Unit 3: Industrialization, Immigration, Problems, and Progressives I

Total Page:16

File Type:pdf, Size:1020Kb

Unit 3: Industrialization, Immigration, Problems, and Progressives I Unit 3: Industrialization, Immigration, Problems, and Progressives I. WHat was the Second Industrial Revolution? A. The First Industrial Revolution in America began in the the early 1800s. It changed the products were made, from by hand to machine-made. 1. Work moved from homes to factories. 2. It included advances in transportation, such as railroads 3. Communication advances included the telegraph. B. The Second Industrial Revolution in the late 1800s, was a period of rapid in U.S. manufacturing, and introduced new technology and sources of power. C. By the mid-1890s, the U.S. had become the world’s industrial leader. 1. Causes of the Second Industrial Revolution: a. Greater ability to use natural resources b. A growing population c. Transportation advances, ex: railroads d. Rising immigration e. Inventions and innovations f. Increasing business investment g. Government policies assisting the growth of business D. Steel: 1. In the mid-1850s, Henry Bessemer invented the Bessemer Process, a way to manufacture steel quickly and cheaply by blasting hot air through molten iron to quickly remove impurities. 2. The Bessemer Process helped to increase steel production. 3. As steel prices dropped, so did the cost of building railroads. a. Steel track and steel boilers allowed for faster travel and heavier loads. b. Passenger cars became more luxurious c. Products could be sent to market faster than ever before d. Western population increased e. More people were employed in the railroad industry New Energy Sources: 1. Oil as an energy source a. Oil could be refined into kerosene for heating and cooking. b. It could be refined into gasoline for engines. 2. Electricity for light and power.
Recommended publications
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • Three Hundred Years of Assaying American Iron and Iron Ores
    Bull. Hist. Chem, 17/18 (1995) 41 THREE HUNDRED YEARS OF ASSAYING AMERICAN IRON AND IRON ORES Kvn K. Oln, WthArt It can reasonably be argued that of all of the industries factors were behind this development; increased pro- that made the modern world possible, iron and steel cess sophistication, a better understanding of how im- making holds a pivotal place. Without ferrous metals purities affected iron quality, increased capital costs, and technology, much of the modem world simply would a generation of chemically trained metallurgists enter- not exist. As the American iron industry grew from the ing the industry. This paper describes the major advances isolated iron plantations of the colonial era to the com- in analytical development. It also describes how the plex steel mills of today, the science of assaying played 19th century iron industry serves as a model for the way a critical role. The assayer gave the iron maker valu- an expanding industry comes to rely on analytical data able guidance in the quest for ever improving quality for process control. and by 1900 had laid down a theoretical foundation for the triumphs of steel in our own century. 1500's to 1800 Yet little is known about the assayer and how his By the mid 1500's the operating principles of assay labo- abilities were used by industry. Much has been written ratories were understood and set forth in the metallurgi- about the ironmaster and the furnace workers. Docents cal literature. Agricola's Mtll (1556), in period dress host historic ironmaking sites and inter- Biringuccio's rthn (1540), and the pret the lives of housewives, miners, molders, clerks, rbrbühln (Assaying Booklet, anon.
    [Show full text]
  • Henry Bessemer and the Mass Production of Steel
    Henry Bessemer and the Mass Production of Steel Englishmen, Sir Henry Bessemer (1813-1898) invented the first process for mass-producing steel inexpensively, essential to the development of skyscrapers. Modern steel is made using technology based on Bessemer's process. Bessemer was knighted in 1879 for his contribution to science. The "Bessemer Process" for mass-producing steel, was named after Bessemer. Bessemer's famous one-step process for producing cheap, high-quality steel made it possible for engineers to envision transcontinental railroads, sky-scraping office towers, bay- spanning bridges, unsinkable ships, and mass-produced horseless carriages. The key principle is removal of impurities from the iron by oxidation with air being blown through the molten iron. The oxidation also raises the temperature of the iron mass and keeps it molten. In the U.S., where natural resources and risk-taking investors were abundant, giant Bessemer steel mills sprung up to drive the expanding nation's rise as a dominant world economic and industrial leader. Why Steel? Steel is the most widely used of all metals, with uses ranging from concrete reinforcement in highways and in high-rise buildings to automobiles, aircraft, and vehicles in space. Steel is more ductile (able to deform without breakage) and durable than cast iron and is generally forged, rolled, or drawn into various shapes. The Bessemer process revolutionized steel manufacture by decreasing its cost. The process also decreased the labor requirements for steel-making. Prior to its introduction, steel was far too expensive to make bridges or the framework for buildings and thus wrought iron had been used throughout the Industrial Revolution.
    [Show full text]
  • 6 X 10 Long Title.P65
    Cambridge University Press 978-0-521-15382-9 - Heroes of Invention: Technology, Liberalism and British Identity, 1750-1914 Christine MacLeod Index More information Index Acade´mie des Sciences 80, 122, 357 arms manufacturers 236–9 Adam, Robert 346 Armstrong, William, Baron Armstrong of Adams, John Couch 369 Cragside Aikin, John 43, 44, 71 arms manufacturer 220 Airy, Sir George 188, 360 as hero of industry 332 Albert, Prince 24, 216, 217, 231, 232, 260 concepts of invention 268, 269, 270 Alfred, King 24 entrepreneurial abilities of 328 Amalgamated Society of Engineers, knighted 237–8 Machinists, Millwrights, Smiths and monument to 237 Pattern Makers 286–7 opposition to patent system 250, 267–8 ancestor worship, see idolatry portrait of 230 Anderson’s Institution, Glasgow 113, 114, president of BAAS 355 288, 289 Punch’s ‘Lord Bomb’ 224–5 Arago, Franc¸ois 122, 148, 184 Ashton, T. S. 143 Eloge, to James Watt 122–3, 127 Athenaeum, The 99–101, 369 Arkwright, Sir Richard, Atkinson, T. L. 201 and scientific training 359 Atlantic telegraph cables 243, 245, 327 as national benefactor 282 Arthur, King 15 as workers’ hero 286 Askrill, Robert 213 commemorations of, 259 Associated Society of Locomotive Cromford mills, painting of 63 Engineers and Firemen 288 enterprise of 196, 327, 329 era of 144 Babbage, Charles 276, 353, 356–7, factory system 179 375, 383 in Erasmus Darwin’s poetry 67–8 Bacon, Sir Francis in Maria Edgeworth’s book 171 as discoverer 196 in Samuel Smiles’ books 255, 256 as genius 51, 53, 142 invention of textile machinery 174, 176 bust of 349 knighthood 65 n.
    [Show full text]
  • Primary Mill Fabrication
    Metals Fabrication—Understanding the Basics Copyright © 2013 ASM International® F.C. Campbell, editor All rights reserved www.asminternational.org CHAPTER 1 Primary Mill Fabrication A GENERAL DIAGRAM for the production of steel from raw materials to finished mill products is shown in Fig. 1. Steel production starts with the reduction of ore in a blast furnace into pig iron. Because pig iron is rather impure and contains carbon in the range of 3 to 4.5 wt%, it must be further refined in either a basic oxygen or an electric arc furnace to produce steel that usually has a carbon content of less than 1 wt%. After the pig iron has been reduced to steel, it is cast into ingots or continuously cast into slabs. Cast steels are then hot worked to improve homogeneity, refine the as-cast microstructure, and fabricate desired product shapes. After initial hot rolling operations, semifinished products are worked by hot rolling, cold rolling, forging, extruding, or drawing. Some steels are used in the hot rolled condition, while others are heat treated to obtain specific properties. However, the great majority of plain carbon steel prod- ucts are low-carbon (<0.30 wt% C) steels that are used in the annealed condition. Medium-carbon (0.30 to 0.60 wt% C) and high-carbon (0.60 to 1.00 wt% C) steels are often quenched and tempered to provide higher strengths and hardness. Ironmaking The first step in making steel from iron ore is to make iron by chemically reducing the ore (iron oxide) with carbon, in the form of coke, according to the general equation: Fe2O3 + 3CO Æ 2Fe + 3CO2 (Eq 1) The ironmaking reaction takes place in a blast furnace, shown schemati- cally in Fig.
    [Show full text]
  • Comparative Properties of Wrought Iron Made by Hand Puddling and by the Aston Process
    RP124 COMPARATIVE PROPERTIES OF WROUGHT IRON MADE BY HAND PUDDLING AND BY THE ASTON PROCESS By Henry S. Rawdon and 0. A. Knight ABSTRACT The hand-puddling method of making wrought iron has not greatly changed for a century. More economical methods in the manufacture of thjs product is the crying need of the industry. A radically new process, recently developed, is now coming into commercial use, in which pig iron, which h>as been refined in a Bessemer converter, is poured into molten slag so as to produce intimate mingling of the two. A comparison of the properties of wrought iron made thus with that made by hand puddling forms the subject of this report. The test results failed to show any marked difference in the products of the two processes. The new product appears to have all of the essential properties usually connoted by the name—wrought iron, CONTENTS Page I. Introduction 954 1. Resume of the Aston process 955 II. Purpose and scope of the investigation 959 III. Materials and methods 960 1. Materials 960 (a) Pipe 960 (6) "Rounds" 961 (c) Slag 962 2. Methods 962 IV. Results 962 1. Composition 962 2. Density 964 3. Mechanical properties 965 (a) Pipe materials 965 (1) Tensile properties 965 (2) Torsional properties 970 (3) Flattening tests 971 (6) 1-inch rounds 972 (1) Tensile properties 972 (2) Torsional properties 973 (3) Impact resistance 973 4. Corrosion resistance 976 (a) Laboratory corrosion tests 976 (6) Electrolytic solution potential 979 5. Structural examination 979 (a) Pipe materials 980 (1) BaU 980 (2) Muck bar 980 (3) Skelp 981 (4) Pipe 981 (&) 1-inch rounds 981 (c) Slag 981 953 : 954 Bureau of Standards Journal of Research [vol.
    [Show full text]
  • Final Exam Questions Generated by the Class
    Final Exam Questions Generated by the Class Module 8 – Iron and Steel Describe some of the business practices that Carnegie employed that allowed him to take command of the steel industry. Hard driving, vertical integration, price making Which of the following was/is NOT a method used to make steel? A. Puddling B. Bessemer process C. Basic oxygen process D. Arc melting E. None of the above What are the three forms of iron, and what is the associated carbon content of each? Wrought <.2% Steel .2-2.3% Cast Iron 2.3-4.2% How did Andrew Carnegie use vertical integration to gain control of the steel market? Controlled the entire steel making process from mining to final product Who created the best steel for several hundred years while making swords during the 1500’s? A. Syria B. Egypt C. Japan D. England Describe the difference between forging and casting. When forging, you beat and hammer the material into the desired shape. When casting, you pour liquid into a mold to shape it. Describe the difference between steel and wrought iron. Steel has less carbon Which of the following forms of iron has a low melting point and is not forgeable? A. Steel B. Pig Iron C. Wrought Iron D. None of the Above What two developments ushered in the transition from the Bronze Age to the Iron Age? More iron ore and greater ability to change its properties using readily available alloying agent (carbon) 1 Final Exam Questions Generated by the Class What is the difference between ferrite and austenite? A.
    [Show full text]
  • Causes and Technologies of the Industrial Revolution
    FCPS World II SOL Standards: WHII 9a Causes and Technologies of the Industrial Revolution You Mean Most People Used to Live on Farms? Farms to Factories Starting in the middle of the 18th century, technology and lifestyles in many parts of the world changed dramatically. Factories were built, technology developed, populations increased and many people moved from farms to cities to work in a new economy. We call these changes the Industrial Revolution. This began in England but spread to the rest of Western Europe and the United States. Causes of the Industrial Revolution The Industrial Revolution began in England for several reasons. First, there was a large supply of natural resources. Coal and other fossil fuels were used to Spread of Industrialization in Europe create power for factories. Iron ore was used to build Source: http://althistory.wikia.com/wiki/File:OTL_Europe_Industrial_Revolution_Map.png factory equipment and manufactured goods. Another key reason was the British enclosure movement. In England rich landowners bought the farms of poor peasants and separated them with fences. This increased food production but decreased the need for labor on the farms. More people could move to cities and work in factories. During the Industrial Revolution, new technologies and inventions transformed society in many ways. -The spinning jenny was invented by James Hargreaves. It helped turn cotton and wool into thread, speeding the production of textiles. -The steam engine was invented by James Watt. It used burning coal to turn water into steam and generate electricity. This electricity was used to power factories. -Englishman Edward Jenner invented a smallpox vaccine, saving people from this terrible disease.
    [Show full text]
  • Ironworks and Iron Monuments Forges Et
    IRONWORKS AND IRON MONUMENTS FORGES ET MONUMENTS EN FER I( ICCROM i ~ IRONWORKS AND IRON MONUMENTS study, conservation and adaptive use etude, conservation et reutilisation de FORGES ET MONUMENTS EN FER Symposium lronbridge, 23-25 • X •1984 ICCROM rome 1985 Editing: Cynthia Rockwell 'Monica Garcia Layout: Azar Soheil Jokilehto Organization and coordination: Giorgio Torraca Daniela Ferragni Jef Malliet © ICCROM 1985 Via di San Michele 13 00153 Rome RM, Italy Printed in Italy Sintesi Informazione S.r.l. CONTENTS page Introduction CROSSLEY David W. The conservation of monuments connected with the iron and steel industry in the Sheffield region. 1 PETRIE Angus J. The No.1 Smithery, Chatham Dockyard, 1805-1984 : 'Let your eye be your guide and your money the last thing you part with'. 15 BJORKENSTAM Nils The Swedish iron industry and its industrial heritage. 37 MAGNUSSON Gert The medieval blast furnace at Lapphyttan. 51 NISSER Marie Documentation and preservation of Swedish historic ironworks. 67 HAMON Francoise Les monuments historiques et la politique de protection des anciennes forges. 89 BELHOSTE Jean Francois L'inventaire des forges francaises et ses applications. 95 LECHERBONNIER Yannick Les forges de Basse Normandie : Conservation et reutilisation. A propos de deux exemples. 111 RIGNAULT Bernard Forges et hauts fourneaux en Bourgogne du Nord : un patrimoine au service de l'identite regionale. 123 LAMY Yvon Approche ethnologique et technologique d'un site siderurgique : La forge de Savignac-Ledrier (Dordogne). 149 BALL Norman R. A Canadian perspective on archives and industrial archaeology. 169 DE VRIES Dirk J. Iron making in the Netherlands. 177 iii page FERRAGNI Daniela, MALLIET Jef, TORRACA Giorgio The blast furnaces of Capalbio and Canino in the Italian Maremma.
    [Show full text]
  • United States Patent Office 2,07,568 Process for Purfying
    Patented Apr. 20, 1937 2,077,568 UNITED STATES PATENT OFFICE 2,07,568 PROCESS FOR PURFYING. FERROUS METALS Augustus B. Kinzel, Douglaston, N. Y., assignor, by mesne assignments, to Union Carbide and Carbon Corporation, a corporation of New York No Drawing. Application April 3, 1935, Serial No. 4440 2 Claims. (C. 75-60) The invention relates to the removal of oxidiz quently is had to stopping the blow as the end able impurities from ferrous metals by blowing point is approached and taking a coupon of the molten metal with an oxidizing blast, and has metal in order to determine by inspection its ap for its object the provision of means whereby proximate composition. But even this practice 5 control over the quality of the product may be leaves much to be desired, for the difficulty re- 5 greatly increased. mains of stopping the blow at exactly the right The method of the invention is particularly point during a necessarily short time interval. applicable to, and will be described in connection It WOuld therefore seem desirable to slow down with, the manufacture of steel by processes of the the end reactions by decreasing the blast rate as 10 Bessemer or converter type, wherein the oxida the end of the blow is approached; but in the ordi- 0 tion is customarily accomplished by means of an nary bottom blown converter this is impossible, air blast. W because a high blast rate is necessary in order It is generally believed that Bessemer steel is, to prevent the metal from running through the for some purposes, inferior in quality to steel bottom tuyeres.
    [Show full text]
  • The 2Nd Industrial Revolution After the Civil War Was Over, Americans Began Looking for Ways To, Not Only Rebuild, but to Grow and Develop New Industries
    The 2nd Industrial Revolution After the Civil War was over, Americans began looking for ways to, not only rebuild, but to grow and develop new industries. There was an increasing push out West to find new land and the flourishing cities in California were demanding new transportation methods for gold and for supplies. Historians have labeled the years from 1870-1914 as the period of the Second Industrial Revolution, a period of rapid growth in U.S. manufacturing the late 1800’s. First Industrial Revolution: coal, iron, railroads and textiles (fabrics) Second Industrial Revolution: electricity, petroleum and steel …which led to Electrically-run machinery, industrial equipment, personal appliances and medical breakthrough. Results Steel & Oil Another important technological breakthrough in the late 1800s was the use Many of the changes that occurred during of petroleum, or oil, as a power source. this period had to do with new products People had known about oil for thousands simply replacing old ones. For instance, of years, but had few ways to use it. during this time, steel began to replace iron. However, in the 1850’s, scientists invented a Steel was being utilized for construction way to convert oil into a fuel called projects, industrial machines, railroads, kerosene. Kerosene could be used for ships and many other items. Steel cooking, heating and lighting. production made it possible for rail lines to be built at competitive costs, which further Electricity spread transportation. In addition to kerosene, electricity became Steel is iron that has been made stronger by a critical source of light and power.
    [Show full text]
  • The Chemistry and Metallurgy of Iron
    Carl Herrmann AHS Capstone Paper 3 12/17/2009 The Chemistry and Metallurgy of Iron Iron and steel workers employed a variety of techniques to convert iron ores into metallic iron, all of which utilized the same basic chemical changes. Their goal was first to liberate the metallic iron from the oxygen in iron ores, then to use oxygen to remove other impurities from the molten iron. The different techniques of doing so represented different levels of technological development, and often achieved a similar material through a less labor-intensive process. However, some methods, such as the Bessemer process, produced a different and superior material. Before the advent of cheap steel, artisanal ironworks converted iron ore into two different materials – wrought iron and cast iron. Whether producing the tough, durable wrought iron or brittle cast iron, skilled artisan converted the ore to saleable metal product with little understanding of the fundamental chemical reactions. While the chemistry behind these reactions changed little between the processes, the workers had little understanding of the chemical nature of the changes they performed, and the day to day work in forges and blast furnaces bore little resemblance to one another. Smelting iron is the conversion of mineral iron ores into metallic iron. Although their chemical composition varies according to the ores, all iron ores share one characteristic. They all contain iron and oxygen. Some, such as Hematite (Fe2O3) and Magnetite (Fe3O4), contain only these two elements, while others, such as goethite (FeO(OH)) and siderite (FeCO3 ) contain other elements. To remove the oxygen pure carbon is burned, creating CO gas.
    [Show full text]