Ausley Mcmullen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Matthew Disaster Recovery and Resilience Initiative ______
HURRICANE MATTHEW DISASTER RECOVERY AND RESILIENCE INITIATIVE ______________ A project of the North Carolina Policy Collaboratory Gavin Smith, PhD, AICP Project Director _________________ September 11, 2017 Progress Report Hurricane Matthew Disaster Recovery and Resilience Initiative Table of Contents Introduction .................................................................................................................................................. 2 A. Background ......................................................................................................................................... 2 B. Objectives ........................................................................................................................................... 2 C. Activities ............................................................................................................................................. 2 D. Organizational Structure .................................................................................................................... 4 Leveraging State and Federal Resources ..................................................................................................... 7 Executive Summaries of Project Reports .................................................................................................... 8 A. Home Place ......................................................................................................................................... 8 B. Affordable Housing .......................................................................................................................... -
Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed
Journal of South Carolina Water Resources, Volume 6, Issue 1, Pages 28–35, 2019 Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed MELISSA GRIFFIN1, MARK MALSICK1, HOPE MIZZELL1, AND LEAH MOORE1 AUTHORS: 1SC State Climatology Office, SC Department of Natural Resources, 1000 Assembly Street Columbia, SC 29201 . KEYWORDS: Florence, flooding, average return intervals, rainfall, ARI . With the advancements of software packages and data visualization, much of the analysis and information on the impact and historical perspective of the rainfall from Tropical Storm Florence included in our online ERSI Story Map is not viable to translate into the print format standards required by many publications. However, with the newly enacted Journal of South Carolina Resources policy, our article creates a precedent in how the Journal will address submittals that include subject matter available on the internet, by permanently archiving the information, and applying a structured peer-review process to the content. Abstract. For the third time in four years, record-breaking flooding occurred in South Carolina. Hurricane Florence, which made landfall near Wrightsville Beach, North Carolina, on September 14, 2018, moved slowly across South Carolina from September 14–17, 2018. Over those four days, heavy rain fell over portions of the Pee Dee Watershed and eastern North Carolina, with over 30 inches of rain measured by an observer in Swansboro, North Carolina. Most of the excessive rainfall was confined to the Pee Dee region, with reported totals of over 24 inches in Horry County, while closer to the Savannah River Valley observers measured less than an inch of rain. -
Regional Overview: Impact of Hurricanes Irma and Maria
REGIONAL OVERVIEW: IMPACT OF MISSION TO HURRICANES IRMA AND MARIA CONFERENCE SUPPORTING DOCUMENT 1 The report was prepared with support of ACAPS, OCHA and UNDP 2 CONTENTS SITUATION OVERVIEW ......................................................................................................................... 4 KEY FINDINGS ............................................................................................................................................ 5 Overall scope and scale of the impact ....................................................................................... 5 Worst affected sectors ...................................................................................................................... 5 Worst affected islands ....................................................................................................................... 6 Key priorities ......................................................................................................................................... 6 Challenges for Recovery ................................................................................................................. 7 Information Gaps ................................................................................................................................. 7 RECOMMENDATIONS FOR RECOVERY ................................................................................ 10 Infrastructure ...................................................................................................................................... -
Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment
Journal of Marine Science and Engineering Article Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment Jean T. Ellis * and Mayra A. Román-Rivera Department of Geography, University of South Carolina, Columbia, SC 29208, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 29 April 2019; Published: 2 May 2019 Abstract: The purpose of this study is to document the geomorphic evolution of a mechanical dune over approximately one year following its installation and compare it to the recovery of a natural dune following the impact of Hurricane Matthew (2016). During the study period, the dunes’ integrity was tested by wave and wind events, including king tides, and a second hurricane (Irma, 2017), at the end of the study period. Prior to the impact of the second hurricane, the volumetric increase of the mechanical and natural dune was 32% and 75%, respectively, suggesting that scraping alone is not the optimal protection method. If scraping is employed, we advocate that the dune should be augmented by planting. Ideally, the storm-impacted dune should naturally recover. Post-storm vegetation regrowth was lower around the mechanical dune, which encouraged aeolian transport and dune deflation. Hurricane Irma, an extreme forcing event, substantially impacted the dunes. The natural dune was scarped and the mechanical dune was overtopped; the system was essentially left homogeneous following the hurricane. The results from this study question the current practice of sand scraping along the South Carolina coast, which occurs post-storm, emplacement along the former primary dune line, and does not include the planting of vegetation. -
HURRICANE IRMA (AL112017) 30 August–12 September 2017
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE IRMA (AL112017) 30 August–12 September 2017 John P. Cangialosi, Andrew S. Latto, and Robbie Berg National Hurricane Center 1 24 September 2021 VIIRS SATELLITE IMAGE OF HURRICANE IRMA WHEN IT WAS AT ITS PEAK INTENSITY AND MADE LANDFALL ON BARBUDA AT 0535 UTC 6 SEPTEMBER. Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. Irma caused widespread devastation across the affected areas and was one of the strongest and costliest hurricanes on record in the Atlantic basin. 1 Original report date 9 March 2018. Second version on 30 May 2018 updated casualty statistics for Florida, meteorological statistics for the Florida Keys, and corrected a typo. Third version on 30 June 2018 corrected the year of the last category 5 hurricane landfall in Cuba and corrected a typo in the Casualty and Damage Statistics section. This version corrects the maximum wind gust reported at St. Croix Airport (TISX). Hurricane Irma 2 Hurricane Irma 30 AUGUST–12 SEPTEMBER 2017 SYNOPTIC HISTORY Irma originated from a tropical wave that departed the west coast of Africa on 27 August. The wave was then producing a widespread area of deep convection, which became more concentrated near the northern portion of the wave axis on 28 and 29 August. -
Preleminary Report IP and ETA&IOTA Hurricanes .Indd
PRELIMINARY REPORT November 2020 ConsequencesConsequences ofof thethe HurricaneHurricane 20202020 SeasonSeason onon IndigenousIndigenous CommunitiesCommunities inin CentralCentral AmericaAmerica Destruction and Resilience PRELIMINARY REPORT ON THE CONSEQUENCES OF THE 2020 HURRICANE SEASON ON INDIGENOUS COMMUNITIES IN CEN- TRAL AMERICA DESTRUCTION AND RESILIENCE NOVEMBER 2020 GENERAL COORDINATION Myrna Cunningham Kain - President of FILAC Board of Directors Jesús Amadeo Martínez - General Coordinator of the Indigenous Forum of AbyaYala FIAY GENERAL SUPERVISION Álvaro Pop - FILAC Technical Secretary Amparo Morales - FILAC Chief of Staff TECHNICAL TEAM Ricardo Changala - Coordinator of the Regional Observatory for the Rights of Indigenous Peoples ORDPI FILAC Liber- tad Pinto - Technical Team ORDPI-FILAC Jean Paul Guevara - Technical Team ORDPI-FILAC TECHNICAL SUPPORT Ernesto Marconi - FILAC Technical Program Management Gabriel Mariaca - Coordinator of Institutional Communication FILAC Dennis Mairena - Management of Technical Programs FILAC Wendy Medina - FILAC Communication and Press Office GRAPHIC DESIGN Institutional Communication - FILAC IMAGES FILAC Imaging Archive UN Photos Shutterstock Unsplash LICENSE FOR DISTRIBUTION CC-BY-NC 4.0 This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. Credit must be given to the creator Only noncommercial uses of the work are permitted DOGOTAL ACCESS ON: https://indigenascovid19.red/monitoreo/ FILAC 20 de Octubre 2287 esq. Rosendo Gutiérrez [email protected] La Paz, Bolivia SUPPORT Ford Foundation, AECID and Pawanka Fund Introduction This document is a preliminary report on the human and material impacts of hurricanes Eta and Iota on the Central American isthmus. It has been an extraordinary fact that two hurricanes of this size and strength have hit the region so close in time, affecting all Central American countries. -
Natural Disasters in Latin America and the Caribbean
NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods. -
2015 Report on the Status of the South
STATUS OF THE SOUTH CAROLINA COASTAL PROPERTY INSURANCE MARKET STATUS REPORT FOR 2015 SUBMITTED BY: South Carolina Department of Insurance 1201 Main Street, Suite 1000 Columbia, South Carolina 29201 January 29, 2016 Table of Contents I. Executive Summary 3 II. South Carolina Wind and Hail Underwriting Association 7 III. Department of Insurance Data Call 21 IV. Department of Insurance Outreach 26 V. October 2015 Severe Storms and Flooding 37 VI. Catastrophe Modeling 45 VII. Flood Insurance 48 VIII. Earthquake Insurance 52 IX. Conclusions 53 X. Recommended Enhancements and Modifications 54 XI. Appendix 55 2 I. Executive Summary A. Overview of 2015 Hurricane Season Activity during the 2015 hurricane season included several historic events. It began when Tropical Storm Ana made landfall along the Grand Strand near Myrtle Beach, South Carolina on May 10, 2015. Tropical Storm Ana was an unusually early storm which developed quickly but, fortunately, had limited impact. This storm is important to note as it developed before the official start of the hurricane season on June 1st; in fact, it is the second earliest landfalling tropical cyclone on record for the United States.1 Ana was also one of only two storms to make landfall in the United States2 and was the only tropical storm whose path crossed the state of South Carolina. Ana brought about six inches of rain to North Myrtle Beach and Kinston, NC, but the highest wind gusts were limited to 50 to 60 miles per hour. The storm’s damage was primarily in the form of beach erosion and limited flooding. Shortly thereafter, Tropical Storm Bill formed in the Gulf Coast, but quickly fizzled into a tropical depression that headed north into Texas and Oklahoma before turning east. -
Loss Avoidance Report Hurricane Matthew
Appendix R: LAR Hurricane Matthew 2018 State Hazard Mitigation Plan _______________________________________________________________________________________ APPENDIX R: Loss Avoidance Report Hurricane Matthew _______________________________________________________________________________________ Florida Division of Emergency Management Loss Avoidance Assessment Hurricane Matthew (DR-4283) April 2017 Florida Division of Emergency Management 2555 Shumard Oak Boulevard Tallahassee, FL 32399-2100 http://www.floridadisaster.org Rick Scott, Governor Bryan Koon, Director Florida DivisionMiles of Anderson, Emergency ManaStategement Hazard – Bureau Mitigation of Mitigation Officer {This page left intentionally blank.} Florida State Emergency Response Team Matthew Loss Avoidance Assessment Draft 04242017 Page i | Loss Avoidance Assessment: Hurricane Matthew (DR-4283) CONTENTS EXECUTIVE SUMMARY ................................................................................................. 0 INTRODUCTION TO HAZARD MITIGATION & LOSS AVOIDANCE ASSESSMENTS .. 1 An Introduction to Hazard Mitigation ...........................................................................1 The Hazard Mitigation Process ................................................................................... 3 Loss Avoidance Process Overview ............................................................................4 Previous Loss Avoidance Assessments ..................................................................... 7 EVENT DETAILS .............................................................................................................8 -
Hurricane Irma At-A-Glance
2018 FEDERAL POLICY BRIEF EMERGENCY MANAGEMENT: HELP FLORIDA RECOVER AND REBUILD HURRICANE IRMA AT-A-GLANCE The following is an excerpt taken from FAC’s 2017 Hurricane Summit Program which was held in November of 2017 to review and assess the impacts of Hurricane Irma and identify a path to recovery for Florida’s counties. For more information on the data depicted in the following infographs please contact: Eric Poole at [email protected],Casey Perkins at [email protected] or Robert Brown at [email protected] Florida Association of Counties ∙ 100 South Monroe Street ∙ Tallahassee, Florida 32301 ∙ www.fl-counties.com Hurricane Evacuation: Lessons Learned and What You Need to Know (continued) Hurricane Irma was the most powerful Atlantic Ocean hurricane in recorded history. By multiple accounts, the storm was also directly responsible for the largest mass exodus in U.S. history, with nearly 7 million people across Florida, Georgia, and South Carolina being asked to evacuate their homes. According to Florida’s Department of Emergency Management (DEM), nearly 6.8 million Floridians evacuated their homes in the lead up to Hurricane Irma, “beating 2005’s Houston-area Hurricane Rita exit by millions.” Media outlets described police going door to door “telling people to leave to avoid life-threatening rains, winds, and flooding,” as well as “large traffic jams on Interstates 95 and 75 and the Florida Turnpike.” Additionally, the Federal Aviation Administration reported that Miami’s traffic controllers handled 11,500 flights on the Thursday before the storm compared to 8,800 one week prior. -
Preliminary Hurricane Irma Post-Storm Beach Conditions And
Preliminary Hurricane Irma Post-Storm Beach Conditions and Coastal Impact Report Division of Water Resource Management Florida Department of Environmental Protection October 2017 Florida Department of Environmental Protection Preliminary Hurricane Irma Postal-Storm Beach Conditions and Coastal Impact Report Table of Contents I. Introduction ........................................................................................................................................ 2 II. Hurricane Irma: August 30 – September 15, 2017 ........................................................................ 4 III. Hurricane Irma Impact Summary and Overview ..................................................................... 11 Table 1. Beach and Dune Erosion Summary. ........................................................................................ 11 Table 2. Summary of Major Structural Damage to Major Structures by Hurricane Irma along the Coast of Peninsula Florida (Florida Keys not included). ......................................... 16 Table 3. Summary of Coastal Armoring Damage Caused by Hurricane Irma. ..................................... 17 IV. Detailed Damage Assessment by County .................................................................................... 18 St. Johns County .................................................................................................................................... 19 Flagler County ...................................................................................................................................... -
Bonaire National Marine Park Hurricane Matthew – Reef Damage Assessment
Bonaire National Marine Park Hurricane Matthew – Reef Damage Assessment On the evening of the 29th September 2016 Hurricane Matthew passed north of Bonaire by approximately 240km, with maximum sustained wind speeds over 120km/h. After passing Aruba as a category 2 hurricane, the path of Matthew slowed its forward progress and turned north-northeast. Heavy storm surge generated by Matthew continued to strike the coastline and on the 4th-5th of October, a resurgence of waves ranging from 1.4-1.7 m height pounded the northern and western (leeward) shores of Bonaire and Klein Bonaire. After the waves subsided, STINAPA immediately sent survey forms to dive operators requesting information on reef conditions and offered assistance in removing large debris. Bonaire National Marine Park rangers took photos of damage to piers, docks, ladders, etc. and began removing large debris from the reef (Appendix II: Image 7). On the 6th to 7th of October 2016, STINAPA staff, interns and volunteers surveyed sites along the leeward shore of Bonaire to assess the initial impact of Hurricane Matthew. Fig 1. Path of Hurricane Matthew. Image from NOAA’s National Hurricane Center: Matthew Graphics Archive. KONSERVANDO NATURALESA PA MEDIO DI MANEHO SANO NATUUR BEHOUD DOOR VERANTWOORD BEHEER NATURE CONSERVATION THROUGH SOUND MANAGEMENT PO Box 368 – Bonaire, Dutch Caribbean – Tel (599) 717 8444 – Fax (599) 717 7318 – E-mail [email protected] - Website: www.stinapa.org Banks: MCB acc.nr. 868.420.00 – RBC acc.nr. 8400000023068753 Methods Surveyors assessed a total of 18 sites via SCUBA in buddy teams on 6-7 Oct. 2016.