Resources Research Institute, University of Minnesota - Duluth C. Connections - Eli Sagor, Cloquet Forest, University of Minnesota 9:45 Break 10:30 Student Paper Competition - 1 - Jess Hartshorn A. Following Celtis laevigata Willd. mortality and the commonly associated insects in the southeastern US - Emilee M. Poole, Michael D. Ulyshen, and Scott Horn. Celtis laevigata Willd. (sugarberry) is a native tree commonly found along floodplains and rivers in the southeastern US. -
Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids. -
Distribution, Hosts and Biology of Diaeretiella Rapae (M'intosh
Pakistan J. Zool., vol. 44(5), pp. 1307-1315, 2012. Distribution, Hosts and Biology of Diaeretiella rapae (M’Intosh) (Hymenoptera: Braconidae: Aphidiinae) in Punjab, Pakistan Imran Bodlah,* Muhammad Naeem and Ata Ul Mohsin Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Abstract .- Diaeretiella rapae (M’Intosh) (Hymenoptera: Braconidae, Aphidiinae ) aphid parasitoid is reported from various districts of Punjab Province of Pakistan from a wide range of host aphids and plant associations, including some new evidences. Biological information centered development, life-stages and their micrographes, mating and oviposition, adult lon gevity and food have been discussed. Biology of the parasitoid reared on Myzus persicae aphids in the laboratory at 23±1°C have been discussed. The development cycle from larva to adult was completed in about 11.5 days at 21-23°C. The pre-mating period of males (n=10) varied between 20 and 40 minutes (mean: 28.8 min), however it was longer in females most of which rejected all copulatory attempts at least two hours after emergence . When newly emerged females were confined with males for a period of 12 h, all mated i.e., they produced progeny of both sexes. Copulation time (n = 10 pairs) was between 30 and 60 s (mean: 46.3 s). Oviposition time (n = 10 females) was between 46 and 64 s (mean: 52.6 s). Female lived longer (11.1± 0.16 days) than males (9.4 ± 0.18 days) when offered honey and water. The lifespan of adult females was shorter (10.2 ± 0.05 days) in the presence of host aphids and host plant leaves than only with honey and water. -
A Note on Pauesia Konoi (Watanabe) (Hymenoptera : Aphidiidae)
Title A note on Pauesia konoi (Watanabe) (Hymenoptera : Aphidiidae) Author(s) Watanabe, Chihisa; Takada, Hajimu Citation Insecta matsumurana, 27(1), 11-11 Issue Date 1964-08 Doc URL http://hdl.handle.net/2115/9713 Type bulletin (article) File Information 27(1)_p11-11.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP July, 1964] INSECTA MATSUMURANA 11 Selected literature Mackauer, M., 1959. Die europaischen Arten der Gattungen Praon und Areopraon (Hym. Bracon idae, Aphidiinae). Ein monographische Revision. Beitr. Ent. 9: 810-865. Mackauer, M., 1961. Die Typen der Unterfamilie Aphidiinae des Britischen Museums London. Beitr. Ent. 11: 96-154. Narayanan, E. S., B. R. Subba Rao, A. K. Sharma & P. Stary, 1962. Revision of "A Catalogue of the known Species of the World belonging to the Subfamily Aphidiinae" (Hymenoptera: Braconidae). Beitr. Ent. 12: 662-720. A NOTE ON PAUESIA KONOI (WATANABE) (HYMENOPTERA : APHIDIIDAE) By CHIHISA WATANABE and HAJIMU TAKADA As a supplement to the original description of Aphidius konoi Watanabe a brief note will be given below. Pauesia konoi (Watanabe) Aphidius konoi Watanabe, Ins. Mats. 15: 106, i\, 1941. Paraphidius konoi: Stary, Acta Faun. Ent. Mus. Nat. Pragae 6: 35, 1960. Pauesia konoi: Narayanan et aJ., Beitr. Ent. 12: 691, 1962. Specimens examined: 400 (types of Aphidius konoi); 59«,10, 23-v-62, Yuni, Hok kaido, Watanabe leg.; 3099, 2000, 24-v-62, Yuni, Takada leg.; 1399,700, 18-v-63, 499, 200, 25-v-63, Naganuma, Hokkaido, Takada leg. All specimens were reared from Cinara longipennis (Matsumura) living in Abies sachalinensis. <f. The female of this species _was not previously known; it agrees closely with the original description of the male, apart from usual sex~al differences, except as follows; Antennae with 27-29 segments [27 (159 <f), 28 (33), 29 (2)], being 2.8-4.4 mm. -
Phylogenetic Relationships and Subgeneric Classification of European
A peer-reviewed open-access journal ZooKeys 878:Phylogenetic 1–22 (2019) relationships and subgeneric classification of EuropeanEphedrus species 1 doi: 10.3897/zookeys.878.38408 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic relationships and subgeneric classification of European Ephedrus species (Hymenoptera, Braconidae, Aphidiinae) Korana Kocić1, Andjeljko Petrović1, Jelisaveta Čkrkić1, Milana Mitrović2, Željko Tomanović1 1 University of Belgrade-Faculty of Biology, Institute of Zoology. Studentski Trg 16, 11000 Belgrade, Serbia 2 Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11000 Belgrade, Serbia Corresponding author: Korana Kocić ([email protected]) Academic editor: K. van Achterberg | Received 21 July 2019 | Accepted 2 September 2019 | Published 7 October 2019 http://zoobank.org/9B51B440-ACFC-4E1A-91EA-32B28554AF56 Citation: Kocić K, Petrović A, Čkrkić J, Mitrović M, Tomanović Ž (2019) Phylogenetic relationships and subgeneric classification of EuropeanEphedrus species (Hymenoptera, Braconidae, Aphidiinae). ZooKeys 878: 1–22. https://doi. org/10.3897/zookeys.878.38408 Abstract In this study two molecular markers were used to establish taxonomic status and phylogenetic relation- ships of Ephedrus subgenera and species distributed in Europe. Fifteen of the nineteen currently known species have been analysed, representing three subgenera: Breviephedrus Gärdenfors, 1986, Lysephedrus Starý, 1958 and Ephedrus Haliday, 1833. The results of analysis of COI and EF1α molecular markers and morphological studies did not support this classification. Three clades separated by the highest genetic distances reported for the subfamily Aphidiinae on intrageneric level. Ephedrus brevis is separated from persicae and plagiator species groups with genetic distances of 19.6 % and 16.3 % respectively, while the distance between persicae and plagiator groups was 20.7 %. -
Invasive Aphids Attack Native Hawaiian Plants
Biol Invasions DOI 10.1007/s10530-006-9045-1 INVASION NOTE Invasive aphids attack native Hawaiian plants Russell H. Messing Æ Michelle N. Tremblay Æ Edward B. Mondor Æ Robert G. Foottit Æ Keith S. Pike Received: 17 July 2006 / Accepted: 25 July 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Invasive species have had devastating plants. To date, aphids have been observed impacts on the fauna and flora of the Hawaiian feeding and reproducing on 64 native Hawaiian Islands. While the negative effects of some inva- plants (16 indigenous species and 48 endemic sive species are obvious, other species are less species) in 32 families. As the majority of these visible, though no less important. Aphids (Ho- plants are endangered, invasive aphids may have moptera: Aphididae) are not native to Hawai’i profound impacts on the island flora. To help but have thoroughly invaded the Island chain, protect unique island ecosystems, we propose that largely as a result of anthropogenic influences. As border vigilance be enhanced to prevent the aphids cause both direct plant feeding damage incursion of new aphids, and that biological con- and transmit numerous pathogenic viruses, it is trol efforts be renewed to mitigate the impact of important to document aphid distributions and existing species. ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the Keywords Aphid Æ Aphididae Æ Hawai’i Æ five largest Hawaiian Islands (Hawai’i, Kaua’i, Indigenous plants Æ Invasive species Æ Endemic O’ahu, Maui, and Moloka’i), we provide the first plants Æ Hawaiian Islands Æ Virus evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian Introduction R. -
Aphid-Parasitoid (Insecta) Diversity and Trophic Interactions in South Dakota
Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) 83 APHID-PARASITOID (INSECTA) DIVERSITY AND TROPHIC INTERACTIONS IN SOUTH DAKOTA Abigail P. Martens* and Paul J. Johnson Insect Biodiversity Lab South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Parasitoid wasps of the subfamily Aphidiinae (Hymenoptera: Braconidae) specialize on aphids (Hemiptera: Aphididae) as hosts. The diversity of known and probable aphidiine wasps from South Dakota is itemized, with represen- tation by 13 genera and 42 species, 43% of which are probably adventitious. The wasps and aphids are central to various combinations of multitrophic relationships involving host plants and secondary parasitoids. Selected native and introduced aphid host taxa were quantitatively and qualitatively collected from diverse native and crop host plants in eastern South Dakota and western Iowa. Wasps were reared to confirm plant association, host aphid association, taxonomic diversity, and native or introduced status of the wasps. Acanthocaudus tissoti (Smith) and Aphidius (Aphidius) ohioensis (Smith) were found together on the native aphid Uroleucon (Uroleucon) nigrotuberculatum (Olive), a new host aphid species for both wasps on Solidago canadensis L. (Asterales: Asteraceae). The native waspLysiphlebus testaceipes (Cresson) was repeatedly reared in mas- sive numbers from mummies of invasive Aphis glycines Matsumura on soybean, Glycine max (L.) Merr. This wasp was also reared from the non-nativeAphis nerii Boyer de Fonscolombe and the native Aphis asclepiadis Fitch, both on Asclepias syriaca L. The introduced wasp Binodoxys communis (Gahan) was not recovered from any Aphis glycines population. Hyperparasitoids from the genus Dendrocerus Ratzeburg (Hymenoptera: Megaspilidae), and the pteromalid (Hymenoptera: Pteromalidae) genera Asaphes Walker, and Pachyneuron Walker were reared from mummies of Uroleucon (Uroleucon) nigrotuberculatum parasitized by either Acanthocaudus tissoti or Aphidius (Aphidius) ohioensis.