Using Allergen-Specific Ige Tests Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Using Allergen-Specific Ige Tests Abstract FROM THE AMERICAN ACADEMY OF PEDIATRICS Guidance for the Clinician in Rendering Pediatric Care CLINICAL REPORT Allergy Testing in Childhood: Using Allergen-Specific IgE Tests Scott H. Sicherer, MD, Robert A. Wood, MD, and the SECTION ON ALLERGY AND IMMUNOLOGY abstract KEY WORDS A variety of triggers can induce common pediatric allergic diseases allergy, allergy testing, immunoglobulin, IgE, immunotherapy, which include asthma, allergic rhinitis, atopic dermatitis, food allergy, pediatrics and anaphylaxis. Allergy testing serves to confirm an allergic trigger ABBREVIATIONS fi IgE—immunoglobulin E suspected on the basis of history. Tests for allergen-speci c immuno- sIgE—allergen-specific IgE globulin E (IgE) are performed by in vitro assays or skin tests. The tests SPT—skin prick test are excellent for identifying a sensitized state in which allergen-specific — IgG immunoglobulin G IgE is present, and may identify triggers to be eliminated and help This document is copyrighted and is property of the American guide immunotherapy treatment. However, a positive test result does Academy of Pediatrics and its Board of Directors. All authors have filed conflict of interest statements with the American not always equate with clinical allergy. Newer enzymatic assays based Academy of Pediatrics. Any conflicts have been resolved through on anti-IgE antibodies have supplanted the radioallergosorbent test a process approved by the Board of Directors. The American (RAST). This clinical report focuses on allergen-specific IgE testing, em- Academy of Pediatrics has neither solicited nor accepted any commercial involvement in the development of the content of phasizing that the medical history and knowledge of disease character- this publication. istics are crucial for rational test selection and interpretation. Pediatrics The guidance in this report does not indicate an exclusive 2012;129:193–197 course of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be INTRODUCTION appropriate. Allergic diseases (allergic rhinitis [hay fever], asthma, atopic der- All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, matitis, and allergic or anaphylactic reactions to foods, drugs, insect revised, or retired at or before that time. venom, or other allergens) often warrant identification of specific allergic triggers for treatment. Most allergic responses are mediated by immunoglobulin E (IgE) antibodies specific for the trigger allergen, which can be detected with in vitro tests or skin testing. This clinical report focuses on using in vitro allergen-specific IgE (sIgE) testing, which is widely available to pediatricians. A full description of the use of tests for diagnosis and management of allergic disease is beyond the scope of this report, but is described in recent guidelines and practice parameters.1–9 www.pediatrics.org/cgi/doi/10.1542/peds.2011-2382 TESTS AVAILABLE FOR DETECTING sIgE doi:10.1542/peds.2011-2382 A number of enzymatic assays that are based on anti-IgE antibodies PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). have supplanted the radioallergosorbent test.10 Commercial labora- Copyright © 2012 by the American Academy of Pediatrics tories that are federally licensed under the Clinical Laboratory Im- provement Act of 1988 often use automated systems capable of detecting and quantifying sIgE. Laboratory reports may indicate a number of readouts (eg, classes, counts, or units), but quantifica- tion of results in units reflecting concentrations of sIgE is becoming more common (eg, kUA/L). Although the 3 commercial detection sys- tems approved by the Food and Drug Administration have excellent performance characteristics (analytical sensitivity, 0.1 kUA/L), the PEDIATRICS Volume 129, Number 1, January 2012 193 Downloaded from www.aappublications.org/news by guest on September 26, 2021 individual systems appear to detect specific trigger when there is suspicion which increases diagnostic value by different populations of IgE antibody of one, or in less common circum- applying previous probability.4 or do not measure IgE antibodies with stances, screening for atopy. A positive A physician interested in screening for comparable efficiencies. Thus, a result serum sIgE or skin test denotes a sen- atopy (eg, distinguishing recurrent viral foranallergenin1ofthe3testsystems sitized state. However, detection of sen- infections from allergic rhinitis) might may not be equivalent to the same al- sitization to an allergen is not equivalent select a small panel of common trig- lergen tested in a different system. to a clinical diagnosis. In fact, many gers. Another means to screen for at- The skin prick test (SPT), typically used children with positive tests have no opy is to use a multiallergen test that by allergy specialists, is another clinical illness when exposed to the contains several common allergens in means of detecting sIgE antibodies.11 A allergen.2,3,7,9,11,13 This limitation high- one test (eg, one test that includes number of devices are available for lights the need for the clinician to several perennial allergens, such as introducing allergen into the surface use a detailed medical history and dust mite, dog dander, and mold). of the skin with minimal discomfort; have knowledge of the features of the Availability and composition of these a resulting wheal-and-flare response specific illness when selecting and in- tests varies by manufacturer. A posi- canbemeasuredin10to20minutes. terpreting tests. For example, there is tive result will not identify IgE to a Saline and histamine controls are no need to test for an allergen that is specific antigen but can, at less cost placed for comparison. Intradermal clearly tolerated (eg, egg in a child than performing many individual tests, skin testing is performed in special who eats egg without symptoms) or identify a child whose symptoms may circumstances when increased sensi- when exposure is not relevant (eg, relate to exposure to a specific allergen tivity is required (eg, after negative testing a pollen to which the child is and warrant further specifictestingor SPT for vaccines, venom, penicillin, not geographically exposed). Knowl- referral. The multiallergen test had and some inhalant allergens, such as edge of local aerobiology is, therefore, excellent predictive value for identifying Alternaria organisms and perhaps essential. Testing large panels of aller- atopic children compared with SPTs 14,15 other outdoor molds). gens without consideration of the his- and an allergist’s diagnosis. Both serum sIgE tests and SPT are tory, geographic relevance, and disease sensitive and have similar diagnostic characteristics may result in many ISSUES SPECIFIC TO RESPIRATORY properties.11,12 Advantages of the SPT clinically irrelevant positive results, ALLERGY1,6,11 include immediate results visible to the which, if overinterpreted, may lead to The disorders that respiratory allergy patient/family and low cost compared costly and socially, emotionally, and/or comprises are allergic asthma and with serum sIgE tests. Disadvantages nutritionally detrimental actions of un- seasonal or perennial allergic rhinitis. include the need to withhold medi- necessary allergen avoidance. Similarly, National asthma guidelines1 suggest cations with antihistamine properties caution is advised when testing is neg- that patients with persistent asthma and having rash-free skin available for ative despite a convincing history. Test- be evaluated for the role of allergens testing. Advantages of the serologic ingforsIgEwouldalsogenerallynotbe as contributing factors, with an em- tests include availability and lack of useful when the disorder has no path- phasis on testing for perennial indoor interference from antihistamines or ophysiological basis for a relationship allergens (eg, dust mite, animal dan- extensive dermatitis. Disadvantages to sIgE (eg, behavioral disorders; aller- der, cockroach, mold) that might other- include the need to obtain blood sam- gic disorders not related to sIgE, such wise not be identified as contributing ples, delayed results, and cost. Some as allergic contact dermatitis). to disease and also suggest testing discrepancies exist, however; one test Few studies have correlated clinical seasonal or perennial allergens for or the other may be more sensitive to outcomes to test results.2,3,4,11 Studies selected patients with any level of detect specific allergens, probably be- have generally supported the notion asthma severity as a basis for edu- cause different proteins or IgE binding that increasingly strong tests correlate cation about the role of allergens for sites are represented.2,3,7,9,11,13 with increasing likelihood of clinical re- avoidance and for immunotherapy. activity.2,3,11 Patients should not be told The clinician may be interested in TEST SELECTION AND they are allergic based solely on either identifying specific indoor (eg, dust INTERPRETATION a skin test or the identification of sIgE. mite, animal dander, molds, mice, and Tests might be selected to identify The test characteristics underscore the cockroach) or outdoor (eg, pollens, triggers from a number of potential need to select and interpret tests with molds) triggers. Rational selection common allergens, for confirming a consideration of the medical history, and interpretation of specifictests 194 FROM THE AMERICAN ACADEMY OF PEDIATRICS Downloaded from www.aappublications.org/news by guest on
Recommended publications
  • Food Allergy Outline
    Allergy Evaluation-What it all Means & Role of Allergist Sai R. Nimmagadda, M.D.. Associated Allergists and Asthma Specialists Ltd. Clinical Assistant Professor Of Pediatrics Northwestern University Chicago, Illinois Objectives of Presentation • Discuss the different options for allergy evaluation. – Skin tests – Immunocap Testing • Understand the results of Allergy testing in various allergic diseases. • Briefly Understand what an Allergist Does Common Allergic Diseases Seen in the Primary Care Office • Atopic Dermatitis/Eczema • Food Allergy • Allergic Rhinitis • Allergic Asthma • Allergic GI Diseases Factors that Influence Allergies Development and Expression Host Factors Environmental Factors . Genetic Indoor allergens - Atopy Outdoor allergens - Airway hyper Occupational sensitizers responsiveness Tobacco smoke . Gender Air Pollution . Obesity Respiratory Infections Diet © Global Initiative for Asthma Why Perform Allergy Testing? – Confirm Allergens and answer specific questions. • Am I allergic to my dog? • Do I have a milk allergy? • Have I outgrown my allergy? • Do I need medications? • Am I penicillin allergic? • Do I have a bee sting allergy Tests Performed in the Diagnostic Allergy Laboratory • Allergen-specific IgE (over 200 allergen extracts) – Pollen (weeds, grasses, trees), – Epidermal, dust mites, molds, – Foods, – Venoms, – Drugs, – Occupational allergens (e.g., natural rubber latex) • Total Serum IgE (anti-IgE; ABPA) • Multi-allergen screen for IgE antibody Diagnostic Allergy Testing Serological Confirmation of Sensitization History of RAST Testing • RAST (radioallergosorbent test) invented and marketed in 1974 • The suspected allergen is bound to an insoluble material and the patient's serum is added • If the serum contains antibodies to the allergen, those antibodies will bind to the allergen • Radiolabeled anti-human IgE antibody is added where it binds to those IgE antibodies already bound to the insoluble material • The unbound anti-human IgE antibodies are washed away.
    [Show full text]
  • RAST Type Tests CPT: 86003
    Medicare Local Coverage Determination Policy Allergy Testing RAST Type Tests CPT: 86003 Medically Supportive CMS Policy for Kentucky and Ohio ICD Codes are listed Local policies are determined by the performing test location. This is determined by the state on subsequent page(s) in which your performing laboratory resides and where your testing is commonly performed. of this document. Coverage Indications, Limitations, and/or Medical Necessity Radioallergosorbent test (RAST), fluoroallergosorbent test (FAST), and multiple antigen simultaneous tests are in vitro techniques for Add full policy information determining whether a patient's serum contains IgE antibodies against specific allergens of clinical importance. As with any allergy testing, the need for such tests is based on the findings during a complete history and physical examination of the patient. The multiple antigen simultaneous testing technique is similar to the RAST/FAST techniques in that it depends upon the existence of Template structure: allergic antibodies in the blood of the patient being tested. With the multiple antigen simultaneous test system, several antigens may be used to test for specific IgE simultaneously. First level is for headers such as limitations, ELISA (enzyme-linked immunosorbent assay) is another in vitro method of allergy testing for specific IgE antibodies against allergens. indications and usage guidelines This method is also a variation of RAST. Second level is for main body copy Limitations • Third level is for bullet (if needed) The following tests are considered to be not medically necessary and will be denied. • ELISA/Act qualitative antibody testing. This testing is used to determine in vitro reaction to various foods and relies on lymphocyte blastogenesis in response to certain food antigens.
    [Show full text]
  • Radioallergosorbent Test (RAST)—Reliable Tool Or Poor Substitute?
    Radioallergosorbent test (RAST) VII Ö1 1 reliable tool or poor substitute? Edward W. Hein, M.D. An in vitro method, the radioallergosorbent test (RAST) has been developed for the detection of allergen-specific antibodies of the IgE class. Review of the literature shows that in comparison to skin testing, the RAST has a high degree of correlation (60% to 90% depending on the antigen); however, this method is not as sensitive as other tests (50% false-negative). The RAST is affected by blocking antibodies (IgG), resulting in false-negative values and high levels of IgE that bind on the allergen discs, giving false- positive findings. Because of these problems, RAST is somewhat limited for use in the clinical setting. Index terms: Allergy and immunology • Radioallergosor- bent test (RAST) Cleve Clin Q 50:361-366, Fall 1983 Skin testing has been the traditional method for diagnosis of IgE-mediated allergic disorders. This bioassay is highly sensitive, cost-effective, and safe when used by experienced personnel. In 1967, Wide et al,1 in Sweden, reported a new technique capable of detecting the minute quantities of allergen-specific IgE antibodies that circulate in the serum of allergic patients. This laboratory procedure, called RAST (radioallergosorbent test), utilized a solid- phase radioimmunoassay method. During the last decade this in vitro test has been refined and is now a commercially 1 Departments of Pediatric and Adolescent Medi- available laboratory test for clinical laboratories and, in kit cine, and Allergy and Immunology, The Cleveland form, for physicians' offices. Proponents of this new Clinic Foundation. (E.W.H., Head, Section Pediatric method claim that its results are more objective, safer for Allergy and Clinical Immunology.) Submitted for pub- lication May 1983; accepted June 1983.
    [Show full text]
  • Hypersensitivity Reactions (Types I, II, III, IV)
    Hypersensitivity Reactions (Types I, II, III, IV) April 15, 2009 Inflammatory response - local, eliminates antigen without extensively damaging the host’s tissue. Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906) - Type I Produce effector molecules Capable of ingesting foreign Particles Association with parasite infection Modified from Abbas, Lichtman & Pillai, Table 19-1 Type I hypersensitivity response IgE VH V L Cε1 CL Binds to mast cell Normal serum level = 0.0003 mg/ml Binds Fc region of IgE Link Intracellular signal trans. Initiation of degranulation Larche et al. Nat. Rev. Immunol 6:761-771, 2006 Abbas, Lichtman & Pillai,19-8 Factors in the development of allergic diseases • Geographical distribution • Environmental factors - climate, air pollution, socioeconomic status • Genetic risk factors • “Hygiene hypothesis” – Older siblings, day care – Exposure to certain foods, farm animals – Exposure to antibiotics during infancy • Cytokine milieu Adapted from Bach, JF. N Engl J Med 347:911, 2002. Upham & Holt. Curr Opin Allergy Clin Immunol 5:167, 2005 Also: Papadopoulos and Kalobatsou. Curr Op Allergy Clin Immunol 7:91-95, 2007 IgE-mediated diseases in humans • Systemic (anaphylactic shock) •Asthma – Classification by immunopathological phenotype can be used to determine management strategies • Hay fever (allergic rhinitis) • Allergic conjunctivitis • Skin reactions • Food allergies Diseases in Humans (I) • Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish,
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • Incidence of Allergen Specific Ige in Atopic Dermatitis Patients by Immunoblot Assay
    1 Bahrain Medical Bulletin, Vol. 30, No. 3, September 2008 Incidence of Allergen Specific IgE in Atopic Dermatitis Patients by Immunoblot Assay Abbas H Alsaeed M.Med, Sci, PhD, CLC* Objective: To determine the incidence of allergens specific IgE by immunoblot assay in atopic dermatitis patients. Design: Prospective study. Setting: South Riyadh, Dermatology clinic Alfalah International Hospital, Saudi Arabia. Method: Sixty-five adult patients and twenty volunteer controls sera were collected from atopic dermatitis patients. IgE antibodies specific to allergens of food, pollens, animal epithelia, house dust mites, and moulds were determined using an immunoblot assay. Result: The sensitization rate of all allergens was found to be 65% (42/65; 26 males, 39 females). The subjects were most commonly allergic to pollen (35.2%), food (31.5%) and animal epithelial dander (21.0%). House dust mite (11.4%) and mould (0.9%) were less frequent than the others were. Conclusion: The result indicates that pollen allergens, food allergens, animal epithelia and dander should be taken into account as possible exacerbating factors in adult patients with AD within the specific geographical area studied. Bahrain Med Bull 2008; 30(3): Atopic dermatitis (AD) is a rather common disorder as its name implies, it is often associated with the presence of IgE-mediated hypersensitivity and with other IgE–mediated disease states. Often diagnosed in infancy it can have its onset at any age in life. There is no definitive laboratory test which is able to define atopic dermatitis. Double-blind placebo controlled food challenges have documented that certain foods can exacerbate dermatitis in patients in whom there is immediate skin test reactivity to food extracts1.
    [Show full text]
  • Download The
    PROFILING THE EPIGENETIC LANDSCAPE OF THE AIRWAY EPITHELIUM IN ASTHMA by Dorota Stefanowicz B.Sc., Biology, The University of Victoria, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) June 2014 © Dorota Stefanowicz, 2014 Abstract The airway epithelium is the interface between the environment and the submucosa of the lung and thus is the first line of defense against inhaled exogenous agents. In addition to maintaining a structural barrier through homeostasis and repair, the airway epithelium is involved in co- ordination of the mucosal immune response to the inhaled environment. In asthma it is now understood that the airway epithelium is abnormal with dysregulation of genes integral to differentiation, proliferation, and inflammation. Alteration of the chromatin architecture through epigenetic modifications including DNA methylation and histone modifications is reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific, as such, it is important to understand epigenetic regulation in cells that are thought to play a central role in asthma. As epigenetic processes are critical to cellular specificity and disease susceptibility the overarching hypothesis of this thesis is that alterations to the epigenome of asthmatic airway epithelial cells contribute to the dysregulation of genes involved in key epithelial functions. To investigate this hypothesis, we performed analysis of DNA methylation, expression of epigenetic modifying genes, and histone acetylation and methylation in airway epithelial cells, airway fibroblasts, and peripheral blood mononuclear cells from asthmatic and healthy subjects.
    [Show full text]
  • In Vitro Diagnostic Testing for Antibiotic Allergy Inmaculada Doña,1 Maria J
    Review Allergy Asthma Immunol Res. 2017 July;9(4):288-298. https://doi.org/10.4168/aair.2017.9.4.288 pISSN 2092-7355 • eISSN 2092-7363 In Vitro Diagnostic Testing for Antibiotic Allergy Inmaculada Doña,1 Maria J. Torres,1,3 Maria I. Montañez,2,3* Tahía D. Fernández2* 1Allergy Unit, IBIMA-Regional University Hospital of Malaga-UMA, Málaga, Spain 2Research Laboratory, IBIMA-Regional University Hospital of Malaga-UMA, Málaga, Spain 3Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Allergy to antibiotics is an important worldwide problem, with an estimated prevalence of up to 10% of the population. Reaction patterns for differ- ent antibiotics have changed in accordance with consumption trends. Most of the allergic reactions to antibiotics have been reported for betalac- tams, followed by quinolones and macrolides and, to a lesser extent, to others, such as metronidazole clindamycin and sulfonamides. The diagnos- tic procedure includes a detailed clinical history, which is not always possible and can be unreliable. This is usually followed by in vivo, skin, and drug provocation tests. These are not recommended for severe, potentially lifethreaten reactions or for drugs that are known to produce a high rate of false positive results. Given the limitations of in vivo tests, in vitro test can be helpful for diagnosis, despite having suboptimal sensitivity. The most highly employed techniques for diagnosing immediate reactions to antibiotics are immunoassays and basophil activation tests, while lympho- cyte transformation tests are more commonly used to diagnose non-immediate reactions.
    [Show full text]
  • Guide to Pathology Tests
    GUIDE TO PATHOLOGY TESTS This quick reference guide may be useful in some clinical situations. The suggested investigations are neither comprehensive nor applicable in all circumstances. Tests should be selected after consideration of the patient’s clinical history, signs, symptoms and previous test results. For further information, please contact our pathologists, senior scientists or refer to The Royal College of Pathologists of Australia manual at www.rcpamanual.edu.au A ABDOMINAL PAIN ANAEMIA Baseline: ECU, LFT, CRP, cTn, Lipase, Amylase, HCG, FBE, urine MCS Macrocytic Additional: Calcium, Phosphate, Lactate, Blood Gas, faeces Baseline: FBE, blood film, ECU, LFT, LDH, B12, Folate, TSH (MCS, OCP, PCR), Urine Porphobilinogen Additional: AIF, PCA, EPG, FLC, Haptoglobin Supplementary: Blood Culture, H. Pylori Faecal Antigen Test, Supplementary: Bone marrow biopsy Urea Breath Test Microcytic: Baseline: FBE, IS, ECU, LFT ADRENOCORTICAL FUNCTION Additional: FOB, EPG, Hb-electrophoresis Supplementary: Blood Lead Addison’s disease Baseline: S-Cortisol, ACTH, ECU Normocytic: Additional: Synacthen stimulation test. Baseline: FBE, Reticulocyte count, ESR, ECU, CRP Supplementary: Adrenal-Ab, thyroid-Ab, ovarian-Ab, Tuberculosis, Additional: IS, B12, folate, LFT septicaemia, HIV, 17-OHP, VLCFA, Fine Needle Biopsy Supplementary: EPG, Bone marrow biopsy Cushing syndrome Baseline: 3 x 24 hour urinary free cortisol, or 1 mg overnight ANTENATAL TESTING Dexamethasone Suppression Test, am serum Cortisol. Note: "Antenatal Screen" is no longer a valid test
    [Show full text]
  • Mycology Assist Lect. Mays Jassim[
    Lab. 4/ class 3 ]MYCOLOGY ASSIST LECT. MAYS JASSIM[ Serological tests for diagnosis of fungi Fungi culture is often problematic method because its time consuming and insensitive due to low concentration of fungi in specimens. While Ags and/ or Abs are produced in large quantities and can be found in various body fluid (blood, CSF and urine) also Ags and Abs are easier to detect than finding the organism directly and the results may also be obtained within a few hours without the need of culture before clinical symptoms develop. So the serology is a useful tool for rapid diagnosis of fungal disease. Principle: Serological testing is used to diagnosis of some common fungal infections agents including Blastomyces dermatitis (infect lungs- cause blastomycosis), Histoplasma capsulatum (cause histoplasmosis- acute or chronic lung disease and progressive disseminated histoplasmosis affecting a number of organs.), Coccidioides (infect lungs- Coccidioidomycosis), Aspergillus (infect lungs), and Candida sp. (skin, genital tract and urinary tract infection ) That based on: 1. the patients clinical presentation. 2. their exposure history. 3. risk factor for infection. 4. and target type (Ag/ Ab). Types of serological targets: A) For detection of Antigen: 1- Galactomannan (GM-test): it’s highly antigenic a polysaccharide molecule as a components of fungal cell wall found in most of Aspergillus sp., Creptococcus and Candida. 1 Lab. 4/ class 3 ]MYCOLOGY ASSIST LECT. MAYS JASSIM[ Figure- 1: Cell wall structure of aspergillus fumigatus Sample: it can be collected from: 1. Blood: if the aspergillus invades blood it secrets its galactomannan antigen into the blood stream. 2. Bronchoalveolar lavage (BAL): if the fungus found in the airways, asmaal tissue of the infected area is collected by the bronchoscope.
    [Show full text]
  • Antibody Reactions Precipitation Reactions
    Immunological testing Perspective 17.1 Monoclonal Antibodies • Monoclonal antibodies • Serology • Quantifying antigen – antibody reactions 17-1 17-2 Serology Quantifying antigen – antibody reactions • Antibodies • Seroconversion or rise in titer • Antibodies detect and identify antigens • Serial dilutions 17-3 17-4 Precipitation reactions • Immunodiffusion • Immunoelectrophoresis Figure 17.2 - Quantitation of immunologic tests 17-5 17-6 1 Figure 17.4 Immunodiffusion Figure 17.3 Precipitation reaction 17-7 17-8 Agglutination reactions • Direct agglutination • Indirect agglutination • Hemagglutination Figure 17.6 Immunoelectrophoresis 17-9 17-10 Direct agglutination Indirect agglutination • Cross – linking and lattice formation • Soluble antigen is coated onto particles (red bood cells, • Antibodies react with particulate antigens (red blood latex beads) cells, bacteria, fungi) • Allow for visible clumps (agglutination) • Visible clumps • Estimate amount of antibody 17-11 17-12 2 Immunofluorescence tests • Direct fluorescent antibody test • Indirect fluorescent antibody test Figure 17.7 - Agglutination reaction 17-13 17-14 Figure 17.8 - Direct and indirect fluorescent antibody test Antigen – antibody assays • Radioimmunoassay (RIA) • Enzyme – linked immunosorbant assay (ELISA) • Western blot 17-15 17-16 Enzyme – linked immunosorbant assay Radioimmunoassay (RIA) (ELISA) • Competitive inhibition assay • Color reaction assay • Measure antigen or antibody • Indirect ELISA • Ex. Measure small amounts of hormones or drugs in a • Direct ELISA
    [Show full text]
  • Hypersensitivity
    HYPERSENSITIVITY HYPERSENSITIVITY undesirable (damaging, discomfort producing and sometimes fatal) reaction produced by the normal immune system • hypersensitivity reactions require a pre-sensitized (immune) state of the host HYPERSENSITIVITY Hypersensitivity reactions can be divided into four types according to Gell and Coombs: • type I, • type II, • type III • type IV, based on: • time taken for the reaction • type of antygen • the mechanisms involved • clinical symptoms Frequently, a particular clinical condition (disease) may involve more than one type of reaction. TYPE I HYPERSENSITIVITY TYPE I HYPERSENSITIVITY known also as immediate or anaphylactic hypersensitivity 15-30 minutes from the time of exposure, although sometimes may have a delayed onset (10 - 12 h) symptoms depends on the place of antigen entrance and reaction appearance - weal & flare histology - basophils and eosinophils TYPE I HYPERSENSITIVITY ANTIGEN: is soluble exogenous e.g: Drugs (antibiotics) Foods (nuts, shellfish) Insect venoms pollens Antigens enter body by: Injection Ingestion Inhalation Absorption Induces antibody formation Anaphylaxis Pathophysiology IMMUNOGLOBULIN – IgE very high affinity for its receptor on mast cells and basophils = is homocytotropic IMMUNE CELLs Mast cells In all subcutaneous/submucosal tissues, Including conjunctiva, upper/lower respiratory tracts, and gut Basophils Circulate in blood mechanisms: Subsequent exposure to the same allergen cross links the cell-bound IgE and triggers the release of various pharmacologically
    [Show full text]