Ecology of Citrus Aphids and Their Importance to Virus Transmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Encounters Between Aphids and Their Predators: the Relative Frequencies of Disturbance and Consumption
Blackwell Publishing Ltd Encounters between aphids and their predators: the relative frequencies of disturbance and consumption Erik H. Nelson* & Jay A. Rosenheim Center for Population Biology and Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616, USA Accepted: 3 November 2005 Key words: avoidance behavior, escape behavior, induced defense, non-consumptive interactions, non-lethal interactions, predation risk, trait-mediated interactions, Aphididae, Homoptera, Aphis gossypii, Acyrthosiphon pisum Abstract Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non-consumptive, defense-inducing encounters relative to consumptive encounters (hence- forth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : con- sumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics. -
Aphids Associated with Papaya Plants in Puerto Rico and Florida12
Aphids associated with papaya plants in Puerto Rico and Florida12 Alberto Pantoja3, Jorge Peña4, Wilfredo Robles5, Edwin Abreu6, Susan Halbert7, María de Lourdes Lugo8, Elias Hernández9 and Juan Ortiz10 J. Agrie. Univ. P.R. 90(l-2):99-107 (2006) ABSTRACT Aphids associated with papaya plants were collected from two sites in Puerto Rico (Isabela and Corozal) and three farms in Homestead, Florida. Between the two regions, Florida and Puerto Rico, twenty-one species of aphids from 12 genera were identified: Aphis sp., Aphis illinoisensis Shimer, Aphis spiraecola Patch, Aphis gossypii Glover, Aphis craccivora Koch, Aphis /dd/ef on/7 (Thomas), Aphis ner/7'Boyer de Fonscolombe, Hyperomyzus carduellinus (Theobald), Hysteroneura setariae (Thomas), Lipaphis pseudo- brassicae (Davis), Picturaphis sp., Pentalonia nigronervosa Coquerel, Schizaphis graminum (Rondani), Sarucallis kahawaluokalani (Kirkaldy), Shinjia orientalis (Mordvilko), Schizaphis rotundiventris (Signoret), Tox- optera citricida (Kilkardy), Toxoptera aurantii (Boyer de Fonscolombe), Tetra- neura nigriabdominalis (Sasaki), Uroleucon ambrosiae (Thomas), and Uroleucon pseudoambrosiae (Olive). The number of species was greater in Florida (n = 14) than in Puerto Rico (n = 11). Differences among species were also found between sites in Puerto Rico, with 10 species in Corozal and six in Isabela. Only one species, A. illinoisensis, was common at all sites sam pled, whereas three additional species, A. spiraecola, A. gossypii, and A. craccivora were collected in both the Corozal, Puerto Rico, and the Florida areas. The difference in species composition between Puerto Rican sites 'Manuscript submitted to Editorial Board 12 July 2005. 2The authors wish to recognize T. Adams and D. Fielding, USDA-ARS, Fairbanks, Alaska, for critical reviews of an earlier version of this manuscript. -
Melon Aphid (Aphis Gossypii [Glover]) Donald Nafus, Associate Professor of Entomology, University of Guam
Agricultural Pests of the Pacific ADAP 2000-10, Reissued February 2000 ISBN 1-931435-13-8 Melon Aphid (Aphis gossypii [Glover]) Donald Nafus, Associate Professor of Entomology, University of Guam he adult melon aphid or cotton aphid (Aphis Tgossypii Glover) is yellow to dark green with a black head and black cornicles. Often the melon aphid is light green mottled with darker green, but under crowded con- ditions and high temperatures it can be yellow or nearly white. Adult aphids range from 0.9 to 1.8 millimeters (mm) long. Females can bear two or more live young each day, rather than laying eggs. Adults live two to three weeks. The melon aphid feeds on the shoots or undersides of leaves of many plants. Over 70 hosts are listed for Ha- waii alone. Some of the common plants attacked in the Pacific region are cucurbits, citrus, eggplant, peppers, taro, and okra. Other hosts include banana, cotton, cof- Melon aphids on cucumber leaf fee, cocoa, Piper, tomato, beans, sweet potato and po- tato. The melon aphid can develop in large numbers on taro aphids, including melon aphid. These wasps are highly causing wilting and downward curling of the leaves. sensitive to chemical sprays. Care should be taken not Heavy infestations on cucumber, melon and other plants to use sprays that would disrupt this biological control result in small, distorted leaves. Often these severely in areas where natural enemies have been introduced. wrinkled or curled leaves form a cup shape and may dry If virus is present or aphids are causing damage and and drop prematurely. -
"Virus Transmission by Aphis' Gossypii 'Glover to Aphid-Resistant And
J. AMER. Soc. HORT. SCI. 117(2):248-254. 1992. Virus Transmission by Aphis gossypii Glover to Aphid-resistant and Susceptible Muskmelons Albert N. Kishaba1, Steven J. Castle2, and Donald L. Coudriet3 U.S. Department of Agriculture, Agricultural Research Service, Boyden Entomology Laborato~, University of California, Riverside, CA 92521 James D. McCreight4 U.S. Department of Agriculture, Agricultural Research Service, U.S. Agricultural Research Station, 1636 East Alisal Street, Salinas, CA 93905 G. Weston Bohn5 U.S. Department of Agriculture, Agricultural Research Service, Irrigated Desert Research Station, 4151 Highway 86, Brawley, CA 92227 Additional index words. Cucumis melo, watermelon mosaic virus, zucchini yellow mosaic virus, melon aphid, melon aphid resistance Abstract. The spread of watermelon mosaic virus by the melon aphid (Aphis gossypii Glover) was 31%, 74%, and 71% less to a melon aphid-resistant muskmelon (Cucumis melo L.) breeding line than to the susceptible recurrent parent in a field cage study. Aphid-resistant and susceptible plants served equally well as the virus source. The highest rate of infection was noted when target plants were all melon-aphid susceptible, least (26.7%) when the target plants were all melon-aphid resistant, and intermediate (69.4%) when the target plants were an equal mix of aphid-resistant and susceptible plants. The number of viruliferous aphids per plant required to cause a 50% infection varied from five to 20 on susceptible controls and from 60 to possibly more than 400 on a range of melon aphid- resistant populations. An F family from a cross of the melon aphid-resistant AR Topmark (AR TM) with the susceptible ‘PMR 45’ had significantly less resistance to virus transmission than AR TM. -
Spread of Citrus Tristeza Virus in a Heavily Infested Citrus Area in Spain
Spread of Citrus Tristeza Virus in a Heavily Infested Citrus Area in Spain P. Moreno, J. Piquer, J. A. Pina, J. Juarez and M. Cambra ABSTRACT. Spread of Citrus Tristeza Virus (CTV) in a heavily infested citrus area in Southern Valencia (Spain) has been monitored since 1981. Two adjacent plots with 400 trees each were selected and tested yearly by ELISA (enzyme-linked immunosorbent assay). One of them was planted to 4-yr-old Newhall navel orange on Troyer citrange and the other to 8-yr-old Marsh seedless grapefruit on the same rootstock. Both had been established using virus-free budwood. In 1981, 98.7% of the Newhall navel plants indexed CTV-positive and by 1984 all of them were infected, whereas only 17.8% of the Marsh grapefruit indexed CTV-positive in 1981, and 42.5% were infected in 1986. This is an indication that grapefruit is less susceptible than navel orange to tristeza infection under the Spanish field conditions. Wild plants of 66 species collected in the same heavily tristeza-infested area were also tested by ELISA to find a possible alternate non-citrus host. CTV was not found in any of the more than 450 plants analyzed. Index words. virus spread, ELISA, noncitrus hosts. Tristeza was first detected in virus diffusion under various environ- Spain in 1957 and since then has mental conditions. In this paper we caused the death of about 10 million present data on CTV spread in a trees grafted on sour orange and the heavily infested area. A survey progressive decline of an additional among wild plants growing in the several thousand hectares of citrus on same citrus area was also undertaken this rootstock. -
Aphis Spiraecola
Rapid Pest Risk Analysis (PRA) for Aphis spiraecola STAGE 1: INITIATION 1. What is the name of the pest? Aphis spiraecola Patch (Hemiptera, Aphididae) – Spiraea aphid (also Green citrus aphid). Synonyms: many, due to historic confusion over its identity; most common is Aphis citricola van der Goot (see CABI, 2013). 2. What initiated this rapid PRA? The UK Plant Health Risk Register identified the need to update the first UK PRA (MacLeod, 2000), taking into account recent information on hosts, impacts, vectored pathogens and UK status. 3. What is the PRA area? The PRA area is the United Kingdom of Great Britain and Northern Ireland. STAGE 2: RISK ASSESSMENT 4. What is the pest’s status in the EC Plant Health Directive (Council Directive 2000/29/EC1) and in the lists of EPPO2? Aphis spiraecola is not listed in the EC Plant Health Directive, not recommended for regulation as a quarantine pest by EPPO and it is not on the EPPO Alert List. 5. What is the pest’s current geographical distribution? Aphis spiraecola probably originates in the Far East. It is now very widespread around the world in temperate and tropical regions, occurring across every continent except Antarctica (CABI, 2013). In Europe, A. spiraecola is found around the Mediterranean, with a patchy Balkan distribution and it is absent from Scandinavia and the Baltic states. It is stated as present in: Spain, Portugal, France, Switzerland, Italy, Slovenia, Croatia, Serbia, Hungary, Bulgaria, Greece, Cyprus, Malta, and Russia (west of the Urals) (CABI 2013). It is not confirmed as being established in the Netherlands, either outdoors or under protection. -
Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring. -
Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents
sustainability Review Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents Lamine Diamé 1,2,*, Jean-Yves Rey 1,3,6, Jean-François Vayssières 3,6, Isabelle Grechi 4,6, Anaïs Chailleux 3,5,6 ID and Karamoko Diarra 2 1 Institut Sénégalais de Recherches Agricoles, Centre pour le Développement de l’Horticulture, BP 3120 Dakar, Senegal; [email protected] 2 Université Cheikh Anta Diop de Dakar, BP 7925 Dakar, Senegal; [email protected] 3 Centre de Coopération Internationale de Recherche Agronomique pour le Développement, UPR HortSys, F-34398 Montpellier, France; jean-franç[email protected] (J.F.V.); [email protected] (A.C.) 4 Centre de Coopération Internationale de Recherche Agronomique pour le Développement, UPR HortSys, F-97455 Saint-Pierre, La Réunion, France; [email protected] 5 Biopass, Institut Sénégalais de Recherches Agricoles—University Cheikh Anta Diop de Dakar—Institut de Recherche pour le Développement, BP 2274 Dakar, Senegal 6 University de Montpellier, Centre de Coopération Internationale de Recherche Agronomique pour le Développement, HortSys, F-34398 Montpellier, France * Correspondence: [email protected] Received: 15 October 2017; Accepted: 12 December 2017; Published: 22 December 2017 Abstract: Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world’s animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. -
Invasive Aphids Attack Native Hawaiian Plants
Biol Invasions DOI 10.1007/s10530-006-9045-1 INVASION NOTE Invasive aphids attack native Hawaiian plants Russell H. Messing Æ Michelle N. Tremblay Æ Edward B. Mondor Æ Robert G. Foottit Æ Keith S. Pike Received: 17 July 2006 / Accepted: 25 July 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Invasive species have had devastating plants. To date, aphids have been observed impacts on the fauna and flora of the Hawaiian feeding and reproducing on 64 native Hawaiian Islands. While the negative effects of some inva- plants (16 indigenous species and 48 endemic sive species are obvious, other species are less species) in 32 families. As the majority of these visible, though no less important. Aphids (Ho- plants are endangered, invasive aphids may have moptera: Aphididae) are not native to Hawai’i profound impacts on the island flora. To help but have thoroughly invaded the Island chain, protect unique island ecosystems, we propose that largely as a result of anthropogenic influences. As border vigilance be enhanced to prevent the aphids cause both direct plant feeding damage incursion of new aphids, and that biological con- and transmit numerous pathogenic viruses, it is trol efforts be renewed to mitigate the impact of important to document aphid distributions and existing species. ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the Keywords Aphid Æ Aphididae Æ Hawai’i Æ five largest Hawaiian Islands (Hawai’i, Kaua’i, Indigenous plants Æ Invasive species Æ Endemic O’ahu, Maui, and Moloka’i), we provide the first plants Æ Hawaiian Islands Æ Virus evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian Introduction R. -
Density, Diversity and Differential Feeding Potentials of Aphidophagous Insects in the Tea Ecosystem
Aphidophagous insects in the tea ecosystem Journal of Biopesticides 3(1 Special Issue) 058 - 061 (2010) 58 Density, diversity and differential feeding potentials of aphidophagous insects in the tea ecosystem K. Dhanapati Devi, Shyam Maisnam and R. Varatharajan ABSTRACT The aphid, Toxoptera aurantii (Boyer de Fonscolombe) is an important pest of tea infesting tender leaf and shoot from March to October with density of 200 of the tea twig. Such severe infestation leads to delayed recovery of the plant with the consequent effect on poor crop productivity. Periodical sampling revealed the occurrence of five species of predatory syrphids viz., Paragus serratus Fabr., Episyrphus balteatus (De G), Betasyrphus serarius (Weid), Metasyrphus confrater (Weid) and Ischiodon scutelleris (Fabr.); four species of coccinellids viz. Coccinella septempunctata L., C. transversalis Fabr., Oenopia sexareata (Mulsant) and Coleophora bisselitta Mulsant and a neuropteran, Micromus timidus Hagen along with the colony of T. aurantii. Seasonal abundance of predators synchronized with the pest with a maximum occurrence during September. Correlation between the density of aphid and its predators revealed a significant positive relation and the feeding rate of different predatory species ranged from 136 to 460 aphids per larva. Of which C. septempucta recorded the maximum of 460 aphids and E. balteatus with 136 aphids per larva. Though the feeding propensity of the predators differs from species to species, their presence in the field prevents the aphids from becoming a serious pest. Key words: Tea aphid, Toxoptera aurantii, Aphidophagous insects, coccinellids, syrphids, predators and natural enemies INTRODUCTION and the mouth of the glass vial was plugged with cotton. -
Plantderived Differences in the Composition of Aphid Honeydew
Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants Elizabeth G. Pringle1,2,3, Alexandria Novo2, Ian Ableson2, Raymond V. Barbehenn2,4 & Rachel L. Vannette5 1Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109 2Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 3School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 4Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 5Department of Biology, Stanford University, Stanford, California 94305 Keywords Abstract Aphis nerii, Asclepias spp., carbohydrate, – – cardenolides, Linepithema humile, milkweed, In plant ant hemipteran interactions, ants visit plants to consume the honey- phloem chemistry, tritrophic interactions. dew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran Correspondence honeydew, then the plant’s genetic constitution could have indirect effects on Elizabeth G. Pringle, Michigan Society of ants via the hemipterans. If such effects change ant behavior, they could feed Fellows, University of Michigan, Ann Arbor, back to affect the plant itself. We compared the chemical composition of hon- Michigan 48109. Tel: 734-615-4917; eydews produced by Aphis nerii aphid clones on two milkweed congeners, Fax: 734-763-0544; E-mail: [email protected] Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compo- Funding Information sitions of secondary metabolites, sugars, and amino acids differed significantly This work was supported by a Michigan in the honeydews from the two plant species. -
Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey.