Chapter 4: Sudden Impact: the Severe Weather Events of 2017

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4: Sudden Impact: the Severe Weather Events of 2017 CHAPTER 4 SUDDEN IMPACT: THE SEVERE WEATHER EVENTS OF 2017 State of Public Health in the Caribbean Report 2017-2018 Climate and Health: Averting and Responding to an Unfolding Health Crisis CHAPTER 4: SUDDEN IMPACT: THE SEVERE WEATHER EVENTS OF 2017 Source: “Hurricane Irma turns Virgin Islands brown,” NASA Earth Observatory (https://earthobservatory.nasa.gov/IOTD/view.php?id=90952) State of Public Health in the Caribbean Report 2017-2018 Climate and Health: Averting and Responding to an Unfolding Health Crisis CONTENTS List of Figures ........................................................................................................................................................................... iii List of Tables ............................................................................................................................................................................. iv Introduction .......................................................................................................................................................................... 124 1. Conceptual framework for analysis of health impact and response ................................................... 124 2. Methodology for data collection ......................................................................................................................... 127 3. Description of the severe weather events of 2017 ..................................................................................... 128 3.1 Hurricanes Irma and Maria ................................................................................................................................ 128 3.2 The vulnerability of Dominica ........................................................................................................................... 133 4. Health outcomes ....................................................................................................................................................... 134 4.1 Mortality, injury and displacement ................................................................................................................. 134 4.2 Safety and security ................................................................................................................................................. 136 4.3 Mental health ........................................................................................................................................................... 137 4.4 Gastro-intestinal disease ..................................................................................................................................... 138 4.5 Malnutrition: under- and over-nutrition ...................................................................................................... 141 4.6 Fever ............................................................................................................................................................................ 141 4.7 Respiratory conditions ......................................................................................................................................... 143 4.8 Mosquito-borne disease ...................................................................................................................................... 144 4.9 Leptospirosis ............................................................................................................................................................ 148 5. Environmental determinants of health ........................................................................................................... 150 5.1 Buildings and infrastructure .............................................................................................................................. 150 Impact ............................................................................................................................................................................ 150 Response ...................................................................................................................................................................... 161 5.2 Safe drinking water and sanitation ................................................................................................................. 167 Impact ............................................................................................................................................................................ 167 Response ...................................................................................................................................................................... 168 5.3 Food security, safety and nutrition ................................................................................................................. 170 Impact ............................................................................................................................................................................ 170 Response ...................................................................................................................................................................... 171 5.4 Disease vectors ........................................................................................................................................................ 174 Impact ............................................................................................................................................................................ 174 Response ...................................................................................................................................................................... 175 5.5 Air quality and pollution ..................................................................................................................................... 176 Impact ............................................................................................................................................................................ 176 Response ...................................................................................................................................................................... 177 6. Building blocks of health systems ...................................................................................................................... 177 6.1 Leadership and governance ............................................................................................................................... 177 Impact ............................................................................................................................................................................ 177 Response ...................................................................................................................................................................... 177 6.2 Health workforce .................................................................................................................................................... 181 Impact ............................................................................................................................................................................ 181 Response ...................................................................................................................................................................... 183 6.3 Health information systems ............................................................................................................................... 185 Impact ............................................................................................................................................................................ 185 Response ...................................................................................................................................................................... 186 6.4 Medical products and technologies ................................................................................................................ 188 Impact ............................................................................................................................................................................ 188 ii | State of Public Health in the Caribbean Report 2017-2018 Climate and Health: Averting and Responding to an Unfolding Health Crisis Response ...................................................................................................................................................................... 188 6.5 Service delivery ....................................................................................................................................................... 188 6.6 Finance ........................................................................................................................................................................ 189 Impact ............................................................................................................................................................................ 189 Response ...................................................................................................................................................................... 193 Conclusion ............................................................................................................................................................................
Recommended publications
  • SUPPORTING RESILIENT RECONSTRUCTION in DOMINICA Building Back Better for a Resilient Future
    SUPPORTING RESILIENT RECONSTRUCTION IN DOMINICA Building back better for a resilient future AT A GLANCE Country Dominica Damage to housing across all parishes following Hurricane Maria Risks Hurricanes; Floods; Landslides; Earthquakes Area of Engagement Enabling resilient recovery By improving the uptake of resilient building practices, Dominica can limit the damage from natural hazards. Data source: Hurricane Maria Post-Disaster Needs Assessment DOMINICA’S VULNERABILITY TO NATURAL HAZARDS Dominica is located within the Atlantic hurricane belt and SHARING RESULTS, LEVERAGING is extremely vulnerable to high-intensity weather events FINANCING AND STARTING TO such as high winds, excess rainfall and hurricanes. Physical REBUILD development in Dominica is concentrated along narrow coastal areas, particularly in the south and west. Housing is Following both Hurricane Maria and Tropical Storm Erika, not built to withstand extreme natural hazards, with wood and Dominica conducted Post-Disaster Needs Assessments (PDNAs), galvanized sheeting being most common for roofing and with with support from the ACP-EU NDRR Program*, which is few confined masonry buildings. managed by the Global Facility for Disaster Reduction and Recovery (GFDRR) and the World Bank. On September 18, 2017, Hurricane Maria hit Dominica with catastrophic effects. Hurricane Maria was one of the most The Hurricane Maria PDNA identified housing as the most rapidly intensifying storms in recent history, leaving Dominica affected sector and one of the most important and challenging exposed to winds, flash floods and landslides. The impacts of areas for recovery. Building on the recommendations of the Hurricane Maria were severe both for the country’s economy Hurricane Maria PDNA, the ACP-EU NDRR Program launched as well as the human development of its citizens, and affected the “Enhancing Resilient Reconstruction in Dominica” project.
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • Persistent Hydrological Consequences of Hurricane Maria in Puerto Rico
    RESEARCH LETTER Persistent Hydrological Consequences of Hurricane 10.1029/2018GL081591 Maria in Puerto Rico Special Section: P. W. Miller1,2 , A. Kumar1, T. L. Mote1 , F. D. S. Moraes1 , and D. R. Mishra1 The Three Major Hurricanes of 2017: Harvey, Irma and Maria 1Department of Geography, University of Georgia, Athens, GA, USA, 2Now at Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA Key Points: • Landscape vegetation metrics for Puerto Rico remained depressed Abstract In September 2017, Hurricane Maria severely defoliated Puerto Rico's landscape, coinciding below pre‐Maria values for with a series of persistent hydrological consequences involving the atmospheric, terrestrial, and marine approximately two months after components of the water cycle. During the defoliated period, the atmosphere's thermodynamic structure landfall 2 2 2 • Cloud and precipitation activity more strongly explained daily cloud activity (R PRE = 0.02; R POST = 0.40) and precipitation (R PRE = 0.19; demonstrated a stronger 2 R POST = 0.33) than before landfall, indicating that post‐Maria land‐atmosphere interactions were relationship to the atmospheric comparatively muted, with similar precipitation patterns also found following Hurricanes Hugo (1989) and thermodynamic profile during the defoliated period Georges (1998). Meanwhile, modeled post‐Maria runoff exceeded statistical expectations given the magnitude • Subsurface runoff responses to of contemporaneous precipitation. Enhanced runoff also coincided with greater sediment loads in nearshore rainfall and coastal suspended waters, increasing sediment content greater than twofold. This study offers a holistic narrative of sediment values remained elevated for two and four months, hydrospheric disturbance and recovery, whereby the instantaneous, large‐scale removal of vegetation is respectively accompanied by hydrologic changes “upstream” in the atmosphere and “downstream” in rivers and estuaries.
    [Show full text]
  • Hurricane Damage Detection on Four Major Caribbean Islands T ⁎ Kirsten M
    Remote Sensing of Environment 229 (2019) 1–13 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Hurricane damage detection on four major Caribbean islands T ⁎ Kirsten M. de Beursa, , Noel S. McThompsona, Braden C. Owsleya, Geoffrey M. Henebryb,c a Department of Geography and Environmental Sustainability, University of Oklahoma, United States of America b Department of Geography, Environment, and Spatial Sciences, Michigan State University, United States of America c Center for Global Change and Earth Observations, Michigan State University, United States of America ARTICLE INFO ABSTRACT Keywords: Tropical cyclones are natural events that transform into natural disasters as they approach and reach land. In Hurricanes 2017 alone, tropical cyclones caused an estimated $215 billion in damage. While MODIS data are regularly used Droughts in the analysis of hurricanes and typhoons, damage studies typically focus on just a few events without providing MODIS a comprehensive overview and comparison across events. The MODIS record is now sufficiently long to enable Disturbance standardization in time, allowing us to extend previously developed disturbance methodology and to remove Tasseled Cap dependency on land cover datasets. We apply this new approach to detect the impact of both droughts and hurricanes on the four largest Caribbean islands since 2001. We find that the percentage of disturbed land on the four islands varies from approximately 0–50% between 2001 and 2017, with the highest percentages coinciding with major droughts in Cuba, and Hurricane Maria in Puerto Rico. We demonstrate that (1) Hurricane Maria resulted in significant disturbance across 50% of Puerto Rico (4549 km2), and (2) gradual recovery started about 2.5 months after the hurricane hit.
    [Show full text]
  • Hurricane Marãa Tripled Stem Breaks and Doubled Tree Mortality Relative
    ARTICLE https://doi.org/10.1038/s41467-019-09319-2 OPEN Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms María Uriarte 1, Jill Thompson2 & Jess K. Zimmerman3 Tropical cyclones are expected to intensify under a warming climate, with uncertain effects on tropical forests. One key challenge to predicting how more intense storms will influence these ecosystems is to attribute impacts specifically to storm meteorology rather than dif- 1234567890():,; ferences in forest characteristics. Here we compare tree damage data collected in the same forest in Puerto Rico after Hurricanes Hugo (1989, category 3), Georges (1998, category 3), and María (2017, category 4). María killed twice as many trees as Hugo, and for all but two species, broke 2- to 12-fold more stems than the other two storms. Species with high density wood were resistant to uprooting, hurricane-induced mortality, and were protected from breakage during Hugo but not María. Tree inventories and a wind exposure model allow us to attribute these differences in impacts to storm meteorology. A better understanding of risk factors associated with tree species susceptibility to severe storms is key to predicting the future of forest ecosystems under climate warming. 1 Department of Ecology Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA. 2 Centre for Ecology & Hydrology Bush Estate, Penicuik, Midlothian EH26 0QB, UK. 3 Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico 00925, USA. Correspondence and requests for materials should be addressed to M.U. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1362 | https://doi.org/10.1038/s41467-019-09319-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09319-2 yclonic storms (hurricanes, cyclones, and typhoons) exposure to wind or the structure and composition of forests at Crepresent the dominant natural disturbance in coastal the time the storm struck.
    [Show full text]
  • Hurricane Maria
    Hurricane Maria Six-Month Update | April 2018 Red Cross Response Continues to Aid Communities with Urgent Needs More than six months after Hurricane Maria’s high winds We also worked to help survivors cope with day-to- and torrential rainfall devastated Puerto Rico, the U.S. day difficulties caused by the destruction of much of Virgin Islands and islands throughout the Caribbean, the the island’s power grid. For example, water pumps American Red Cross continues to provide life-sustaining aren’t functioning in many communities with ongoing support for people with urgent needs. In Maria’s wake, power outages, leaving thousands of residents thousands of hurricane survivors, particularly in more without access to safe drinking water. Red Cross isolated communities, face long-term challenges disaster workers traveled throughout Puerto Rico, brought about by severe storm damage to homes and supplying water filters to these heavily impacted infrastructure—including lack of power and clean water. areas and training people on how to purify the water they are drawing from wells, streams and rivers. Using the RC View data collection system, Red Cross volunteers and employees have been able to assess In addition, the Red Cross is providing critical health damage, identify unmet needs and target communities and mental health services for people dealing with across Puerto Rico where additional support is required. ongoing medical needs that were further complicated We have delivered vital relief items like drinking water, by damage to the health care infrastructure, as well as bulk food items and cleanup supplies, as well as tarps to those suffering from heartbreaking loss.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Regional Overview: Impact of Hurricanes Irma and Maria
    REGIONAL OVERVIEW: IMPACT OF MISSION TO HURRICANES IRMA AND MARIA CONFERENCE SUPPORTING DOCUMENT 1 The report was prepared with support of ACAPS, OCHA and UNDP 2 CONTENTS SITUATION OVERVIEW ......................................................................................................................... 4 KEY FINDINGS ............................................................................................................................................ 5 Overall scope and scale of the impact ....................................................................................... 5 Worst affected sectors ...................................................................................................................... 5 Worst affected islands ....................................................................................................................... 6 Key priorities ......................................................................................................................................... 6 Challenges for Recovery ................................................................................................................. 7 Information Gaps ................................................................................................................................. 7 RECOMMENDATIONS FOR RECOVERY ................................................................................ 10 Infrastructure ......................................................................................................................................
    [Show full text]
  • The Nurse Workforce in the Eastern Caribbean Carpio and Fuller-Wimbush
    The Nurse Workforce in the Eastern Caribbean in the Eastern Workforce Nurse The DIRECTIONS IN DEVELOPMENT Human Development Carpio and Fuller-Wimbush Carpio The Nurse Workforce in the Eastern Caribbean Meeting the Challenges of Noncommunicable Diseases Carmen Carpio and Danielle Fuller-Wimbush The Nurse Workforce in the Eastern Caribbean DIRECTIONS IN DEVELOPMENT Human Development The Nurse Workforce in the Eastern Caribbean Meeting the Challenges of Noncommunicable Diseases Carmen Carpio and Danielle Fuller-Wimbush © 2016 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved 1 2 3 4 19 18 17 16 This work is a product of the staff of The World Bank with external contributions. The findings, interpreta- tions, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved. Rights and Permissions This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) http:// creativecommons.org/licenses/by/3.0/igo.
    [Show full text]
  • Preleminary Report IP and ETA&IOTA Hurricanes .Indd
    PRELIMINARY REPORT November 2020 ConsequencesConsequences ofof thethe HurricaneHurricane 20202020 SeasonSeason onon IndigenousIndigenous CommunitiesCommunities inin CentralCentral AmericaAmerica Destruction and Resilience PRELIMINARY REPORT ON THE CONSEQUENCES OF THE 2020 HURRICANE SEASON ON INDIGENOUS COMMUNITIES IN CEN- TRAL AMERICA DESTRUCTION AND RESILIENCE NOVEMBER 2020 GENERAL COORDINATION Myrna Cunningham Kain - President of FILAC Board of Directors Jesús Amadeo Martínez - General Coordinator of the Indigenous Forum of AbyaYala FIAY GENERAL SUPERVISION Álvaro Pop - FILAC Technical Secretary Amparo Morales - FILAC Chief of Staff TECHNICAL TEAM Ricardo Changala - Coordinator of the Regional Observatory for the Rights of Indigenous Peoples ORDPI FILAC Liber- tad Pinto - Technical Team ORDPI-FILAC Jean Paul Guevara - Technical Team ORDPI-FILAC TECHNICAL SUPPORT Ernesto Marconi - FILAC Technical Program Management Gabriel Mariaca - Coordinator of Institutional Communication FILAC Dennis Mairena - Management of Technical Programs FILAC Wendy Medina - FILAC Communication and Press Office GRAPHIC DESIGN Institutional Communication - FILAC IMAGES FILAC Imaging Archive UN Photos Shutterstock Unsplash LICENSE FOR DISTRIBUTION CC-BY-NC 4.0 This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. Credit must be given to the creator Only noncommercial uses of the work are permitted DOGOTAL ACCESS ON: https://indigenascovid19.red/monitoreo/ FILAC 20 de Octubre 2287 esq. Rosendo Gutiérrez [email protected] La Paz, Bolivia SUPPORT Ford Foundation, AECID and Pawanka Fund Introduction This document is a preliminary report on the human and material impacts of hurricanes Eta and Iota on the Central American isthmus. It has been an extraordinary fact that two hurricanes of this size and strength have hit the region so close in time, affecting all Central American countries.
    [Show full text]
  • Natural Disasters in Latin America and the Caribbean
    NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods.
    [Show full text]
  • 2015 Report on the Status of the South
    STATUS OF THE SOUTH CAROLINA COASTAL PROPERTY INSURANCE MARKET STATUS REPORT FOR 2015 SUBMITTED BY: South Carolina Department of Insurance 1201 Main Street, Suite 1000 Columbia, South Carolina 29201 January 29, 2016 Table of Contents I. Executive Summary 3 II. South Carolina Wind and Hail Underwriting Association 7 III. Department of Insurance Data Call 21 IV. Department of Insurance Outreach 26 V. October 2015 Severe Storms and Flooding 37 VI. Catastrophe Modeling 45 VII. Flood Insurance 48 VIII. Earthquake Insurance 52 IX. Conclusions 53 X. Recommended Enhancements and Modifications 54 XI. Appendix 55 2 I. Executive Summary A. Overview of 2015 Hurricane Season Activity during the 2015 hurricane season included several historic events. It began when Tropical Storm Ana made landfall along the Grand Strand near Myrtle Beach, South Carolina on May 10, 2015. Tropical Storm Ana was an unusually early storm which developed quickly but, fortunately, had limited impact. This storm is important to note as it developed before the official start of the hurricane season on June 1st; in fact, it is the second earliest landfalling tropical cyclone on record for the United States.1 Ana was also one of only two storms to make landfall in the United States2 and was the only tropical storm whose path crossed the state of South Carolina. Ana brought about six inches of rain to North Myrtle Beach and Kinston, NC, but the highest wind gusts were limited to 50 to 60 miles per hour. The storm’s damage was primarily in the form of beach erosion and limited flooding. Shortly thereafter, Tropical Storm Bill formed in the Gulf Coast, but quickly fizzled into a tropical depression that headed north into Texas and Oklahoma before turning east.
    [Show full text]