GOES Data Collection System : User Programs / Merle L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Evaluation of Snow Initializations in NCEP Global and Regional Forecasting Models
JUNE 2016 D A W S O N E T A L . 1885 An Evaluation of Snow Initializations in NCEP Global and Regional Forecasting Models NICHOLAS DAWSON,PATRICK BROXTON,XUBIN ZENG, AND MICHAEL LEUTHOLD Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona MICHAEL BARLAGE Research Applications Laboratory, Boulder, Colorado PAT HOLBROOK Idaho Power Company, Boise, Idaho (Manuscript received 13 November 2015, in final form 10 April 2016) ABSTRACT Snow plays a major role in land–atmosphere interactions, but strong spatial heterogeneity in snow depth (SD) and snow water equivalent (SWE) makes it challenging to evaluate gridded snow quantities using in situ measurements. First, a new method is developed to upscale point measurements into gridded datasets that is superior to other tested methods. It is then utilized to generate daily SD and SWE datasets for water years 2012–14 using measurements from two networks (COOP and SNOTEL) in the United States. These datasets are used to evaluate daily SD and SWE initializations in NCEP global forecasting models (GFS and CFSv2, both on 0.5830.58 grids) and regional models (NAM on 12 km 3 12 km grids and RAP on 13 km 3 13 km grids) across eight 28328 boxes. Initialized SD from three models (GFS, CFSv2, and NAM) that utilize Air Force Weather Agency (AFWA) SD data for initialization is 77% below the area-averaged values, on av- erage. RAP initializations, which cycle snow instead of using the AFWA SD, underestimate SD to a lesser degree. Compared with SD errors, SWE errors from GFS, CFSv2, and NAM are larger because of the ap- plication of unrealistically low and globally constant snow densities. -
Wildlife Regions Regulations Règlement Sur Les Régions R-108-98 Fauniques R-108-98
WILDLIFE ACT LOI SUR LA FAUNE WILDLIFE REGIONS REGULATIONS RÈGLEMENT SUR LES RÉGIONS R-108-98 FAUNIQUES R-108-98 INCLUDING AMENDMENTS MADE BY MODIFIÉ PAR R-075-99 (CIF 31/08/99) R-075-99 (EEV 1999-08-31) This consolidation is not an official statement of the La présente codification administrative ne constitue pas law. It is an office consolidation prepared by le texte officiel de la loi; elle n'est établie qu'à titre Legislation Division, Department of Justice, for documentaire par les Affaires législatives du ministère convenience of reference only. The authoritative text de la Justice. Seuls les règlements contenus dans les of regulations can be ascertained from the Revised Règlements révisés des Territoires du Nord-Ouest Regulations of the Northwest Territories, 1990 and the (1990) et dans les parutions mensuelles de la Partie II monthly publication of Part II of the Northwest de la Gazette des Territoires du Nord-Ouest ont force Territories Gazette. de loi. Copies of this consolidation and other Government of On peut également obtenir des copies de la présente the Northwest Territories publications can be obtained codification et d'autres publications du gouvernement at the following address: des Territoires du Nord-Ouest en communiquant avec : Canarctic Graphics Canarctic Graphics 5102-50th Street 5102, 50e Rue P.O. Box 2758 C.P. 2758 Yellowknife NT X1A 2R1 Yellowknife NT X1A 2R1 Telephone: (867) 873-5924 Téléphone : (867) 873-5924 Fax: (867) 920-4371 Télécopieur : (867) 920-4371 WILDLIFE ACT LOI SUR LA FAUNE WILDLIFE REGIONS RÈGLEMENT SUR LES RÉGIONS REGULATIONS FAUNIQUES The Commissioner, on the recommendation of the Le commissaire, sur la recommendation du Minister, under section 98 of the Wildlife Act and every ministre, en vertu de l’article 98 de la Loi sur la faune enabling power, makes the Wildlife Regions et de tout pouvoir habilitant, prend le Règlement sur les Regulations. -
Stream Sediment and Stream Water OG SU Alberta Geological Survey (MITE) ICAL 95K 85J 95J 85K of 95I4674 85L
Natural Resources Ressources naturelles Canada Canada CurrentCurrent and and Upcoming Upcoming NGR NGR Program Program Activities Activities in in British British Columbia, Columbia, NationalNational Geochemical Geochemical Reconnaissance Reconnaissance NorthwestNorthwest Territories, Territories, Yukon Yukon Territory Territory and and Alberta, Alberta, 2005-06 2005-06 ProgrProgrammeamme National National de de la la Reconnaissance Reconnaissance Géochimique Géochimique ActivitésActivités En-cours En-cours et et Futures Futures du du Programme Programme NRG NRG en en Colombie Colombie Britannique, Britannique, P.W.B.P.W.B. Friske, Friske,S.J.A.S.J.A. Day, Day, M.W. M.W. McCurdy McCurdy and and R.J. R.J. McNeil McNeil auau Territoires Territoires de du Nord-Ouest, Nord-Ouest, au au Territoire Territoire du du Yukon Yukon et et en en Alberta, Alberta, 2005-06 2005-06 GeologicalGeological Survey Survey of of Canada Canada 601601 Booth Booth St, St, Ottawa, Ottawa, ON ON 11 Area: Edéhzhie (Horn Plateau), NT 55 Area: Old Crow, YT H COLU Survey was conducted in conjunction with Survey was conducted in conjunction with and funded by IS M EUB IT B and funded by NTGO, INAC and NRCAN. NORTHWEST TERRITORIES R I the Yukon Geological Survey and NRCAN. Data will form A 124° 122° 120° 118° 116° B Alberta Energy and Utilities Board Data will form the basis of a mineral potential GEOSCIENCE 95N 85O the basis of a mineral potential evaluation as part of a 95O 85N evaluation as part of a larger required 95P 85M larger required Resource Assessment. OFFICE .Wrigley RESEARCH ANALYSIS INFORMATION Resource Assessment. .Wha Ti G 63° YUKON 63° Metals in the Environment (MITE) E Y AGS ESS Program: O E ESS Program: Metals in the Environment V .Rae-Edzo L R GSEOLOGICAL URVEY Survey Type: Stream Sediment and Stream Water OG SU Alberta Geological Survey (MITE) ICAL 95K 85J 95J 85K OF 95I4674 85L Survey Type: Stream Sediment, stream M Year of Collection: 2004 and 2005 A C K ENZI E R 2 62° I V water, bulk stream sediment (HMCs and KIMs). -
This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) THE UNIVERSITY OF WYOMING WATER RESOURCES RESEARCH INSTITUTE P. 0. BOX 3038, UNIVERSITY STATION TELEPHONE: 766·2143 LARAMIE, WYOMING 82070 AREA CODE: 307 Water Resources Series No. 24 PRECIPITATION AND ITS MEASUREMENT A STATE OF THE ART Lee W. Larson June 1971 Abstract A comprehensive review of the literature since 1966 for studies and articles dealing with precipitation and its measurement. Topics discussed include gages, gage comparisons, gage shields, errors in measurements, precipitation data, data analysis, networks, and electronic measurements for rain and snow. A bibliogr~phy is included. KEY WORDS: Climatic data/ equipment/ precipitation data/ statistics/ weather data/ wind/ rainfall/ rain gages/ rain/ snow/ snowfall/ snow gages/ snow surveys NOTE: References numbered 1 through 331 in the Partially Annotated Bibliography are listed in alphabetical order. Those numbered 332 and above were obtained after the first list had been prepared for publication and form a second alphabetical listing. -
Download Gate.Html (Accessed on 20 April 2021)
remote sensing Article Assessment of Snowfall Accumulation from Satellite and Reanalysis Products Using SNOTEL Observations in Alaska Yang Song 1, Patrick D. Broxton 2, Mohammad Reza Ehsani 1 and Ali Behrangi 1,* 1 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721, USA; [email protected] (Y.S.); [email protected] (M.R.E.) 2 School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA; [email protected] * Correspondence: [email protected] Abstract: The combination of snowfall, snow water equivalent (SWE), and precipitation rate mea- surements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipita- tion from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave Citation: Song, Y.; Broxton, P.D.; remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. -
Economic Outlook 2011 12 Final.Indd
Northwest Territories Economic Review 2011-12 Contents Introduction Minister’s Statement i Introduction 1 Key Economic Indicators 2 Investment 4 Employment 5 Economic Outlook Economic Outlook 7 Sustainability 11 Diavik Wind Farm 14 Economic Factors Introduction 16 Land 16 Population 18 Transportation Infrastructure 20 Business Climate 21 Business Distribution 22 Income Distribution Median Incomes 23 Income Distribution 24 Gender Incomes 26 Economic Sectors Non-Renewable Resources 29 Mackenzie Gas Project 34 Retail Trade 37 Wholesale Trade 38 Construction 39 Manufacturing 40 Tourism 41 Energy 44 Arts and Fine Crafts 49 Film 52 Fur and Fish Harvesting 55 Forestry 59 Agriculture 60 Conclusion 62 Honourable David Ramsay Minister of Industry, Tourism and Investment Government of the Northwest Territories The Northwest Territories is embarking on an era of opportunity and growth. Global economies are changing, new markets are growing, and international focus is shifting north – and we are poised to take full advantage of this incredible opportunity. Our vast natural resource base continues to provide the backbone to our territorial economy and provide opportunities to our residents. The NWT exports approximately $3 billion in diamonds and oil annually. However, signifi cant potential remains. Last year industry bid over $500 million in the Sahtu Region for land parcels that will be explored for oil potential. The rugged, pristine and isolated nature of the Northwest Territories is also a perfect fi t for the large and growing international tourism market – tourism contributes $100 million annually to our economy, and, like our resource industry, it is on the brink of tremendous growth. Our smaller industries are also capitalizing on the unique Northern setting. -
Downloaded 09/25/21 08:21 AM UTC 1708 JOURNAL of HYDROMETEOROLOGY VOLUME 18
JUNE 2017 W E N E T A L . 1707 Evaluation of MRMS Snowfall Products over the Western United States a,b c,d d c b YIXIN WEN, PIERRE KIRSTETTER, J. J. GOURLEY, YANG HONG, ALI BEHRANGI, a,e AND ZACHARY FLAMIG a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California c School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma d NOAA/National Severe Storms Laboratory, Norman, Oklahoma e School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 18 November 2016, in final form 21 February 2017) ABSTRACT Snow is important to water resources and is of critical importance to society. Ground-weather-radar-based snowfall observations have been highly desirable for large-scale weather monitoring and water resources applications. This study conducts an evaluation of the Multi-Radar Multi-Sensor (MRMS) quantitative es- timates of snow rate using the Snowpack Telemetry (SNOTEL) daily snow water equivalent (SWE) datasets. A detectability evaluation shows that MRMS is limited in detecting very light snow (daily snow accumulation ,5 mm) because of the quality control module in MRMS filtering out weak signals (,5dBZ). For daily snow accumulation greater than 10 mm, MRMS has good detectability. The quantitative compar- isons reveal a bias of 277.37% between MRMS and SNOTEL. A majority of the underestimation bias occurs in relatively warm conditions with surface temperatures ranging from 2108 to 08C. A constant reflectivity– SWE intensity relationship does not capture the snow mass flux increase associated with denser snow particles at these relatively warm temperatures. -
A Lysimetric Snow Pillow Station at Kùhtai/Tyrol R. KIRNBAUER & G. BLÔSCHL Institut Fur Hydraulik, Gewâsserkunde U. Wasse
Hydrology in Mountainous Regions. J - Hydrological Measurements; the Water Cycle (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 193, 1990. A lysimetric snow pillow station at Kùhtai/Tyrol R. KIRNBAUER & G. BLÔSCHL Institut fur Hydraulik, Gewâsserkunde u. Wasserwirtschaft, Technische Universitât Wien, Karlsplatz 13, 1040 Vienna, Austria ABSTRACT For properly forecasting snowmeIt-runoff the understanding of processes associated with a melting snow cover may be of primary importance. For this purpose a snow monitoring station was installed at Kuhtai/Tyrol at an elevation of 1930 m a.s.l. In order to study individual physical processes typical snow cover situations are examined. These situations include cold and wet snow under varying weather conditions. Based on a few examples the diversity of phenomena occuring at the snow surface and within the snow cover is demonstrated. INTRODUCTION Within a short-term flood-forecasting system a snowmelt model should be capable of representing extreme conditions. As Leavesley (1989) points out, a more physically based understanding of the processes involved will improve forecast capabilities. Subjective watching of phenomena together with measuring adequate data of sufficient accuracy and time resolution may form the foundations of process understanding. Most field studies performed so far concentrated on investigating the energy input to snow, particularly under melting conditions (see e.g. Kuusisto, 1986). Differences in the relative importance of processes during contrasting weather conditions have been reported by numerous authors (e.g. Lang, 1986). Considering these differences some of the authors (e.g. Anderson, 1973) distinguished between advection and radiation melt situations in their models. In this study meteorological data and snowpack observations from an alpine experimental plot are presented. -
Estimating Snow Water Equivalent on Glacierized High Elevation Areas (Forni Glacier, Italy)
1 Estimating the snow water equivalent on glacierized high elevation 2 areas (Forni Glacier, Italy) 3 4 Senese Antonella1, Maugeri Maurizio1, Meraldi Eraldo2, Verza Gian Pietro3, Azzoni Roberto Sergio1, 5 Compostella Chiara4, Diolaiuti Guglielmina1 6 7 1 Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy. 8 2 ARPA Lombardia, Centro Nivometeorologico di Bormio, Bormio, Italy. 9 3 Ev-K2-CNR - Pakistan, Italian K2 Museum Skardu Gilgit Baltistan, Islamabad, Pakistan. 10 4 Department of Earth Sciences, Università degli Studi di Milano, Milan, Italy. 11 12 Correspondence to: Antonella Senese ([email protected]) 13 14 Abstract. 15 We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an Automatic 16 Weather Station corroborated by data resulting from field campaigns on the Forni Glacier in Italy. The aim of the analyses is 17 to estimate the SWE of new snowfall and the annual peak of SWE based on the average density of the new snow at the site 18 (corresponding to the snowfall during the standard observation period of 24 hours) and automated depth measurements, as 19 well as to find the most appropriate method for evaluating SWE at this measuring site. 20 The results indicate that the daily SR50 sonic ranger measures allow a rather good estimation of the SWE (RMSE of 45 mm 21 w.e. if compared with snow pillow measurements), and the available snow pit data can be used to define the mean new snow 22 density value at the site. For the Forni Glacier measuring site, this value was found to be 149 ± 6 kg m-3. -
Polar Continental Shelf Program Science Report 2019: Logistical Support for Leading-Edge Scientific Research in Canada and Its Arctic
Polar Continental Shelf Program SCIENCE REPORT 2019 LOGISTICAL SUPPORT FOR LEADING-EDGE SCIENTIFIC RESEARCH IN CANADA AND ITS ARCTIC Polar Continental Shelf Program SCIENCE REPORT 2019 Logistical support for leading-edge scientific research in Canada and its Arctic Polar Continental Shelf Program Science Report 2019: Logistical support for leading-edge scientific research in Canada and its Arctic Contact information Polar Continental Shelf Program Natural Resources Canada 2464 Sheffield Road Ottawa ON K1B 4E5 Canada Tel.: 613-998-8145 Email: [email protected] Website: pcsp.nrcan.gc.ca Cover photographs: (Top) Ready to start fieldwork on Ward Hunt Island in Quttinirpaaq National Park, Nunavut (Bottom) Heading back to camp after a day of sampling in the Qarlikturvik Valley on Bylot Island, Nunavut Photograph contributors (alphabetically) Dan Anthon, Royal Roads University: page 8 (bottom) Lisa Hodgetts, University of Western Ontario: pages 34 (bottom) and 62 Justine E. Benjamin: pages 28 and 29 Scott Lamoureux, Queen’s University: page 17 Joël Bêty, Université du Québec à Rimouski: page 18 (top and bottom) Janice Lang, DRDC/DND: pages 40 and 41 (top and bottom) Maya Bhatia, University of Alberta: pages 14, 49 and 60 Jason Lau, University of Western Ontario: page 34 (top) Canadian Forces Combat Camera, Department of National Defence: page 13 Cyrielle Laurent, Yukon Research Centre: page 48 Hsin Cynthia Chiang, McGill University: pages 2, 8 (background), 9 (top Tanya Lemieux, Natural Resources Canada: page 9 (bottom -
Inuvialuit Settlement Region Sachs Harbour Hunters and Trappers
WILDLIFE ACT LOI SUR LA FAUNE INUVIALUIT SETTLEMENT REGION RÈGLEMENT SUR LE COMITÉ DE SACHS HARBOUR HUNTERS AND CHASSEURS ET DE TRAPPEURS TRAPPERS COMMITTEE REGULATIONS DE SACHS HARBOUR DE LA R-035-93 RÉGION DÉSIGNÉE DES INUVIALUIT R-035-93 AMENDED BY MODIFIÉ PAR R-071-95 R-071-95 R-112-95 R-112-95 R-052-96 R-052-96 R-204-96 R-204-96 R-038-97 R-038-97 R-082-97 R-082-97 R-051-98 R-051-98 R-088-98 (CIF 01/08/98) R-088-98 (EEV1998-08-01) R-066-2007 R-066-2007 R-033-2009 R-033-2009 R-152-2009 R-152-2009 R-033-2010 R-033-2010 R-073-2010 R-073-2010 R-047-2013 R-047-2013 R-046-2015 R-046-2015 R-076-2015 R-076-2015 R-094-2015 R-094-2015 R-142-2018 R-142-2018 R-006-2019 R-006-2019 R-087-2019 R-087-2019 This consolidation is not an official statement of the La présente codification administrative ne constitue pas law. It is an office consolidation prepared by le texte officiel de la loi; elle n’est établie qu’à titre Legislation Division, Department of Justice, for documentaire par les Affaires législatives du ministère convenience of reference only. The authoritative text de la Justice. Seuls les règlements contenus dans les of regulations can be ascertained from the Revised Règlements révisés des Territoires du Nord-Ouest Regulations of the Northwest Territories, 1990 and the (1990) et dans les parutions mensuelles de la Partie II monthly publication of Part II of the Northwest de la Gazette des Territoires du Nord-Ouest ont force Territories Gazette. -
Weather and Climate Inventory National Park Service Pacific Island Network
National Park Service U.S. Department of the Interior Natural Resource Program Center Fort Collins, Colorado Weather and Climate Inventory National Park Service Pacific Island Network Natural Resource Technical Report NPS/PACN/NRTR—2006/003 ON THE COVER Rainbow near War in the Pacific National Historical Park Photograph copyrighted by Cory Nash Weather and Climate Inventory National Park Service Pacific Island Network Natural Resource Technical Report NPS/PACN/NRTR—2006/003 WRCC Report 06-04 Christopher A. Davey, Kelly T. Redmond, and David B. Simeral Western Regional Climate Center Desert Research Institute 2215 Raggio Parkway Reno, Nevada 89512-1095 August 2006 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the National Park Service conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. The Natural Resource Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientific literature reviews; and peer reviewed proceedings of technical workshops, conferences, or symposia.