Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis Alba ATCC BAA-2165

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis Alba ATCC BAA-2165 Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Yongli Li May 2014 © 2014 Yongli Li. All Rights Reserved. 2 This thesis titled Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 by YONGLI LI has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Shawn Chen Assistant Professor of Biological Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT LI, YONGLI., M.S., May 2014, Biological Sciences Analysis of Cyclodipeptide Biosynthetic Genes in Nocardiopsis alba ATCC BAA-2165 Director of Thesis: Shawn Chen Nocardiopsis alba ATCC BAA-2165 is an actinobacterium isolated from honeybee guts in Southern Ohio. It was reported N. alba showed antibiotic activity against several Gram-positive microorganisms, including two honeybee pathogens. Bioactivity-guided compound isolation led to an identification of two cyclodipeptides, albonoursin (cyclo(ΔPhe-ΔLeu)) and its analog (cyclo(mΔTyr-ΔLeu)), as the bioactive metabolites produced by N. alba. Despite its important environmental presence, characterization of the Nocardiopsis genus was limited due to the lack of genetic tools. In this project, we focused on the cyclodipeptides production of N. alba to establish a system for genetic analysis of Nocardiopsis. An albonoursin cyclodipeptide biosynthetic gene cluster, albABC, was identified in the N. alba genome. A PCR-targeting strategy was developed to generate an albABC deletion mutant of N. alba; the mutant, YL001, was shown to have lost the production of cyclodipeptides. Cyclodipeptides production in YL001 was restored by genetic complementation with the albABC cloned in a replicative native plasmid of Nocardiopsis. These results indicate that the albABC biosynthetic genes are responsible for the production of antibiotic cyclodipeptides of N. alba. Two additional mutants, in which a reporter gene gusA encoding β-Glucuronidase (GUS) is fused to albABC promoter in chromosome, were created to measure the transcriptional activity of the albABC genetic operon. With the GUS reporter assay, albABC gene expression was 4 found to be possibly controlled in response to osmolarity of the growth environment. A series of molecular microbiological methods have been developed for N. alba, which lays the foundation for further characterization of Nocardiopsis actinobacteria on a genetic basis. 5 ACKNOWLEDGMENTS I owe my advisor Dr. Shawn Chen a debt of gratitude for all he has done for my project design and thesis writing. His academic advices are of tremendous value and will be cherished for a long time. It has been a great pleasure to work with Shawn as a colleague. And it is my honor to graduate under his guidance. My acknowledgement also goes to our collaborators: Prof. Weiwen Zhang from Tianjin University, China; and Prof. Yu-Liang Yang from Agricultural Biotechnology Research Center, Taiwan. Prof. Weiwen Zhang showed great generosity and provided funding for sequencing the N. alba genome. Prof. Yu-Liang Yang and his group performed the chemistry isolations and analyses in this study. I could not have finished my study without their efforts. I would like to thank Ohio University for supporting this project with Ohio University Research Committee Award. I am so very glad to have Dr. Erin Murphy and Dr. Soichi Tanda on my committee. I herein give them my respectful thanks for their helpful suggestions and kind understanding. I will have to thank my lab mates, Dr. Yu Zeng, Dr. Wei Zhou, Aditya S. Kulkarni, Yahan Wei, Preeti B. Patil, Xinhao Liu, Yajun Lin, and Zifeng Deng for being such great 6 companions along the way. They have shown me the way to become a smart and humble human being. My special thanks go to Preeti B. Patil who originally isolated the N. alba pure culture from honeybee guts. It was her painstaking work that gave rise to the start of this project. She deserves the credit. Last but not least, I honestly appreciate the help and advice from our faculty members of the teaching labs: Stephanie Miller, Dr. Joan Cunningham, Molly Gurien, Karen Mammone, Dr. Donald Holzschu, just to name a few. I am truly grateful to have the chance of teaching for which has prepared me for public speaking. However, I don’t see teaching as a performance to be evaluated, but an opportunity to communicate and learn. Thus, I want to offer thanks to all my students and coworkers. Bruce Lee once said, “Under the heavens, there is but one family. It just so happens that people are different.” I totally agree with that after my four-year study at OU. 7 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Acknowledgments............................................................................................................... 5 List of Tables .................................................................................................................... 11 List of Figures ................................................................................................................... 12 Chapter 1: Introduction ..................................................................................................... 15 1.1 General Feature of Actinobacteria .......................................................................... 16 1.2 Mycelial Actinobacteria—Actinomycetes .............................................................. 19 1.2.1 Classical Studies of Streptomyces Models ....................................................... 20 1.2.1.1 The Life Cycle of Streptomyces ................................................................ 20 1.2.1.2 Molecular Mechanisms of Streptomyces Development ............................ 21 1.2.3 Microbial Secondary Metabolism .................................................................... 23 1.2.4 Secondary Metabolites of Streptomyces .......................................................... 25 1.2.4.1 Introduction to the Biosynthesis of Secondary Metabolites ..................... 27 1.2.4.1.1 Polyketides ......................................................................................... 27 1.2.4.1.2 Nonribosomal Peptides ...................................................................... 28 1.2.4.1.3 Hybrid Peptide-polyketides ............................................................... 29 1.2.4.1.4 Cyclodipeptides ................................................................................. 29 1.2.4.2 Control of Secondary Metabolism in Streptomyces .................................. 31 1.2.4.2.1 Microbial Hormones .......................................................................... 32 1.2.4.2.2 Pathway-specific Regulators and Transcriptional Regulation ........... 32 1.2.4.2.3 Stringent Response ............................................................................ 33 1.2.4.2.4 Elemental Nutrients ........................................................................... 34 1.2.4.3 Recent Progress in Streptomyces Synthetic Biology ................................ 35 1.2.4.3.1 Synthetic Biology as a Discovery Tool ............................................. 35 1.2.4.3.2 Genetic Strategies for Refactoring Biosynthetic Clusters ................. 36 1.3 Development of Streptomyces Genetics and the Beyond ....................................... 38 8 1.3.1 Streptomyces Genetics ..................................................................................... 39 1.3.1.1 Restriction-modification System of Streptomyces .................................... 40 1.3.1.2 Plasmids and Introduction of DNA into Streptomyces ............................. 40 1.3.1.3 PCR-targeting System in Streptomyces coelicolor A3(2) ........................ 42 1.3.1.4 Transposon-based Mutagenesis in Streptomyces ...................................... 43 1.3.1.5 Reporter Systems ...................................................................................... 44 1.4 Introduction to Nocardiopsis Biology .................................................................... 45 1.4.1 The Nocardiopsis Genus .................................................................................. 45 1.4.2 The Ecology of Nocardiopsis .......................................................................... 46 1.4.3 Bioactive Metabolites Produced by Nocardiopsis Species .............................. 47 1.4.4 Recent Progress of Nocardiopsis Genomics and Genetics .............................. 48 Chapter 2: Preliminary Genome Mining and Hypotheses ................................................ 51 2.1 Genome Mining ...................................................................................................... 51 2.1.1 Background ...................................................................................................... 51 2.1.2 The Genome of Nocardiopsis alba ATCC BAA- 2165 ................................... 52 2.1.3 Genome Annotation ......................................................................................... 54 2.1.4 Bioinformatic Tools ......................................................................................... 54 2.1.5 Putative Biosynthetic Clusters in N. alba ........................................................ 54 2.1.6 A Putative Cyclodipeptides Biosynthetic Gene Cluster in
Recommended publications
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Molecular Characterization of Nocardiopsis Species from Didwana Dry Salt Lake of Rajasthan, India
    Published online: March 15, 2021 ISSN : 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org Research Article Molecular characterization of Nocardiopsis species from Didwana dry salt lake of Rajasthan, India Khushbu Parihar Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur-342001 Article Info (Rajasthan), India https://doi.org/10.31018/ Alkesh Tak jans.v13i1.2574 Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur-342001 Received: February 10, 2021 (Rajasthan), India Revised: March 9, 2021 Praveen Gehlot* Accepted: March 13, 2021 Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur-342001 (Rajasthan), India Rakesh Pathak ICAR-Central Arid Zone Research Institute, Jodhpur- 342003 (Rajasthan), India Sunil Kumar Singh ICAR-Central Arid Zone Research Institute, Jodhpur- 342003 (Rajasthan), India *Corresponding author. Email: [email protected] How to Cite Parihar, K. et al. (2021). Molecular characterization of Nocardiopsis species from Didwana dry salt lake of Rajasthan, India. Journal of Applied and Natural Science, 13(1): 396 - 401. https://doi.org/10.31018/jans.v13i1.2574 Abstract The genus Nocardiopsis is well known to produce secondary metabolites especially antibacterial bioactive compound. Isolation and characterization of bioactive compounds producing novel isolates from unusual habitats are crucial. The present study was aimed to explore Didwana dry salt lake of Rajasthan state in India for the isolation and characterization of actinomycetes. The isolated actinomycetes isolates were characterized based on culture characteristics, biochemical tests and 16S rRNA gene sequencing. The 16S rRNA gene sequence analysis revealed that all the five isolates inhabiting soil of the said dry salt lake of Didwana, Rajasthan belonged to four species of Nocardiopsis viz., N.
    [Show full text]
  • Tropix Catalog.Indd 1 3/23/07 12:43:35 PM 1 Chemiluminescent Substrates and Chemiluminescent Enhancers
    2007 Chemiluminescent Product Guide Tropix catalog.indd 1 3/23/07 12:43:35 PM 1 Chemiluminescent Substrates and Chemiluminescent Enhancers 1 Chemiluminescent Substrates and Chemiluminescent Enhancers . .1 2 Reporter Gene Assays and Reagents . .9 3 Immunodetection Products . 25 4 Nucleic Acid Membrane-Based Detection Products . 38 5 Reagents and Accessories for Chemiluminescence. 43 Introduction . .1 CDP-Star® Substrate and CSPD® Substrates . .3 Galacton® / Galacton-Plus® / Galacton-Star® Substrates . .4 Glucuron® Substrate . .5 Glucon™ Substrate . .5 NA-Star® Substrate. .6 Solution-based Luminescence Enhancers Sapphire™, Sapphire-II™, Emerald™, Emerald-II™, and Ruby™ . .7 Membrane-based Luminescence Enhancers Nitro-Block™ and Nitro-Block-II™. .8 ii Tropix catalog.indd 2 3/23/07 12:43:39 PM Substrates and Enhancers Introduction OO OCH 3 Chemiluminescence ® CDP-Star Chemiluminescence is the conversion of chemical energy to light energy. Cl Cl = OPO Several different chemical reactions, including some enzyme-catalyzed reac- Alkaline 3 tions, result in the production of visible light. Chemiluminescence reactions Phosphatase occur naturally (bioluminescence) in a wide variety of organisms, including OO OCH 3 beetles, jellyfish, bacteria, and many marine organisms. In addition, there Metastable Intermediate are several classes of synthetic chemical structures that upon chemical or Cl Cl enzymatic cleavage produce light emission. Chemiluminescent reactions O - are employed in a wide variety of applications, including but not limited to OCH 3 O biological assays, clinical diagnostic assays, biosensors, hygiene monitoring, O O - * and commercial low-level lighting. Cl Cl Principles of Enzyme-activated Chemiluminescence 1,2-Dioxetane substrates emit visible light upon enzyme-catalyzed decom- Light position. Chemiluminescent detection of biomolecules with 1,2-dioxetane Figure 1.
    [Show full text]
  • View Details
    INDEX CHAPTER NUMBER CHAPTER NAME PAGE Extraction of Fungal Chitosan and its Chapter-1 1-17 Advanced Application Isolation and Separation of Phenolics Chapter-2 using HPLC Tool: A Consolidate Survey 18-48 from the Plant System Advances in Microbial Genomics in Chapter-3 49-80 the Post-Genomics Era Advances in Biotechnology in the Chapter-4 81-94 Post Genomics era Plant Growth Promotion by Endophytic Chapter-5 Actinobacteria Associated with 95-107 Medicinal Plants Viability of Probiotics in Dairy Products: A Chapter-6 Review Focusing on Yogurt, Ice 108-132 Cream, and Cheese Published in: Dec 2018 Online Edition available at: http://openaccessebooks.com/ Reprints request: [email protected] Copyright: @ Corresponding Author Advances in Biotechnology Chapter 1 Extraction of Fungal Chitosan and its Advanced Application Sahira Nsayef Muslim1; Israa MS AL-Kadmy1*; Alaa Naseer Mohammed Ali1; Ahmed Sahi Dwaish2; Saba Saadoon Khazaal1; Sraa Nsayef Muslim3; Sarah Naji Aziz1 1Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 2Branch of Fungi and Plant Science, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 3Department of Geophysics, College of remote sensing and geophysics, AL-Karkh University for sci- ence, Baghdad-Iraq *Correspondense to: Israa MS AL-Kadmy, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq. Email: [email protected] 1. Definition and Chemical Structure Biopolymer is a term commonly used for polymers which are synthesized by living organisms [1]. Biopolymers originate from natural sources and are biologically renewable, biodegradable and biocompatible. Chitin and chitosan are the biopolymers that have received much research interests due to their numerous potential applications in agriculture, food in- dustry, biomedicine, paper making and textile industry.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Nocardiopsis Algeriensis Sp. Nov., an Alkalitolerant Actinomycete Isolated from Saharan Soil
    Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil Noureddine Bouras, Atika Meklat, Abdelghani Zitouni, Florence Mathieu, Peter Schumann, Cathrin Spröer, Nasserdine Sabaou, Hans-Peter Klenk To cite this version: Noureddine Bouras, Atika Meklat, Abdelghani Zitouni, Florence Mathieu, Peter Schumann, et al.. Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil. Antonie van Leeuwenhoek, Springer Verlag, 2015, 107 (2), pp.313-320. 10.1007/s10482-014-0329-7. hal- 01894564 HAL Id: hal-01894564 https://hal.archives-ouvertes.fr/hal-01894564 Submitted on 12 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2SHQ$UFKLYH7RXORXVH$UFKLYH2XYHUWH 2$7$2 2$7$2 LV DQ RSHQ DFFHVV UHSRVLWRU\ WKDW FROOHFWV WKH ZRUN RI VRPH 7RXORXVH UHVHDUFKHUVDQGPDNHVLWIUHHO\DYDLODEOHRYHUWKHZHEZKHUHSRVVLEOH 7KLVLVan author's YHUVLRQSXEOLVKHGLQhttp://oatao.univ-toulouse.fr/20349 2IILFLDO85/ http://doi.org/10.1007/s10482-014-0329-7 7RFLWHWKLVYHUVLRQ Bouras, Noureddine and Meklat, Atika and Zitouni, Abdelghani and Mathieu, Florence and Schumann, Peter and Spröer, Cathrin and Sabaou, Nasserdine and Klenk, Hans-Peter Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete isolated from Saharan soil. (2015) Antonie van Leeuwenhoek, 107 (2). 313-320. ISSN 0003-6072 $Q\FRUUHVSRQGHQFHFRQFHUQLQJWKLVVHUYLFHVKRXOGEHVHQWWRWKHUHSRVLWRU\DGPLQLVWUDWRU WHFKRDWDR#OLVWHVGLIILQSWRXORXVHIU Nocardiopsis algeriensis sp.
    [Show full text]
  • Probing the Biosynthetic Diversity of Actinobacteria 29-01-2018
    BSc. A. Roeters - Probing the biosynthetic diversity of actinobacteria 29-01-2018 PROBING THE BIOSYNTHETIC DIVERSITY OF ACTINOBACTERIA MSc. Thesis by Arne Roeters, supervised by dr. MH Medema and JC Navarro Munoz PhD. Bioinformatics department Wageningen university. ABSTRACT certain plants. In these relationships the actinobacteria provide nitrogen to the plant and in The Actinobacteria are a large phylum of Gram- return they take some of the plants saccharide 1,2 positive bacteria of which we harvest many reserves . Maybe even more important and interesting about these bacteria, are their clinically useful natural products. A large portion of secondary metabolites that can be used for medical these clinically useful products are made by the purposes3. A large part of the clinically available largest genus within this phylum, called antibiotics come from Actinobacteria, and Streptomyces. These products are made by especially the largest genus Streptomyces. This biosynthetic gene clusters (BGCs), which are genus produces over two-third of the clinically physically clustered genes on the genome. To find useful natural antibiotics with its natural product 4 more of these natural compounds, genome mining biosynthetic gene clusters . Not nearly all-natural compounds have been found yet, meaning that has become one of the most important tools in there might still be many more useful compounds bioinformatics. This new technique has given rise that are made by the biosynthetic pathways of to programs like antiSMASH (Medema, et al., Actinobacteria. These biosynthetic pathways 2011). Programs like this have created new consist of genes that are physically clustered challenges due to the large amount of BGCs they together on the chromosome forming so called 5–7 mine, to narrow the search for new interesting biosynthetic gene clusters (BGCs) .
    [Show full text]
  • The Role of 3-Deoxy-D-Arabino-Heptulosonate 7- Phosphate Synthase 1 in Arabidopsis Thaliana Metabolism
    THE ROLE OF 3-DEOXY-D-ARABINO-HEPTULOSONATE 7- PHOSPHATE SYNTHASE 1 IN ARABIDOPSIS THALIANA METABOLISM by Jimmy Poulin A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Cell and System Biology University of Toronto © Copyright by Jimmy Poulin, 2011 The role of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 1 in Arabidopsis thaliana metabolism Jimmy Poulin Master of Science Cell and System Biology University of Toronto 2011 Abstract The enzyme 3-deoxy-D-arabino-heptulusonate 7-phosphate synthase (DHS) catalyzes the first step of the shikimate pathway. In bacteria, the regulation of the pathway is mediated by allosteric inhibition of DHS by the aromatic amino acids tyrosine, phenylalanine and tryptophan. The regulation of the pathway in plants remains elusive but the aromatic amino acids are involved as suggested by the hypersensitivity of dhs1 knockout mutant to tyrosine. In this study the effects of the dhs1 mutation on endogenous levels of aromatic amino acids and of downstream metabolites are explored. HPLC analysis is used to measure levels of tyrosine and phenylalanine and 5-methyltryptophan sensitivity is used to probe levels of tryptophan. Additionally, the auxin content of whole seedlings was quantified by LC/MS and its local levels at the root apex are visualized with the DR5::GUS reporter system. ii Acknowledgements I could not have completed my master’s degree without the help of many resourceful individuals. First and foremost I would like to thank Dr. Dinesh Christendat for his supervision and guidance. I am also grateful for guidance received from Dr.
    [Show full text]
  • 2014 SRS Program
    SRS 2014 STUDENT April 11-12 RESEARCH University of Hawai‘i at Ma¯noa SYMPOSIUM Proudly presented by the University of Hawai‘i at Ma¯noa College Tropical Agriculture and Human Resources and College of Engineering Welcome to the University of Hawai‘i at Mānoa’s College of Tropical Agriculture and Human Resources (CTAHR) and College of Engineering (COE) 2014 Student Research Symposium. This annual event, now in its 26th year, brings together graduate and undergraduate students to share the research they are pursuing under the supervision of faculty in CTAHR and COE. The students are able to present their findings, exchange information, and incorporate what they have learned from their peers into their own scholarly work. The scientific exploration and engineering design conducted by students in CTAHR and COE is truly multidisciplinary, and the Student Research Symposium reflects this diversity and the strong relationship between CTAHR and COE. The investigations presented here range from fundamental studies to novel applications and encompass engineering, production agriculture, environmental technologies, health and food sciences, family and consumer sciences, and natural sciences. All stages of the research and development process and multiple types of student learning experiences are represented: discovery; advanced diagnostics and laboratory testing; design, validation, and field testing; and adoption of new methods and technologies. Each project represents a unique path that contributes to CTAHR’s mission of preparing students for life in the global community through research that fosters viable communities, a diversified economy, and a healthy environment, as well as COE’s mission of providing research experiences and opportunities to students that will enhance the growth of the technological workforce and stimulate the growth of technology-based industries in Hawai‘i.
    [Show full text]
  • 1. What Are the Benefits and Limitation Gene
    COMPILED AND CIRCULATED BY BANGAMOTI HANSDA, ASSISTANT PROFESSOR, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE GUS 1. What are the benefits and limitations of the GUS Gene Reporter System in Plants? Gene reporters enable valuable insight into gene expression. The GUS gene reporter system is one of the popular and common plant reporter systems. GUS is short for glucuronidase, an enzyme in the bacterium E. coli. GUS is a good reporter for plants, as it does not occur naturally, and thus, has a low background. With some simple genetic techniques, one can attach the promoter of the gene you want to investigate to the GUS coding region. You can then transform your reporter construct into your plant species of choice to monitor its expression. Transformation can be accomplished in plants via methods like Agrobaterium-mediated gene transfer. The GUS assay does not require the presence of any cofactors or ions for function. Beta- glucuronidase can function through a wide range of pH values, and is fairly resistant to thermal inactivation. However, GUS is susceptible to inhibition from certain heavy metal ions, such as Cu2+ and Zn2+. Additionally, the interpretation of the assay is limited by the movement of diX-indigo throughout the cell. DiX-indigo, can associate with lipids to diffuse far from the site of enzyme activity, which shows a lack of cytosolic localization and irregularity of substrate penetration. This can potentially lead to an incorrect interpretation of GUS protein localization. Despite a lack of cellular localization, nuclear localization of GUS has been well observed. GUS assays can be carried out in the presence of potassium ferricyanide to prevent the stain from diffusing.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • Challenging the Anthropocentric Emphasis on Phenotypic Testing in Prokaryotic Species Descriptions: Rip It up and Start Again
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector OPINION published: 17 June 2015 doi: 10.3389/fgene.2015.00218 Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again Iain C. Sutcliffe * Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK Keywords: genomics, phylogeny, species, systematics, taxonomy “The benefits of specialization are tempered by the possibility that specialized groups become isolated, resist innovation, and engage in destructive competitiveness” (Specialized Science, Casadevall and Fang 2014). Prokaryotic systematics is a highly specialized field and yet has fundamental reach and significance given that it provides the framework and, importantly, the names which we use to describe most of the microbial world. Names are given to prokaryotic taxa under the jurisdiction of the International Code of Nomenclature of Prokaryotes (ICNP; Lapage et al., 1992) and the vast majority of papers in prokaryotic systematics are descriptions that name taxa, particularly novel species and genera. Edited by: Indeed, this century has seen a significant growth in the number of prokaryotic species named Radhey S. Gupta, (Tamames and Rosselló -Móra, 2012; Oren and Garrity, 2014), with ∼900 new names for Bacteria McMaster University, Canada and Archaea published (either validly or effectively) in 2014. Mostly this growth in taxonomic Reviewed by: activity is in Asia, with declines elsewhere (Tamames and Rosselló -Móra, 2012; Oren and Garrity, Ramon Rossello-Mora, 2014). Institut Mediterrani d’Estudis Despite this progress, prokaryotic systematics has become isolated from mainstream Avançats, Spain microbiology and resistant to innovation.
    [Show full text]