Homemade Field Effect Transistor (FET)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Homemade Field Effect Transistor (FET) ENGR45, SRJC 2012 By Matt Barnekow Sam North Devin Vagt Chris Dickason History • In late 1947 the point contact transistor was invented by John Bardeen and Walter Brattain. • Early 1948 Russell Ohl came up with the concept for a p-n junction resistor. • One month later John Shive created such a transistor using germanium. • In 1950 Bell labs created the n-p-n transistors • Since then they have been getting progressively smaller and more powerful. What is a Field Effect Transistor(FET) • In a FET, the width of the conducting channel in a semiconductor and it’s current carrying capability is varied by the application of an electric field. • Metal Oxide Semiconductor FET (MOSFET) • Junction FET (JFET) • Most commonly used is MOSFET which is manufactured as an enhancement or depletion type. • Consists of a source, a gate and a drain. How does a FET work? • Valve Metaphor – The more voltage added the more current is produced • Enhancement vs Depletion MOSFET • An enhancement MOSFET is a voltage control switch, a small voltage is applied which causes a large current to be activated. • The depletion MOSFET is almost the same although a negative charge is applied to the substrate to turn off the large current. How we created our FET • http://www.youtube.com/watch?v=w_znRopGtbE Jeri Ellsworth’s Video • Using nothing but easy to obtain items from the store and internet we were able to recreate a FET similar to the one created in the video by Jeri Ellsworth. How we created our FET • First the silicon wafer had to be broken down into small “squares”. How we created our FET • An oxide layer needed to be formed • We tried with electrolysis using a piece of copper in some salt water attached to the wafer. • We made orange juice How we created our FET • Grew oxide layer, by baking the wafers at 1000°C. T • Thickness of layer shown by color. http://www.htelabs.com/appnotes/sio2_color_chart_thermal_silicon_dioxide.htm How we created our FET • Etched the active layer with hydrofluoric acid using electrical tape as a template. • Complete etch leaves water beads on hydrophobic silicon. • Doped in Phosphoric Acid spun on fan to achieve a thin even layer. • Placed back in furnace at 1000°C to create a high concentration on top of the wafer. How we created our FET • Etched in hydrofluoric acid to remove film (containing contaminants) • Furnace creates an oxide layer over the P driving it into the wafer. • Finally using a conductive epoxy we made our points of contact. What we learned • Teflon coated steel is Flammable! • While attempting to create an oxide layer by introducing water into th furnace envionment we burned a teflon coated steel dish. Glass Film on wafers proves troublesome for making a MOSFET We were able to etch some glass off with acid Picture shows ground down glass layer What we learned • Ceramics are great insulators! If heated gradually. • We placed the ceramic crucible in the oven making it heat rapidly from 50 degrees to over 1832 degress in a matter of second, causing it to shatter. What we learned • Contaminates prove annoying • After burning the teflon, we noticed these chunks growing on our wafers. What we learned • Oxide on silicon looks interesting under the microscope. • This gives us a better idea of how the silicon is oxidizing. Results • By process of the hot lead test we determined that we did make several JFETs. • The hot lead test is when a source of thermal energy is added, in this case on the side of the transistor, and then checking to see if there is any kind of current change. Results • Here you can see the separate leads hooked up to our JFET. Results • On the left is a graph showing the • The average saturation for a JFET of our voltage capacity of a standard JFET with caliber is about 10V, however we didn't hit a saturation. saturation point until almost 17V. • The right is a graph created from our voltage reading passing though the JFET Links • http://www-ferp.ucsd.edu/najmabadi/CLASS/ECE60L/02-S/NOTES/FET.pdf • http://www.pbs.org/transistor/science/info/transmodern.html • http://www.engr.sjsu.edu/kghadiri/EE221/Class_Notes/EE_221_L13_Solid%20state%20Diffus ion%20of%20impurities%20in%20Silicon.pdf • http://www.computerhistory.org/semiconductor/timeline/1957-Zone.html • http://www.htelabs.com/appnotes/sio2_color_chart_thermal_silicon_dioxide.htm • http://www.dauniv.ac.in/downloads/Electronic%20Devices/12EDCMOSFETLesson12.pdf .
Recommended publications
  • LSK489 Application Note

    LSK489 Application Note

    LSK489 Application Note Low Noise Dual Monolithic JFET Bob Cordell Introduction For circuits designed to work with high impedance sources, ranging from electrometers to microphone preamplifiers, the use of a low-noise, high-impedance device between the input and the op amp is needed in order to optimize performance. At first glance, one of Linear Systems’ most popular parts, the LSK389 ultra-low-noise dual JFET would appear to be a good choice for such an application. The part’s high input impedance (1 T Ω) and low noise (1 nV/ √Hz at 1kHz and 2mA drain current) enables power transfer while adding almost no noise to the signal. But further examination of the LSK389’s specification shows an input capacitance of over 20pF. This will cause intermodulation distortion as the circuit’s input signal increases in frequency if the source impedance is high. This is because the JFET junction capacitances are nonlinear. This will be especially the case where common source amplifier arrangements allow the Miller effect to multiply the effective value of the gate-drain capacitance. Further, the LSK389’s input impedance will fall to a lower value as the frequency increases relative to a part with lower input capacitance. A better design choice is Linear Systems’ new offering, the LSK489. Though the LSK489 has slightly higher noise (1.5 nV/ √Hz vs. 1.0 nV/ √Hz) its much lower input capacitance of only 4pF means that it will maintain its high input impedance as the frequency of the input signal rises. More importantly, using the lower-capacitance LSK489 will create a circuit that is much less susceptible to intermodulation distortion than one using the LSK389.
  • The Invention of the Transistor

    The Invention of the Transistor

    The invention of the transistor Michael Riordan Department of Physics, University of California, Santa Cruz, California 95064 Lillian Hoddeson Department of History, University of Illinois, Urbana, Illinois 61801 Conyers Herring Department of Applied Physics, Stanford University, Stanford, California 94305 [S0034-6861(99)00302-5] Arguably the most important invention of the past standing of solid-state physics. We conclude with an century, the transistor is often cited as the exemplar of analysis of the impact of this breakthrough upon the how scientific research can lead to useful commercial discipline itself. products. Emerging in 1947 from a Bell Telephone Laboratories program of basic research on the physics I. PRELIMINARY INVESTIGATIONS of solids, it began to replace vacuum tubes in the 1950s and eventually spawned the integrated circuit and The quantum theory of solids was fairly well estab- microprocessor—the heart of a semiconductor industry lished by the mid-1930s, when semiconductors began to now generating annual sales of more than $150 billion. be of interest to industrial scientists seeking solid-state These solid-state electronic devices are what have put alternatives to vacuum-tube amplifiers and electrome- computers in our laps and on desktops and permitted chanical relays. Based on the work of Felix Bloch, Ru- them to communicate with each other over telephone dolf Peierls, and Alan Wilson, there was an established networks around the globe. The transistor has aptly understanding of the band structure of electron energies been called the ‘‘nerve cell’’ of the Information Age. in ideal crystals (Hoddeson, Baym, and Eckert, 1987; Actually the history of this invention is far more in- Hoddeson et al., 1992).
  • Chapter 7: AC Transistor Amplifiers

    Chapter 7: AC Transistor Amplifiers

    Chapter 7: Transistors, part 2 Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a “dead region” where small signals do not turn on the transistor. So, if your signal is smaller than 0.6 V, or if it is negative, the transistor does not conduct and the amplifier does not work. Design goals for an AC amplifier Before moving on to making a better AC amplifier, let’s define some useful terms. We define the output range to be the range of possible output voltages. We refer to the maximum and minimum output voltages as the rail voltages and the output swing is the difference between the rail voltages. The input range is the range of input voltages that produce outputs which are not at either rail voltage. Our goal in designing an AC amplifier is to get an input range and output range which is symmetric around zero and ensure that there is not a dead region. To do this we need make sure that the transistor is in conduction for all of our input range. How does this work? We do it by adding an offset voltage to the input to make sure the voltage presented to the transistor’s base with no input signal, the resting or quiescent voltage , is well above ground. In lab 6, the function generator provided the offset, in this chapter we will show how to design an amplifier which provides its own offset.
  • A Pictorial History of Nuclear Instrumentation

    A Pictorial History of Nuclear Instrumentation

    A Pictorial History of Nuclear Instrumentation Ranjan Kumar Bhowmik Inter University Accelerator Centre (Retd) Dawn of Nuclear Instrumentation End of 19th Century Wilhelm Röntgen (1845-1923) (1895) W. Roentgen observes florescence in barium platinocyanide due to invisible rays from a gas discharge tube. Names them X- rays First medical X-ray Henry Becquerel (1852-1908) (1896) H. Bacquerel detects that uranium salts spontaneously emit a penetrating radiation that can blacken photographic films Independent of chemical composition Pierre Curie (1859-1906) Marie Curie (1867-1934) (1987) Pierre & Marie Curie found that both uranium and thorium emit radiation that can ionise gases – detected by electroscopes. Coin the name ‘Radioactivity’ to describe this natural process Early Instrumentation Equipment used for these path-breaking discoveries were developed much earlier : • Optical fluorescence (1560) Bernardino de Sahagún • Thermo-luminescence (17th Century) • Gold Leaf Electroscope (1787) Abraham Bennet • Photographic Emulsion (1839) Louis Daguerre Early instruments were sensitive to radiation dose only, could not detect individual radiation Spinthariscope (1903) • Spinthariscope was invented by William Crookes. It is made of a ZnS screen viewed by an eyepiece • Scintillation produced by an incident a-particle can be seen as faint light flashes • Rutherford’s famous a-scattering experiment proved the existence a ‘point-like’ nucleus inside the atom Geiger Counter (1908) First instrument to detect individual a-particles electronically was developed by Geiger. Chamber filled with CO2 at 2-5 cm of mercury Central wire at ground potential connected to an electrometer. Successive ‘kicks’ in the electrometer indicated the passage of a charged particle; response time ~1 sec Geiger Muller Counter (1928) An improved design (1912) had a string Major improvement was electrometer for detection.
  • A GUIDE to USING FETS for SENSOR APPLICATIONS by Ron Quan

    A GUIDE to USING FETS for SENSOR APPLICATIONS by Ron Quan

    Three Decades of Quality Through Innovation A GUIDE TO USING FETS FOR SENSOR APPLICATIONS By Ron Quan Linear Integrated Systems • 4042 Clipper Court • Fremont, CA 94538 • Tel: 510 490-9160 • Fax: 510 353-0261 • Email: [email protected] A GUIDE TO USING FETS FOR SENSOR APPLICATIONS many discrete FETs have input capacitances of less than 5 pF. Also, there are few low noise FET input op amps Linear Systems that have equivalent input noise voltages density of less provides a variety of FETs (Field Effect Transistors) than 4 nV/ 퐻푧. However, there are a number of suitable for use in low noise amplifier applications for discrete FETs rated at ≤ 2 nV/ 퐻푧 in terms of equivalent photo diodes, accelerometers, transducers, and other Input noise voltage density. types of sensors. For those op amps that are rated as low noise, normally In particular, low noise JFETs exhibit low input gate the input stages use bipolar transistors that generate currents that are desirable when working with high much greater noise currents at the input terminals than impedance devices at the input or with high value FETs. These noise currents flowing into high impedances feedback resistors (e.g., ≥1MΩ). Operational amplifiers form added (random) noise voltages that are often (op amps) with bipolar transistor input stages have much greater than the equivalent input noise. much higher input noise currents than FETs. One advantage of using discrete FETs is that an op amp In general, many op amps have a combination of higher that is not rated as low noise in terms of input current noise and input capacitance when compared to some can be converted into an amplifier with low input discrete FETs.
  • Junction Field Effect Transistor (JFET)

    Junction Field Effect Transistor (JFET)

    Junction Field Effect Transistor (JFET) The single channel junction field-effect transistor (JFET) is probably the simplest transistor available. As shown in the schematics below (Figure 6.13 in your text) for the n-channel JFET (left) and the p-channel JFET (right), these devices are simply an area of doped silicon with two diffusions of the opposite doping. Please be aware that the schematics presented are for illustrative purposes only and are simplified versions of the actual device. Note that the material that serves as the foundation of the device defines the channel type. Like the BJT, the JFET is a three terminal device. Although there are physically two gate diffusions, they are tied together and act as a single gate terminal. The other two contacts, the drain and source, are placed at either end of the channel region. The JFET is a symmetric device (the source and drain may be interchanged), however it is useful in circuit design to designate the terminals as shown in the circuit symbols above. The operation of the JFET is based on controlling the bias on the pn junction between gate and channel (note that a single pn junction is discussed since the two gate contacts are tied together in parallel – what happens at one gate-channel pn junction is happening on the other). If a voltage is applied between the drain and source, current will flow (the conventional direction for current flow is from the terminal designated to be the gate to that which is designated as the source). The device is therefore in a normally on state.
  • EE-202 Electronics-I- Field-Effect Transistors JFET

    EE-202 Electronics-I- Field-Effect Transistors JFET

    EE-202 Electronics-I- Chapter 10 Field-Effect Transistors JFET 1 FET FET (Field-Effect Transistors) - BJTs (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching circuits Differences: • FETs are voltage controlled devices, BJTs are current controlled devices. • FETs have a higher input impedance, BJTs have higher gains. • FETs are less sensitive to temperature variations and they are more easily integrated on ICs. • FETs are generally more sensitive to static than BJTs. 2 FET Types •JFET–– Junction Field-Effect Transistor •MOSFET –– Metal-Oxide Field-Effect Transistor .D-MOSFET –– Depletion MOSFET .E-MOSFET –– Enhancement MOSFET 3 JFET Construction There are two types of JFETs •n-channel •p-channel The n-channel is more widely used. There are three terminals. •Drain (D) and source (S) are connected to the n-channel •Gate (G) is connected to the p-type material 4 JFET Operating Characteristics Three basic operating conditions for a JFET: • VGS = 0, VDS increasing to some positive value • VGS < 0, VDS at some positive value • Voltage-controlled resistor 5 JFET Operating Characteristics VGS = 0, VDS increasing to some positive value When VGS = 0 and VDS is increased from 0 to a more positive voltage; • The depletion region between p-gate and n-channel increases • Increasing the depletion region, decreases the size of the n-channel • Increasing in the n-channel resistance, the ID current increases. 6 JFET Operating Characteristics VGS = 0, VDS increasing to some positive value: Pinch Off VGS = 0 and VDS is increased to a more positive voltage, the depletion zone gets so large that it pinches off the n-channel.
  • Chapter1: Semiconductor Diode

    Chapter1: Semiconductor Diode

    Chapter1: Semiconductor Diode. Electronics I Discussion Eng.Abdo Salah Theoretical Background: • The semiconductor diode is formed by doping P-type impurity in one side and N-type of impurity in another side of the semiconductor crystal forming a p-n junction as shown in the following figure. At the junction initially free charge carriers from both side recombine forming negatively c harged ions in P side of junction(an atom in P -side accept electron and be comes negatively c harged ion) and po sitive ly c harged ion on n side (an atom in n-side accepts hole i.e. donates electron and becomes positively charged ion)region. This region deplete of any type of free charge carrier is called as depletion region. Further recombination of free carrier on both side is prevented because of the depletion voltage generated due to charge carriers kept at distance by depletion (acts as a sort of insulation) layer as shown dotted in the above figure. Working principle: When voltage is not app lied acros s the diode , de pletion region for ms as shown in the above figure. When the voltage is applied be tween the two terminals of the diode (anode and cathode) two possibilities arises depending o n polarity of DC supply. [1] Forward-Bias Condition: When the +Ve terminal of the battery is connected to P-type material & -Ve terminal to N-type terminal as shown in the circuit diagram, the diode is said to be forward biased. The application of forward bias voltage will force electrons in N-type and holes in P -type material to recombine with the ions near boundary and to flow crossing junction.
  • The General Working of Solar Cells and the Correlation Between

    The General Working of Solar Cells and the Correlation Between

    The general working of solar cells and the correlation between diffuseness and temperature, irradiance and spectral shape Thomas Kalkman & Max Verweg Under supervision of M. Futscher and B. Ehrler 2 week Bachelor Research Project June 28, 2017 Physics and Astronomy, University of Amsterdam [email protected], [email protected] Abstract main parameter for efficiency would bring clarification and demands for further experiments to verify this parameter. The efficiency of solar cells is mostly measured under standard test conditions. In reality, the temperature and Theory sunlight is not always the same. In The Netherlands there is on average only 1650 hours of sunshine per year[2], the Solar cells are made of different layers of materials. They rest of the daytime per year is without direct sunlight ra- have a protective glass plate, thin films as moisture barriers diating the solar cells. The light captured is diffuse. In this and the actual solar cells which convert the energy. work we discuss the basics of how solar cells work and we investigate the correlation between diffuseness of the sunlight and temperature, irradiation and spectral shape. We find correlations due to weather conditions. Further- more we verify correlations between efficiency and tem- perature, and efficiency and irradiation. Introduction Figure 1: Schematic representation of a silicon solar cell. Since the discovery of the photovoltaic effect - explaining The blue layer is an anti reflective and protective layer, the how electricity can be converted from sunlight - by Alexan- grey layers are the cathode and anode, the yellow layers are dre Edmond Becquerel in 1839, and the invention of solar the silicon semiconductor.
  • Basic DC Motor Circuits

    Basic DC Motor Circuits

    Basic DC Motor Circuits Living with the Lab Gerald Recktenwald Portland State University [email protected] DC Motor Learning Objectives • Explain the role of a snubber diode • Describe how PWM controls DC motor speed • Implement a transistor circuit and Arduino program for PWM control of the DC motor • Use a potentiometer as input to a program that controls fan speed LWTL: DC Motor 2 What is a snubber diode and why should I care? Simplest DC Motor Circuit Connect the motor to a DC power supply Switch open Switch closed +5V +5V I LWTL: DC Motor 4 Current continues after switch is opened Opening the switch does not immediately stop current in the motor windings. +5V – Inductive behavior of the I motor causes current to + continue to flow when the switch is opened suddenly. Charge builds up on what was the negative terminal of the motor. LWTL: DC Motor 5 Reverse current Charge build-up can cause damage +5V Reverse current surge – through the voltage supply I + Arc across the switch and discharge to ground LWTL: DC Motor 6 Motor Model Simple model of a DC motor: ❖ Windings have inductance and resistance ❖ Inductor stores electrical energy in the windings ❖ We need to provide a way to safely dissipate electrical energy when the switch is opened +5V +5V I LWTL: DC Motor 7 Flyback diode or snubber diode Adding a diode in parallel with the motor provides a path for dissipation of stored energy when the switch is opened +5V – The flyback diode allows charge to dissipate + without arcing across the switch, or without flowing back to ground through the +5V voltage supply.
  • Field Effect Transistors

    Field Effect Transistors

    Module www.learnabout-electronics.org 4 Field Effect Transistors Module 4.1 Junction Field Effect Transistors What you´ll learn in Module 4 Field Effect Transistors Section 4.1 Field Effect Transistors. Although there are lots of confusing names for field • FETs JFETs, JUGFETs, and IGFETS effect transistors (FETs) there are basically two main • The JFET. types: • Diffusion JFET Construction. • Planar JFET Construction. 1. The reverse biased PN junction types, the JFET or • JFET Circuit Symbols. Junction FET, (also called the JUGFET or Junction Unipolar Gate FET). Section 4.2 How a JFET Works. • Operation Below Pinch Off. 2. The insulated gate FET devices (IGFET). • Operation Above Pinch Off. • JFET Output Characteristic. All FETs can be called UNIPOLAR devices because • JFET Transfer Characteristic. the charge carriers that carry the current through the • JFET Video. device are all of the same type i.e. either holes or electrons, but not both. This distinguishes FETs from Section 4.3 The Enhancement Mode MOSFET. the bipolar devices in which both holes and electrons • The IGFET (Insulated Gate FET). • MOSFET(IGFET) Construction. are responsible for current flow in any one device. • MOSFET(IGFET) Operation. The JFET • MOSFET (IGFET) Circuit Symbols. • Handling Precautions for MOSFETS This was the earliest FET device available. It is a voltage-controlled device in which current flows Section 4.4 The Depletion Mode MOSFET. from the SOURCE terminal (equivalent to the • Depletion Mode MOSFET Operation. emitter in a bipolar transistor) to the DRAIN • MOSFE (IGFET) Circuit Symbols. (equivalent to the collector). A voltage applied • Applications of MOSFETS • High Power MOSFETS between the source terminal and a GATE terminal (equivalent to the base) is used to control the source - Section 4.5 Power MOSFETs.
  • Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies

    Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies

    Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Laura Waller Professor Costas J. Spanos Professor Junqiao Wu Spring 2016 © Copyright 2016 Peng Zheng All rights reserved Abstract Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies by Peng Zheng Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The remarkable proliferation of information and communication technology (ICT) – which has had dramatic economic and social impact in our society – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of components (transistors) on an IC “chip” doubles every two years. Increasing the number of transistors on a chip provides for lower manufacturing cost per component and improved system performance. The virtuous cycle of IC technology advancement (higher transistor density lower cost / better performance semiconductor market growth technology advancement higher transistor density etc.) has been sustained for 50 years. Semiconductor industry experts predict that the pace of increasing transistor density will slow down dramatically in the sub-20 nm (minimum half-pitch) regime. Innovations in transistor design and fabrication processes are needed to address this issue. The FinFET structure has been widely adopted at the 14/16 nm generation of CMOS technology.