High Commissioner's Dialogue on Protection Challenges

Total Page:16

File Type:pdf, Size:1020Kb

High Commissioner's Dialogue on Protection Challenges High Commissioner’s Dialogue on Protection Challenges: Protection and Resilience during Pandemics Refugees International Written Statement for the session on Climate Action Climate-related impacts are leading to displacement and forcing people to migrate today We are in the midst of a climate crisis. The disruptive effects of climate change are being felt today. Nowhere is this more evident than in climate-related disaster displacement trends. For example, in 2019, weather-related events led to almost 24 million displaced people around the world, or more than three times the amount displaced by conflict the same year.1 While not all of these events are necessarily climate-related, they do speak to a worrying trend; namely, that sudden-onset weather events, such as hurricanes or floods, are increasing in frequency and intensity due to climate change. The climate science is clear. For instance, in 2017, Hurricane Maria was 30 percent more powerful than any other storm ever recorded in Puerto Rico – an occurrence that climate change is making five times more likely.2 The storm displaced 86,000 Puerto Ricans, with some 130,000 leaving the island for mainland United States in the aftermath.3 It also leveled much of the island Dominica and displaced 80 percent of its population.4 In 2019, Hurricane Dorian stalled over the Bahamas for more than 24 hours, supporting research that finds that hurricanes in the North Atlantic have been moving more slowly and stalling for longer periods due to climate change.5 Dorian was the strongest hurricane to ever hit the country, and it displaced 14,000 people.6 1 Internal Displacement Monitoring Centre (IDMC). Global Report on Internal Displacement, 2020. https://www.internal-displacement.org/global-report/grid2020/. 2 John Keelings & Jose J. Hernandez Ayala. “Extreme Rainfall Associated With Hurricane Maria Over Puerto Rico and Its Connections to Climate Variability and Change,” Geophysical Research Letters, 46:5 (2019), 2964-2973. https://doi.org/10.1029/2019GL082077. 3 John D. Sutter. “130,000 left Puerto Rico after Hurricane Maria, Census Bureau says.” CNN, December 19, 2018. https://www.cnn.com/2018/12/19/health/sutter-puerto-rico-census-update/index.html. 4 IDMC. Spotlight: The Atlantic Hurricane Season. Global Report on Internal Displacement, 2018. https://www.internal-displacement.org/sites/default/files/publications/documents/2018-GRID-spotlight-atlantic- hurricane-season_0.pdf. 5 Timothy M. Hall & James P. Kossin. “Hurricane stalling along the North American coast and implications for rainfall,” npj Climate and Atmospheric Science, 2:17 (2019). https://doi.org/10.1038/s41612-019-0074-8. 6 UNICEF. Hurricane Dorian - Bahamas: Humanitarian Situation Report No. 3, 24 September 2019, 2019. https://reliefweb.int/sites/reliefweb.int/files/resources/BHS-Dorian-UNICEF-SitRep%20N3%20CLEAR.pdf. Climate-related disasters do not affect all countries or people within their borders equally. In fact, displacement risk is often determined by complex interactions at the site of disaster, including the underlying vulnerability of people and communities, the magnitude and frequency of the given climate-related hazard, and the ability to cope with such events.7 In a real world context and using Maria and Dorian as examples, reporting shows that those most likely to be displaced and face long-term precarity are people and households that were already living in extreme poverty and/or who had tenuous employment status, such as undocumented Haitians in the Bahamas during Hurricane Dorian.8 This means that climate change most affects those that have the least to do with its driving force, carbon emissions. Slow-onset impacts and their effects underscore the severity of the issue and the need to push the boundaries of existing policy paradigms. Slow-onset impacts include increasing temperatures; desertification; loss of biodiversity; land and forest degradation; glacial retreat; ocean acidification; sea level rise; and salinization.9 Due to the way in which they evolve, slow-onset events’ effects are less tangible or immediately threatening in the short-term. Thus, households or communities may have more time to assess the changing situation and make a more deliberate decision about whether to move. However, as these impacts can make it untenable to earn a living in impacted areas, such decisions may be less than voluntary. Slow-onset events are irreversible and migration related to them will likely not be temporary. In some cases, such as sea-level rise, the country from which people have fled may no longer exist. Sea-level rise is of increasing concern for low-lying island states, with recent predictions indicating that the rate of change is much higher than previously anticipated.10 In the case of slow-onset events, and especially sea-level rise, the international community has yet to develop protection mechanisms or frameworks to ensure the displaced can find sustainable solutions. Managing the COVID-19 pandemic should not come at the expense of protection for those displaced due to climate-related disasters Given the evolving nature of climate change and the closing window of opportunity to act, now is the time to get serious about the needs of those displaced by climate-related impacts. The COVID- 19 pandemic has made this clearer than ever before. The way in which we as a global community interact with the environment has resounding implications and ripple effects on the safety and prosperity of everyone, but especially the most vulnerable. It will take a coordinated effort and global response to meet the challenge of both COVID-19 and climate change. 7 IDMC. Global Estimates 2015: People Displaced by Disaster, 2015. https://www.internal- displacement.org/publications/global-estimates-2015-people-displaced-by-disasters. 8 VOA News. “Haitian Immigrants in Bahamas Struggle After Hurricane Dorian,” VOA News, March 20, 2020. https://www.voanews.com/americas/haitian-immigrants-bahamas-struggle-after-hurricane-dorian 9 UN Framework Convention on Climate Change. Slow onset events, n.d. https://unfccc.int/process/bodies/constituted-bodies/executive-committee-of-the-warsaw-international-mechanism- for-loss-and-damage-wim-excom/areas-of-work/slow-onset-events. 10 Scott A. Kulp & Benjamin H. Strauss. “New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding,” Nature Communications, 10:4844 (2019). https://www.nature.com/articles/s41467-019- 12808-z. We welcome UNHCR’s continued engagement on climate change within the protection dialogue and as part of its Strategic Framework on Climate Action. However, we believe that multilateral organizations and governments must act more boldly. We hope that UNHCR will help to lead the international discussion and international policy efforts to craft new and sustainable solutions for those displaced, both internally and externally, by disasters exacerbated by the effects of climate change. We welcome the new UNHCR paper on “Legal considerations regarding claims for international protection made in the context of the adverse effects of climate change and disasters,”11 which suggests important factors that should inform refugee protection decisions for those displaced by disasters exacerbated by climate change. UNHCR should advocate for national policies implementing the perspectives and guidance in the legal protection paper, and partner in such efforts with governments prepared to implement such guidance. This work should be done in close partnership with civil society organizations working on refugee issues on the ground, so that refugee status determination and practice evolve in this progressive way. In addition, Refugees International strongly urges UNHCR to lend its support for complementary and alternative pathways, including novel resettlement and planned relocation schemes, for those who are forced to migrate as a result of climate displacement and who may not be eligible for other forms of international protection. 11 UNHCR. Legal considerations regarding claims for international protection made in the context of the adverse effects of climate change and disasters, 2020. https://www.refworld.org/docid/5f75f2734.html. .
Recommended publications
  • SUPPORTING RESILIENT RECONSTRUCTION in DOMINICA Building Back Better for a Resilient Future
    SUPPORTING RESILIENT RECONSTRUCTION IN DOMINICA Building back better for a resilient future AT A GLANCE Country Dominica Damage to housing across all parishes following Hurricane Maria Risks Hurricanes; Floods; Landslides; Earthquakes Area of Engagement Enabling resilient recovery By improving the uptake of resilient building practices, Dominica can limit the damage from natural hazards. Data source: Hurricane Maria Post-Disaster Needs Assessment DOMINICA’S VULNERABILITY TO NATURAL HAZARDS Dominica is located within the Atlantic hurricane belt and SHARING RESULTS, LEVERAGING is extremely vulnerable to high-intensity weather events FINANCING AND STARTING TO such as high winds, excess rainfall and hurricanes. Physical REBUILD development in Dominica is concentrated along narrow coastal areas, particularly in the south and west. Housing is Following both Hurricane Maria and Tropical Storm Erika, not built to withstand extreme natural hazards, with wood and Dominica conducted Post-Disaster Needs Assessments (PDNAs), galvanized sheeting being most common for roofing and with with support from the ACP-EU NDRR Program*, which is few confined masonry buildings. managed by the Global Facility for Disaster Reduction and Recovery (GFDRR) and the World Bank. On September 18, 2017, Hurricane Maria hit Dominica with catastrophic effects. Hurricane Maria was one of the most The Hurricane Maria PDNA identified housing as the most rapidly intensifying storms in recent history, leaving Dominica affected sector and one of the most important and challenging exposed to winds, flash floods and landslides. The impacts of areas for recovery. Building on the recommendations of the Hurricane Maria were severe both for the country’s economy Hurricane Maria PDNA, the ACP-EU NDRR Program launched as well as the human development of its citizens, and affected the “Enhancing Resilient Reconstruction in Dominica” project.
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • Persistent Hydrological Consequences of Hurricane Maria in Puerto Rico
    RESEARCH LETTER Persistent Hydrological Consequences of Hurricane 10.1029/2018GL081591 Maria in Puerto Rico Special Section: P. W. Miller1,2 , A. Kumar1, T. L. Mote1 , F. D. S. Moraes1 , and D. R. Mishra1 The Three Major Hurricanes of 2017: Harvey, Irma and Maria 1Department of Geography, University of Georgia, Athens, GA, USA, 2Now at Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA Key Points: • Landscape vegetation metrics for Puerto Rico remained depressed Abstract In September 2017, Hurricane Maria severely defoliated Puerto Rico's landscape, coinciding below pre‐Maria values for with a series of persistent hydrological consequences involving the atmospheric, terrestrial, and marine approximately two months after components of the water cycle. During the defoliated period, the atmosphere's thermodynamic structure landfall 2 2 2 • Cloud and precipitation activity more strongly explained daily cloud activity (R PRE = 0.02; R POST = 0.40) and precipitation (R PRE = 0.19; demonstrated a stronger 2 R POST = 0.33) than before landfall, indicating that post‐Maria land‐atmosphere interactions were relationship to the atmospheric comparatively muted, with similar precipitation patterns also found following Hurricanes Hugo (1989) and thermodynamic profile during the defoliated period Georges (1998). Meanwhile, modeled post‐Maria runoff exceeded statistical expectations given the magnitude • Subsurface runoff responses to of contemporaneous precipitation. Enhanced runoff also coincided with greater sediment loads in nearshore rainfall and coastal suspended waters, increasing sediment content greater than twofold. This study offers a holistic narrative of sediment values remained elevated for two and four months, hydrospheric disturbance and recovery, whereby the instantaneous, large‐scale removal of vegetation is respectively accompanied by hydrologic changes “upstream” in the atmosphere and “downstream” in rivers and estuaries.
    [Show full text]
  • Hurricane Damage Detection on Four Major Caribbean Islands T ⁎ Kirsten M
    Remote Sensing of Environment 229 (2019) 1–13 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Hurricane damage detection on four major Caribbean islands T ⁎ Kirsten M. de Beursa, , Noel S. McThompsona, Braden C. Owsleya, Geoffrey M. Henebryb,c a Department of Geography and Environmental Sustainability, University of Oklahoma, United States of America b Department of Geography, Environment, and Spatial Sciences, Michigan State University, United States of America c Center for Global Change and Earth Observations, Michigan State University, United States of America ARTICLE INFO ABSTRACT Keywords: Tropical cyclones are natural events that transform into natural disasters as they approach and reach land. In Hurricanes 2017 alone, tropical cyclones caused an estimated $215 billion in damage. While MODIS data are regularly used Droughts in the analysis of hurricanes and typhoons, damage studies typically focus on just a few events without providing MODIS a comprehensive overview and comparison across events. The MODIS record is now sufficiently long to enable Disturbance standardization in time, allowing us to extend previously developed disturbance methodology and to remove Tasseled Cap dependency on land cover datasets. We apply this new approach to detect the impact of both droughts and hurricanes on the four largest Caribbean islands since 2001. We find that the percentage of disturbed land on the four islands varies from approximately 0–50% between 2001 and 2017, with the highest percentages coinciding with major droughts in Cuba, and Hurricane Maria in Puerto Rico. We demonstrate that (1) Hurricane Maria resulted in significant disturbance across 50% of Puerto Rico (4549 km2), and (2) gradual recovery started about 2.5 months after the hurricane hit.
    [Show full text]
  • Hurricane Marãa Tripled Stem Breaks and Doubled Tree Mortality Relative
    ARTICLE https://doi.org/10.1038/s41467-019-09319-2 OPEN Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms María Uriarte 1, Jill Thompson2 & Jess K. Zimmerman3 Tropical cyclones are expected to intensify under a warming climate, with uncertain effects on tropical forests. One key challenge to predicting how more intense storms will influence these ecosystems is to attribute impacts specifically to storm meteorology rather than dif- 1234567890():,; ferences in forest characteristics. Here we compare tree damage data collected in the same forest in Puerto Rico after Hurricanes Hugo (1989, category 3), Georges (1998, category 3), and María (2017, category 4). María killed twice as many trees as Hugo, and for all but two species, broke 2- to 12-fold more stems than the other two storms. Species with high density wood were resistant to uprooting, hurricane-induced mortality, and were protected from breakage during Hugo but not María. Tree inventories and a wind exposure model allow us to attribute these differences in impacts to storm meteorology. A better understanding of risk factors associated with tree species susceptibility to severe storms is key to predicting the future of forest ecosystems under climate warming. 1 Department of Ecology Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA. 2 Centre for Ecology & Hydrology Bush Estate, Penicuik, Midlothian EH26 0QB, UK. 3 Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico 00925, USA. Correspondence and requests for materials should be addressed to M.U. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1362 | https://doi.org/10.1038/s41467-019-09319-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09319-2 yclonic storms (hurricanes, cyclones, and typhoons) exposure to wind or the structure and composition of forests at Crepresent the dominant natural disturbance in coastal the time the storm struck.
    [Show full text]
  • Hurricane Maria
    Hurricane Maria Six-Month Update | April 2018 Red Cross Response Continues to Aid Communities with Urgent Needs More than six months after Hurricane Maria’s high winds We also worked to help survivors cope with day-to- and torrential rainfall devastated Puerto Rico, the U.S. day difficulties caused by the destruction of much of Virgin Islands and islands throughout the Caribbean, the the island’s power grid. For example, water pumps American Red Cross continues to provide life-sustaining aren’t functioning in many communities with ongoing support for people with urgent needs. In Maria’s wake, power outages, leaving thousands of residents thousands of hurricane survivors, particularly in more without access to safe drinking water. Red Cross isolated communities, face long-term challenges disaster workers traveled throughout Puerto Rico, brought about by severe storm damage to homes and supplying water filters to these heavily impacted infrastructure—including lack of power and clean water. areas and training people on how to purify the water they are drawing from wells, streams and rivers. Using the RC View data collection system, Red Cross volunteers and employees have been able to assess In addition, the Red Cross is providing critical health damage, identify unmet needs and target communities and mental health services for people dealing with across Puerto Rico where additional support is required. ongoing medical needs that were further complicated We have delivered vital relief items like drinking water, by damage to the health care infrastructure, as well as bulk food items and cleanup supplies, as well as tarps to those suffering from heartbreaking loss.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Hurricane Dorian
    eVENT Hurricane Tracking Advisory Hurricane Dorian Information from NHC Advisory 20, 5:00 AM AST Thu Aug 29, 2019 On the forecast track, Dorian should move over the Atlantic well east of the southeastern and central Bahamas today and on Friday, and approach the northwestern Bahamas on Saturday. Maximum sustained winds are near 85 mph (140 km/h) with higher gusts. Strengthening is forecast during the next few days, and Dorian is expected to become a major hurricane on Friday. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 85 mph Position Relative to 150 mi NNW of San Juan, PR Speed: (Category 1) Land: Est. Time & Region: Monday on Florida Min Central Pressure: 991 mb Coordinates: 20.5 N, 66.6 W Trop. Storm Force Est. Max Sustained 90 miles Bearing/Speed: NW or 325 degrees at 13 mph 111+ mph (Category 3) Winds Extent: Wind Speed: Forecast Summary ■ The NHC forecast map (below left) and the wind-field map (below right), which is based on the NHC’s forecast track, both show Dorian passing east of the central Bahamas today and Friday, and approaching the northwestern Bahamas on Saturday. To illustrate the uncertainty in Dorian’s forecast track, Ï!D Trop Dep forecast tracks for all current models are shown on the wind-field map in pale gray. ■ Maximum sustained winds are near 85 mph with higher gusts. Strengthening is forecast during the next few days, and Dorian is expectedÏ!S Trop Storm to become a 1 major hurricane on Friday. Ï! Ca t 1 ■ Dorian is expected to produce total rain accumulations of 2 to 4 inches in the central Bahamas, 4 to 8 inches in the northwestern BahamasÏ!D Trop Dep and coastal 2 Ï! Ca t 2 sections of the southeast United States Ï!S Trop Storm ■ Swells around the U.S.
    [Show full text]
  • Hurricane Dorian Hits Eastern NC by Chris Collins, Meteorologist
    National Weather Service, Newport/Morehead City, NC http://weather.gov/Newport —> Bookmark it!! Fall 2019 Edition Hurricane Dorian hits Eastern NC By Chris Collins, Meteorologist Hurricane Dorian was the fourth named storm, second hurricane, and first major hurri- cane of the 2019 Atlantic hurricane season. Dorian formed on August 24, 2019 from a tropical wave in the Central Atlantic and gradually strengthened as it moved toward the Lesser Antilles, becoming a hurricane on August 28. Rapid intensification occurred, and on August 31, Dorian became a Category 4 hurricane. On September 1, Dorian reached Category 5 intensity, with maximum sustained winds of 185 mph, and a minimum central pressure of 910 mb, while making landfall in Elbow Cay, Bahamas. The ridge of high pressure steering Dorian westward collapsed on September 2, causing Dorian to stall just north of Grand Bahama for about a day. It is the strongest known tropical system to impact the Bahamas. On the morning of September 3, Dorian began to move slowly to- wards the north-northwest. Dorian moved over warmer waters, regaining Category 3 in- tensity by midnight on September 5. In the early hours of September 6, Dorian weakened to Category 1 intensity as it picked up speed and turned northeast. Dorian would pick up speed and move northeast along the North Carolina coast September 6, moving just south of the Crystal Coast, clipping Cape Lookout and eventually making landfall at Cape Hat- teras. CONTENTS Hurricane Dorian 1-2 Skywarn Recognition Day 3 Summer Volunteer 2019 4 Saharan Dust 5 July Heat 6 Path of Hurricane Dorian, August 24-September 6, 2019.
    [Show full text]
  • Regional Overview: Impact of Hurricanes Irma and Maria
    REGIONAL OVERVIEW: IMPACT OF MISSION TO HURRICANES IRMA AND MARIA CONFERENCE SUPPORTING DOCUMENT 1 The report was prepared with support of ACAPS, OCHA and UNDP 2 CONTENTS SITUATION OVERVIEW ......................................................................................................................... 4 KEY FINDINGS ............................................................................................................................................ 5 Overall scope and scale of the impact ....................................................................................... 5 Worst affected sectors ...................................................................................................................... 5 Worst affected islands ....................................................................................................................... 6 Key priorities ......................................................................................................................................... 6 Challenges for Recovery ................................................................................................................. 7 Information Gaps ................................................................................................................................. 7 RECOMMENDATIONS FOR RECOVERY ................................................................................ 10 Infrastructure ......................................................................................................................................
    [Show full text]
  • NOAA — Costliest U.S. Tropical Cyclones Tables Updated
    NATIONAL HURRICANE CENTER 11691 SW 17th Street Miami, FL 33165 www.hurricanes.gov Facebook Twitter Costliest U.S. tropical cyclones tables updated NOAA’s National Centers for Environmental Information (NCEI) in consultation with the National Hurricane Center (NHC) has updated the listing of costliest tropical cyclones to strike the United States mainland. This listing was previously found in the NOAA memorandum The Deadliest, Costliest and Most Intense U.S. Tropical Cyclones, linked at https://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf These new tables listed below replace Tables 3a and 3b in the above document. The first table (3a), not adjusted for inflation, lists 36 tropical cyclones from 1900 to 2017 that caused at least 1 billion dollars in damage on the U.S. mainland, and another five striking U.S. territories or Hawaii. The second table (3b) accounts for inflation to 2017 dollars. For all United States hurricanes, Katrina (2005) is the costliest storm on record. Hurricane Harvey (2017) ranks second, Hurricane Maria (2017) ranks third, Hurricane Sandy (2012) ranks fourth and Hurricane Irma (2017) ranks fifth. Hurricane Maria is the costliest hurricane on record to strike Puerto Rico and the U.S Virgin Islands. The NCEI data set provides more loss information than previous damage figures used by NHC, including agriculture, individual payouts, and disaster money from the federal government to the respective states. In performing these disaster cost assessments, NCEI examined statistics from a wide variety of sources. Using the latest scientific methodology, it determined the estimated total costs of these events - that is, the costs in terms of dollars that would not have been incurred had the event not taken place.
    [Show full text]
  • Hurricanes Harvey, Irma, and Maria of That Year Truly Tested the Capacities of Federal, State, and Local Emer- Gency Management
    distribute or People walk down a flooded street as they evacuate their homes after the area was inundated with flooding from Hurricane Harvey on August 28, 2017 in Houston, Texas. 9post, Joe Raedle/Getty Images HURRICANEScopy, HARVEY, IRMA, not AND MARIA U.S. Disaster Management Challenged Door the United States and its territories, 2017 was a record-breaking hurricane year. It brought F10 hurricanes, which collectively inflicted an estimated $265 billion in damage.1 Hurricanes Harvey, Irma, and Maria of that year truly tested the capacities of federal, state, and local emer- gency management. During the responses to each, the U.S. Department of Homeland Security and its Federal Emergency Management Agency (FEMA) mobilized disaster assistance volunteers, a 351 Copyright ©2020 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 352 Disaster Policy and Politics “surge” workforce2 of volunteering federal workers detailed from inside and outside of the department for up to 45-day assignments, plus an immense and largely corpo- rate contractor force, and the altruistic nonprofit organizations so intrinsically part of disaster response and recovery. A host of other federal agencies, including the U.S. Army, Air Force, and Navy, worked the disasters as well. Impacted states and territories, along with their respective local governments, worked feverishly to address the escalating needs of their victims and communities, while they awaited much needed federal post-disaster assistance. The National Response Framework provided a schematic overlay about how the nation would respond, and the National Incident Management System guided the organization of the actual response in the field.
    [Show full text]