Probing the Biosynthetic Diversity of Actinobacteria 29-01-2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CUED Phd and Mphil Thesis Classes
High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Challenging the Anthropocentric Emphasis on Phenotypic Testing in Prokaryotic Species Descriptions: Rip It up and Start Again
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector OPINION published: 17 June 2015 doi: 10.3389/fgene.2015.00218 Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again Iain C. Sutcliffe * Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK Keywords: genomics, phylogeny, species, systematics, taxonomy “The benefits of specialization are tempered by the possibility that specialized groups become isolated, resist innovation, and engage in destructive competitiveness” (Specialized Science, Casadevall and Fang 2014). Prokaryotic systematics is a highly specialized field and yet has fundamental reach and significance given that it provides the framework and, importantly, the names which we use to describe most of the microbial world. Names are given to prokaryotic taxa under the jurisdiction of the International Code of Nomenclature of Prokaryotes (ICNP; Lapage et al., 1992) and the vast majority of papers in prokaryotic systematics are descriptions that name taxa, particularly novel species and genera. Edited by: Indeed, this century has seen a significant growth in the number of prokaryotic species named Radhey S. Gupta, (Tamames and Rosselló -Móra, 2012; Oren and Garrity, 2014), with ∼900 new names for Bacteria McMaster University, Canada and Archaea published (either validly or effectively) in 2014. Mostly this growth in taxonomic Reviewed by: activity is in Asia, with declines elsewhere (Tamames and Rosselló -Móra, 2012; Oren and Garrity, Ramon Rossello-Mora, 2014). Institut Mediterrani d’Estudis Despite this progress, prokaryotic systematics has become isolated from mainstream Avançats, Spain microbiology and resistant to innovation. -
Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain. -
The Mycobacterial Cell Envelope: a Relict from the Past Or the Result of Recent Evolution?
fmicb-09-02341 October 10, 2018 Time: 14:51 # 1 PERSPECTIVE published: 09 October 2018 doi: 10.3389/fmicb.2018.02341 The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Antony T. Vincent1,2, Sammy Nyongesa1, Isabelle Morneau3, Michael B. Reed2,4,5, Elitza I. Tocheva3 and Frederic J. Veyrier1,2* 1 INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, QC, Canada, 2 McGill International TB Centre, Montreal, QC, Canada, 3 Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada, 4 Department of Medicine, McGill University, Montreal, QC, Canada, 5 Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada Mycobacteria are well known for their taxonomic diversity, their impact on global health, and for their atypical cell wall and envelope. In addition to a cytoplasmic membrane and a peptidoglycan layer, the cell envelope of members of the order Corynebacteriales, which include Mycobacterium tuberculosis, also have an arabinogalactan layer Edited by: Christoph Mayer, connecting the peptidoglycan to an outer membrane, the so-called “mycomembrane.” Eberhard Karls Universität Tübingen, This unusual cell envelope composition of mycobacteria is of prime importance for Germany several physiological processes such as protection from external stresses and for Reviewed by: virulence. Although there have been recent breakthroughs in the elucidation of the Andreas Burkovski, Friedrich-Alexander-Universität composition and organization of this cell envelope, its evolutionary origin remains Erlangen-Nürnberg, Germany a mystery. In this perspectives article, the characteristics of the cell envelope of Patrick Joseph Moynihan, University of Birmingham, mycobacteria with respect to other actinobacteria will be dissected through a molecular United Kingdom evolution framework in order to provide a panoramic view of the evolutionary pathways Hesper Rego, that appear to be at the origin of this unique cell envelope. -
Of Bergey's Manual
BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Five The Actinobacteria, Part A and B Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha E. Trujillo, Ken-ichiro Suzuki, Wolfgang Ludwig and William B. Whitman EDITORS, VOLUME FIVE William B. Whitman DIRECTOR OF THE EDITORIAL OFFICE Aidan C. Parte MANAGING EDITOR EDITORIAL BOARD Fred A. Rainey, Chairman, Peter Kämpfer, Vice Chairman, Paul De Vos, Jongsik Chun, Martha E. Trujillo and William B. Whitman WITH CONTRIBUTIONS FROM 116 COLLEAGUES William B. Whitman Bergey’s Manual Trust Department of Microbiology 527 Biological Sciences Building University of Georgia Athens, GA 30602-2605 USA ISBN 978-0-387-95043-3 ISBN 978-0-387-68233-4 (eBook) DOI 10.1007/978-0-387-68233-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012930836 © 2012, 1984–1989 Bergey’s Manual Trust Bergey’s Manual is a registered trademark of Bergey’s Manual Trust. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
Full Page Fax Print
Diversity of Actinomycetes from Soil Samples Collected from Lombok Island, Indonesia Puspita Lisdiyanti1*, Tomohiko Tamura2, Shanti Ratnakomala1, Roni Ridwan1, Gina Kartina1, Yulin Lestari3, Ando Katsuhiko2, and Yantyati Widyastuti1 1Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Indonesia 2Department of Biotechnology, National Institute of Technology and Evaluation (NITE), Japan 3Department of Biology, Bogor Agricultural University, Indonesia Abstract A total of 137 strains of Actinomycetes were isolated from 14 soil samples collected in 3 part of Lombok Island, Indonesia using SDS-YE (SY) and Rehydration and Centrifugation (RC) isolation methods and Humic Acic Vitamin (HV) agar as isolation media. All the isolates were identified by morphological characteristic and by analysis of 16S rRNA gene sequence. On the basis of their morphology and 16S rRNA gene sequence, 67% of isolates were belonged to the Streptomyces Group and 33% of isolates were belonged to the Rare- Actinomycetes (Non-Streptomyces) Group. Nine families and 15 genera were found from the samples. It is indicated the richness of actinomycetes in these area. The genus Streptomyces is the most abundant in all soil samples, occupying 67% of all isolates by using SY method; while the genus Actinoplanes is mainly found by using RC as isolation method. Two strains belong to the genus Virgisporangium and Catenulispora that showed taxonomic interest need further study for describing as ne species. Key words: Actinomycetes, Streptomyces Group, Non-Streptomyces Group, Diversity ------------------------- *Corresponding author Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia Tel. +62-21-8754587, Fax. +62-21-8754588 E-mail. [email protected] Introduction are commercially important, either in the production of antibiotics and other bioactive Actinomycetes are a group of gram- secondary metabolites, or in useful biological positive bacteria that have high G+C contents. -
Metagenome Sequence of Elaphomyces Granulatus From
bs_bs_banner Environmental Microbiology (2015) 17(8), 2952–2968 doi:10.1111/1462-2920.12840 Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome C. Alisha Quandt,1*† Annegret Kohler,2 the sequencing of sporocarp tissue, this study has Cedar N. Hesse,3 Thomas J. Sharpton,4,5 provided insights into Elaphomyces phylogenetics, Francis Martin2 and Joseph W. Spatafora1 genomics, metagenomics and the evolution of the Departments of 1Botany and Plant Pathology, ectomycorrhizal association. 4Microbiology and 5Statistics, Oregon State University, Corvallis, OR 97331, USA. Introduction 2Institut National de la Recherché Agronomique, Centre Elaphomyces Nees (Elaphomycetaceae, Eurotiales) is an de Nancy, Champenoux, France. ectomycorrhizal genus of fungi with broad host associa- 3Bioscience Division, Los Alamos National Laboratory, tions that include both angiosperms and gymnosperms Los Alamos, NM, USA. (Trappe, 1979). As the only family to include mycorrhizal taxa within class Eurotiomycetes, Elaphomycetaceae Summary represents one of the few independent origins of the mycorrhizal symbiosis in Ascomycota (Tedersoo et al., Many obligate symbiotic fungi are difficult to maintain 2010). Other ectomycorrhizal Ascomycota include several in culture, and there is a growing need for alternative genera within Pezizomycetes (e.g. Tuber, Otidea, etc.) approaches to obtaining tissue and subsequent and Cenococcum in Dothideomycetes (Tedersoo et al., genomic assemblies from such species. In this 2006; 2010). The only other genome sequence pub- study, the genome of Elaphomyces granulatus was lished from an ectomycorrhizal ascomycete is Tuber sequenced from sporocarp tissue. The genome melanosporum (Pezizales, Pezizomycetes), the black assembly remains on many contigs, but gene space perigord truffle (Martin et al., 2010). -
Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis Alba ATCC BAA-2165
Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Yongli Li May 2014 © 2014 Yongli Li. All Rights Reserved. 2 This thesis titled Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 by YONGLI LI has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Shawn Chen Assistant Professor of Biological Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT LI, YONGLI., M.S., May 2014, Biological Sciences Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 Director of Thesis: Shawn Chen Nocardiopsis alba ATCC BAA-2165 is an actinobacterium isolated from honeybee guts in Southern Ohio. It was reported N. alba showed antibiotic activity against several Gram-positive microorganisms, including two honeybee pathogens. Bioactivity-guided compound isolation led to an identification of two cyclodipeptides, albonoursin (cyclo(ΔPhe-ΔLeu)) and its analog (cyclo(mΔTyr-ΔLeu)), as the bioactive metabolites produced by N. alba. Despite its important environmental presence, characterization of the Nocardiopsis genus was limited due to the lack of genetic tools. In this project, we focused on the cyclodipeptides production of N. alba to establish a system for genetic analysis of Nocardiopsis. An albonoursin cyclodipeptide biosynthetic gene cluster, albABC, was identified in the N. alba genome. A PCR-targeting strategy was developed to generate an albABC deletion mutant of N. alba; the mutant, YL001, was shown to have lost the production of cyclodipeptides. -
Root Ethylene Mediates Rhizosphere Microbial
Chen et al. Microbiome (2020) 8:4 https://doi.org/10.1186/s40168-019-0775-6 RESEARCH Open Access Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants Yan Chen1, Michael Bonkowski2,3, Yi Shen4, Bryan S. Griffiths5, Yuji Jiang1, Xiaoyue Wang1 and Bo Sun1* Abstract Background: Stress-induced hormones are essential for plants to modulate their microbiota and dynamically adjust to the environment. Despite the emphasis of the role of the phytohormone ethylene in the plant physiological response to heterospecific neighbour detection, less is known about how this activated signal mediates focal plant rhizosphere microbiota to enhance plant fitness. Here, using 3 years of peanut (Arachis hypogaea L.), a legume, and cyanide-containing cassava (Manihot esculenta Crantz) intercropping and peanut monocropping field, pot and hydroponic experiments in addition to exogenous ethylene application and soil incubation experiments, we found that ethylene, a cyanide-derived signal, is associated with the chemical identification of neighbouring cassava and the microbial re-assemblage in the peanut rhizosphere. Results: Ethylene production in peanut roots can be triggered by cyanide production of neighbouring cassava plants. This gaseous signal alters the microbial composition and re-assembles the microbial co-occurrence network of peanut by shifting the abundance of an actinobacterial species, Catenulispora sp., which becomes a keystone in the intercropped peanut rhizosphere. The re-assembled rhizosphere microbiota provide more available nutrients to peanut roots and support seed production. Conclusions: Our findings suggest that root ethylene acts as a signal with a dual role. It plays a role in perceiving biochemical cues from interspecific neighbours, and also has a regulatory function in mediating the rhizosphere microbial assembly, thereby enhancing focal plant fitness by improving seed production. -
Metagenomic/Metatranscriptomic Study of Organisms Entrapped
METAGENOMIC/METATRANSCRIPTOMIC STUDY OF ORGANISMS ENTRAPPED IN ICE AT FOUR LOCATIONS IN ANTARCTICA Sammy O. Juma A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of Master of Science August, 2013 Committee: Dr. Scott O. Rogers, Advisor Dr. Paul Morris Dr. Vipaporn Phuntumart © 2013 Sammy Juma All Rights Reserved iii ABSTRACT Dr. Scott O. Rogers, Advisor Antarctica has one of the most extreme environments on Earth. The biodiversity and the species richness on the continent are low and decrease with increases in elevation and distance from the coastal regions. Previous scientific research in Antarctica has been used to understand the past climatic conditions, survival mechanisms used by the microbial communities and various environmental factors that contribute the dispersal of microorganisms. The research presented here is a comparison of microbial inclusions in ice at four locations in Antarctica (Byrd, Taylor Dome, Vostok and J-9) to identify the factors that influence the microbial distribution patterns and to investigate survival of the micobes under harsh conditions. Culture- dependent and culture independent techniques (e.g., metagenomics and metatranscriptomics) were used to analyze sequences present in ice cores from Antarctica. The sequences analyzed matched those from Spirochaetes, Verrucomicrobia, Bacteroideters, Cyanobacteria, Deinococcus-Thermus, Proteobacteria, Firmicutes, Actinobacteria, Euryarchaeota and Ascomycota. Analysis of the metagenomic/metatranscriptomic sequences was also carried out to characterize the various pathways represented in the diverse communities. Analysis of the data revealed that the numbers of unique sequences obtained from the samples were few (Taylor Dome (51), Byrd (43), Vostok (33) and J-9 (40). -
Genome-Based Taxonomic Classification of the Phylum
ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences