EU Market Outlook for Solar Power / 2019 - 2023

Total Page:16

File Type:pdf, Size:1020Kb

EU Market Outlook for Solar Power / 2019 - 2023 EU Market Outlook For Solar Power / 2019 - 2023 Supported by: FOREWORD Welcome to SolarPower Europe’s first EU Market Outlook. The time has come to look at solar PV in the European Union much more thoroughly. While SolarPower Europe has been publishing a Global Market Outlook for many years, Europe has just been one part of this comprehensive, annual overview of developments in the solar sector worldwide, which have seen solar demand mostly taking place in Asia in recent times. In 2019 that’s different – increasing by more than 100% over the past year, solar growth in the European Union has outpaced most of the leading global solar regions. In addition, more new capacity was installed for solar than any other power generation technology in the EU this year. Our first EU Market Outlook provides details on what we expect to be the prelude of a European solar renaissance for the coming decade and beyond. The main reason for solar’s success in the EU is its low cost. Solar power is often cheaper than any other technology today – this is true for retail electricity and, increasingly, wholesale power as well. And with the steepest cost reduction curve ahead, solar PV’s competitiveness will increase further. Other markets outside the EU also have an opportunity to benefit from solar’s cost advantage. What's changed: Brussels has already done a sizeable part of its homework to prepare for the future new energy world based on solar and its renewable energy peers. The binding national 2020 targets of the first renewable energy directive have led several countries that are still struggling to meet their obligations to finally opt for solar. The 2019 ‘Clean Energy for All Europeans’ legislative package contains many pro-solar provisions that will support the dissemination of PV power until 2030. As the most versatile, easy and quick to install, and often lowest-cost means of expanding the share of renewables, solar is the most popular power generation source among European citizens – and this attractiveness is now increasingly translating into real solar investments. Despite solar’s popularity and its enormous potential, Europe is still very much at the beginning of the solar age. Today, solar power’s total share in EU electricity generation is just about 5%. We can look at this from several perspectives. For example, over 90% of EU rooftops are unused; rooftops which present an opportunity to generate power equal to around one-quarter of the EU’s electricity demand – and that doesn’t include the vast amount of idle space on building façades. Europe also needs to strengthen the solar manufacturing sector as a cornerstone of the European green economy and position solar technology as a major element in the EU’s industrial strategy. To ensure both Europe’s long-term security of supply and industrial leadership in clean energy technologies, it is key to establish solar as a strategic value chain. While solar in the European Union is now on the right path, it will take further efforts to establish sustainable leadership in this clean power technology, especially as Europe now strives to become the world’s first climate- neutral continent by 2050 with the European Green Deal. We have outlined seven policy recommendations on topics that are crucial for solar to thrive in Europe (see p. 5). SolarPower Europe and its members are very much looking forward to working together with EU policy stakeholders to enable solar to deliver its great promise to turn the European Green Deal into reality. Enjoy reading our EU Market Outlook, Thanks to our Sponsor Members: WALBURGA MICHAEL SCHMELA HEMETSBERGER EXECUTIVE ADVISOR CEO SolarPower Europe / EU MARKET OUTLOOK / 3 TABLE OF CONTENTS FOREWORD 3 POLICY RECOMMENDATIONS 5 EXECUTIVE SUMMARY 6 1 EU SOLAR MARKET 7 EU SOLAR MARKET UPDATE 2019 7 EU SOLAR MARKET UPDATE / SEGMENTS 14 EU SOLAR MARKET PROSPECTS 2020 – 2023 15 2 EU SOLAR TRENDS 21 1 Industrial Solar Strategy 22 2 Solar Buildings 24 3 Digital Solar 26 4 Solar Grid Integration 28 5 Sustainable Solar 30 6 Solar Mobility 32 7 Renewable Financing 34 8 Solar Powered Businesses 36 9 Emerging Solar Markets 38 10 Solar to Hydrogen 40 3 TOP 5 EU SOLAR MARKETS 43 1 Spain 44 2 Germany 46 3 The Netherlands 49 4 France 51 5 Poland 54 Project manager & lead author: Michael Schmela, SolarPower Europe. Market intelligence: Raffaele Rossi, Michael Schmela, SolarPower Europe. Internal co-authors: Aurélie Beauvais, Miguel Herrero Cangas, Naomi Chevillard, Máté Heisz, Merce Labordena, Raffaele Rossi,SolarPower Europe. External co-authors: José Donoso & Alejandro Labanda, Unión Española Fotovoltaica (UNEF); Jaap Baarsma, Holland Solar; Samy Engelstein, Syndicat des Énergies Renouvelables (SER); Stanislaw M. Pietruszko, PV POLSKA. External contributors: ANIE Rinnovabili, APESF, APREN, EDORA, Elettricità Futura, ENERPLAN, Estonian PV Association, European Energy, Fortum, HELAPCO, ISEA, MANAP, ODE, PV Austria, RENERGY, Solární Asociace, STA, Svensk Solenergi. Design: Onehemisphere, Sweden. Supported by: Intersolar Europe. Disclaimer: Please note that all historical figures provided in this brochure are valid at the time of publication and will be revised when new and proven figures are available. All 2019 numbers are preliminary and extrapolated based on numbers that were available mostly for the first three quarters of the year. Forecasts for 2020 to 2023 are based on SolarPower Europe’s Global Market Outlook for Solar Power 2019-2023. Please also note that forecast figures have been rounded. SolarPower Europe’s five-year forecast consists of Low, Medium and High Scenarios. The Medium scenario anticipates the most likely development given the current state of play of the market. The Low Scenario forecast is based on the assumption that policymakers halt solar support and other issues arise, including interest rate hikes and severe financial crisis situations. Conversely, the High Scenario forecasts the best optimal case in which policy support, financial conditions and other factors are enhanced. Segmentation is based on the following system size: Residential (<10 kW); Commercial (<250 kW); Industrial (<1000 kW); Utility-scale (>1000 kW, ground-mounted). SolarPower Europe’s methodology includes only grid-connected systems. Installed capacity is always expressed in DC, unless otherwise stated. 4 / SolarPower Europe / EU MARKET OUTLOOK POLICY RECOMMENDATIONS Solar energy is ready to take a key role in delivering the European Green Deal, securing ambition, a just and fair transition, and ensuring Europe’s security of supply. To fully tap into the potential of the seven solar solutions outlined below, the mobilisation of substantial public and private investment will be paramount. The European Green Deal and upcoming legislation on Sustainable Finance will play a critical role in leveraging these funds and guaranteeing that future investments are directed towards solar and other technologies and assets that will support Europe’s carbon neutrality and industrial leadership in clean energy. Delivering solar industrial leadership Solar manufacturing should be strengthened as a cornerstone of the European green economy and has to be a major element in Europe’s Industrial Strategy. The solar sector must be established as a strategic value chain in order to both ensure Europe’s security of supply and deliver industrial leadership in clean energy technologies. Supporting the large- scale industrial deployment of existing innovative, European, renewable technologies will be key. #Solar4Buildings We propose a mandate for solar to be installed on all new and renovated residential, commercial, and industrial buildings in the EU. Currently 90% of European rooftops are unused and fitting this space with solar offers the potential to save up to 7 million tonnes of CO2 each year, producing at least 680 TWh of clean electricity supply. Transitioning former coal regions to solar Coal regions can greatly benefit by transitioning to solar – with huge untapped solar potential, they are attractive business environments for solar deployment and manufacturing. The EU Platform for Coal Regions in Transition must work with the Clean Energy Industrial Forum to foster synergies between solar industrial policy and a just transition. Providing skills and training programmes to support the energy transition It is a priority to adapt the EU Skills Agenda in order to facilitate European solar jobs across key sectors and avoid bottlenecks. With the proper regulatory framework, solar could create at least 500,000 highly skilled jobs by 2030, and 1.7 million by 2050 in Europe alone. Unlocking the potential of flexible large-scale solar installations Solar is a flexible and reliable technology that can provide valuable flexibility services to the grid, more accurately than conventional technologies. The potential of large-scale solar installations to support the transmission grid is largely untapped in Europe, therefore, it is urgent to remove existing barriers to their deployment, such as size caps in public tenders. Accelerating solar-powered mobility Solar is highly versatile and can be directly connected to most charging infrastructure, delivering truly sustainable electric mobility. As solar's highest generation capacity occurs during traditional working hours, it is a particularly attractive option for charging facilities located in public and commercial buildings as well as working spaces. We must ensure that appropriate infrastructure is in place to facilitate the roll-out of solar-powered electric
Recommended publications
  • Decision on Jurisdiction, Liability and Certain Issues of Quantum
    INTERNATIONAL CENTRE FOR SETTLEMENT OF INVESTMENT DISPUTES In the arbitration proceeding between RWE INNOGY GMBH AND RWE INNOGY AERSA S.A.U. Claimants and KINGDOM OF SPAIN Respondent ICSID Case No. ARB/14/34 DECISION ON JURISDICTION, LIABILITY, AND CERTAIN ISSUES OF QUANTUM Members of the Tribunal Ms. Anna Joubin-Bret, Arbitrator Mr. Judd L. Kessler, Arbitrator Mr. Samuel Wordsworth QC, President Secretary of the Tribunal Ms. Mercedes Cordido-Freytes de Kurowski Date of dispatch to the Parties: December 30, 2019 REPRESENTATION OF THE PARTIES Representing RWE Innogy GmbH and Representing Kingdom of Spain: RWE Innogy Aersa S.A.U: Mr. Antonio Vázquez-Guillén Mr. José Manuel Gutiérrez Delgado Ms. Marie Stoyanov Mrs. Elena Oñoro Sainz Ms. Virginia Allan Mr. Roberto Fernández Castilla Mr. David Ingle Mrs. María José Ruiz Sánchez Mr. Pablo Torres Mr. Diego Santacruz Descartín Ms. Patricia Rodríguez Mr. Antolín Fernández Antuña Allen & Overy LLP Mr. Javier Torres Gella Serrano 73 Ms. Amaia Rivas Kortazar 28006 Madrid Mrs. Patricia Froehlingsdorf Nicolás Spain Mr. Pablo Elena Abad Mr. Alberto Torró Molés and Mr. Rafael Gil Nievas Ms. Alicia Segovia Marco Mr. Jeffrey Sullivan Abogacía General del Estado Gibson, Dunn & Crutcher LLP Depto. Arbitrajes Internacionales Temple Avenue c/Marqués de la Ensenada, 14-16 London, EC4Y 0HB 2ª. Planta United Kingdom 28004 Madrid Spain i TABLE OF CONTENTS INTRODUCTION AND PARTIES ................................................................................... 1 PROCEDURAL HISTORY ...............................................................................................
    [Show full text]
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • Energy Support Measures and Their Impact on Innovation in the Renewable Energy Sector in Europe
    EEA Technical report No 21/2014 Energy support measures and their impact on innovation in the renewable energy sector in Europe ISSN 1725-2237 EEA Technical report No 21/2014 Energy support measures and their impact on innovation in the renewable energy sector in Europe Cover design: EEA Cover photo: © olm26250/istockphoto.com Layout: EEA/Rosendahls – Schultz Grafisk A/S Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Copyright notice © European Environment Agency, 2014 Reproduction is authorised, provided the source is acknowledged, save where otherwise stated. Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Publications Office of the European Union, 2014 ISBN 978-92-9213-507-2 ISSN 1725-2237 doi:10.2800/25755 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: + 45 33 36 71 00 Fax: + 45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements .................................................................................................... 5 Executive summary .................................................................................................... 8 1 Introduction
    [Show full text]
  • Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
    1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production.
    [Show full text]
  • Characterisation of Solar Electricity Import Corridors from MENA to Europe
    Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost July 2009 Report prepared in the frame of the EU project ‘Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS)’ carried out under the 7th Framework Programme (FP7) of the European Commission (Theme - Energy-2007-9. 1-01: Knowledge tools for energy-related policy making, Grant agreement no.: 212011). Franz Trieb, Marlene O’Sullivan, Thomas Pregger, Christoph Schillings, Wolfram Krewitt German Aerospace Center (DLR), Stuttgart, Germany Institute of Technical Thermodynamics Department Systems Analysis & Technology Assessment Pfaffenwaldring 38-40 D-70569 Stuttgart, Germany Characterisation of Solar Electricity Import Corridors TABLE OF CONTENTS 1 INTRODUCTION...................................................................................................1 2 STATUS OF KNOWLEDGE - RESULTS FROM RECENT STUDIES .................2 3 EXPORT POTENTIALS – RESOURCES AND PRODUCTION.........................19 3.1 SOLAR ENERGY RESOURCES IN POTENTIAL EXPORT COUNTRIES.........19 3.1.1 Solar Energy Resource Assessment .........................................................19 3.1.2 Land Resource Assessment ......................................................................39 3.1.3 Potentials for Solar Electricity Generation in MENA ..................................48 3.1.4 Potentials for Solar Electricity
    [Show full text]
  • Financing the Transition to Renewable Energy in the European Union
    Bi-regional economic perspectives EU-LAC Foundation Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo. iale Luigi Bocconi Financing the transition to renewable energy in the European Union, Latin America and the Caribbean Financing the transition to renewable energy in European Union, Latin America and Caribbean EU-LAC / Università Commerc EU-LAC FOUNDATION, AUGUST 2018 Große Bleichen 35 20354 Hamburg, Germany www.eulacfoundation.org EDITION: EU-LAC Foundation AUTHORS: Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo GRAPHIC DESIGN: Virginia Scardino | https://www.behance.net/virginiascardino PRINT: Scharlau GmbH DOI: 10.12858/0818EN Note: This study was financed by the EU-LAC Foundation. The EU-LAC Foundation is funded by its members, and in particular by the European Union. The contents of this publication are the sole responsibility of the authors and cannot be considered as the point of view of the EU- LAC Foundation, its member states or the European Union. This book was published in 2018. This publication has a copyright, but the text may be used free of charge for the purposes of advocacy, campaigning, education, and research, provided that the source is properly acknowledged. The co- pyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for reuse in other publications, or for translation and adaptation,
    [Show full text]
  • Autoconsumo En Los Sistemas Fotovoltaicos
    UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR GRADO EN INGENIERÍA ELÉCTRICA TRABAJO FIN DE GRADO AUTOCONSUMO EN LOS SISTEMAS FOTOVOLTAICOS Autor: Diana Domínguez Durán Tutor: Vicente Salas Merino Leganés, Junio de 2014 “Autoconsumo en los sistemas fotovoltaicos” Diana Domínguez Durán Universidad Carlos III de Madrid 2 “Autoconsumo en los sistemas fotovoltaicos” Diana Domínguez Durán Universidad Carlos III de Madrid “Cuando menos lo esperamos, la vida nos coloca delante un desafío que pone a prueba nuestro coraje y nuestra voluntad de cambio”. 3 “Autoconsumo en los sistemas fotovoltaicos” Diana Domínguez Durán Universidad Carlos III de Madrid Agradecimientos Gracias a este proyecto, voy a poder agradecer a todas las personas que me han ayudado en la etapa más importante y a la vez dura de mi vida. Primeramente, agradecer a mi familia, en especial a mis padres y hermanos, por su gran apoyo durante toda mi vida, ya que sin ellos esto no habría sido posible. Ellos me han enseñado a no rendirme a pesar de las adversidades y cuando creía que todo se desmoronaba. Gracias al esfuerzo que hacen día a día, me han ayudado a luchar hasta conseguir lo que deseaba. A una persona muy especial, David. No me ayudó a tomar la decisión más importante de mi vida al escoger esta carrera y hacerme ingeniera, pero ha estado ahí desde hace seis años, diciéndome que no dejase de luchar ni tirara por la borda el trabajo y esfuerzo de todos estos años. Muchas gracias por ser una pieza fundamental en mi vida y por todo lo que me has aportado estando ahí día a día.
    [Show full text]
  • Spanish Photovoltaic Solar Energy: Institutional Change, Financial Effects, and the Business Sector
    sustainability Article Spanish Photovoltaic Solar Energy: Institutional Change, Financial Effects, and the Business Sector Raquel Fernández-González 1 , Andrés Suárez-García 2 , Miguel Ángel Álvarez Feijoo 2,* , Elena Arce 2 and Montserrat Díez-Mediavilla 3 1 ERENEA-ECOBAS, Department of Applied Economics and Faculty of Economics, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain; [email protected] 2 Defense University Center at Spanish Naval Academy, 36920 Marin, Spain; [email protected] (A.S.-G.); [email protected] (E.A.) 3 Solar and Wind Feasibility Technologies Research Group (SWIFT), Electromechanical Engineering Department, University of Burgos, Avda. de Cantabria s/n, 09006 Burgos, Spain; [email protected] * Correspondence: [email protected] Received: 7 February 2020; Accepted: 27 February 2020; Published: 2 March 2020 Abstract: Spain is a country with a high dependence on fossil fuels. For this reason, in 2007, it implemented a bonus system that aimed to encourage the production of renewable energies, particularly photovoltaic solar energy. These production bonuses, guaranteed by the Spanish government, led to an exponential increase in the number of companies in the market and, consequently, the MWh produced. However, in 2012, given the excessive budgetary burden involved in maintaining this “feed-in tariff” system and after several years of institutional instability, the aforementioned system of incentives for phoyovoltaic (PV) energy was eliminated. This paper has tried to analyze the consequences of this institutional change, a clear example of the “hold up” problem. For this purpose, a sample of 5354 companies, which was divided, geographically, into Spanish regions and, temporarily, into three different periods, has been taken, considering diverse economic and financial variables.
    [Show full text]
  • Decision on Responsibility and on the Principles of Quantum
    INTERNATIONAL CENTRE FOR SETTLEMENT OF INVESTMENT DISPUTES In the arbitration proceeding between RREEF Infrastructure (G.P.) Limited and RREEF Pan-European Infrastructure Two Lux S.à r.l. Claimants and Kingdom of Spain Respondent ICSID Case No. ARB/13/30 DECISION ON RESPONSIBILITY AND ON THE PRINCIPLES OF QUANTUM Members of the Tribunal Professor Alain Pellet, President Professor Pedro Nikken Professor Robert Volterra Secretary of the Tribunal Mr. Gonzalo Flores Date: 30 November 2018 REPRESENTATION OF THE PARTIES Representing RREEF Infrastructure (G.P.) Representing the Kingdom of Spain: Limited and RREEF Pan-European Infrastructure Two Lux S.à r.l.: c/o Ms. Judith Gill QC* c/o Mr José Manuel Gutiérrez Delgado Mr. Jeffrey Sullivan* Mr Antolín Fernández Antuña Ms. Marie Stoyanov Mr Roberto Fernández Castilla Ms. Virginia Allan Ms Patricia Froehlingsdorf Nicolás Mr. Ignacio Madalena Ms Mónica Moraleda Saceda Ms. Lauren Lindsay* Ms Elena Oñoro Saínz Mr. Tomasz Hara Ms Amaia Rivas Kortázar Ms. Stephanie Hawes Ms María José Ruíz Sánchez Mr Diego Santacruz Descartín Allen & Overy LLP Mr Javier Torres Gella One Bishops Square London E1 6AD Abogacía General del Estado United Kingdom Ministry of Justice of the Government of Spain * no longer with the firm Calle Ayala 5 28001, Madrid Spain i TABLE OF [SELECTED] ABBREVIATIONS/DEFINED TERMS ICSID Rules of Procedure for Arbitration Arbitration Rules Proceedings [2006] BDO Group Expert Economic-Financial Report BDO First Report on the RREEF Solar Thermal Plants and Wind Farms, dated 14 July 2016 BDO
    [Show full text]
  • Current State and Future of Wind and Solar Power in Spain
    2015 Edition Flyer 2019 Report Available CURRENT STATE AND FUTURE OF WIND AND SOLAR POWER IN SPAIN This report provides an in-depth analysis of the wind and solar (CSP and PV) markets in Spain, examining the background and the latest changes in regulation. We provide an independent analysis and our views on how the future is expected to develop. At the core of this report are the wholesale electricity price projections for Spain out to 2040. THE MARKET REPORT WHOLESALE ELECTRICITY PRICE REPORTS AND ADVISORY This market report is the definitive guide PROJECTIONS For the Spanish wind and solar market, for companies that are looking to fully The report provides wholesale electricity Pöyry offers the following services: understand the intrinsic dynamics of the price projections for Spain out to 2040 in Spanish renewables industry. three internally consistent scenarios - high, • A standard off-the-shelf report covering the Spanish market, including our price At the core of this 160-page report are the central and low. projections for the country out to 2040. wholesale electricity price projections for Spain. Modelling wholesale markets with an hourly • Bespoke reports with tailor-made market Along with a market analysis per resolution allows us to produce merit order analysis and business opportunities. technology, the report also includes curves and price duration curves, helping a detailed assessment of the Spanish clients to better understand the detail • Tailor made consulting and engineering regulatory framework applying to wind underlying of our price projections. advisory services. and solar assets together with our expert We use our electricity model to examine the • Capture prices for any technology based analysis on associated regulatory risk.
    [Show full text]
  • An Observation of Solar Photovoltaic Electricity Across the Globe
    Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396 An Observation of Solar Photovoltaic Electricity across the globe 1* 2 3 4 5 K. A. Khan , Md. Alamgir Kabir , Mustafa Mamun , Md. Anowar Hossain , Samiul Alim 1Department of Physics, Jagannath University, Dhaka-1100, Bangladesh. 2Experimental Officer, National Institute of Nuclear Medicine & Allied Sciences, Bangladesh Atomic Energy Commission., 3Experimental Officer, National Institute of Nuclear Medicine & Allied Sciences, Bangladesh Atomic Energy Commission, 4Experimental Officer, Center for Research Reactor, Bangladesh Atomic Energy Commission, 5Experimental Officer, Nuclear Medical Physics Institute, Bangladesh Atomic Energy Commission, (1*- Corresponding Author) Abstract This work is mainly on survey based work. What is happening in the renewable energy world across the world. After finishing the oil, gas and coal solar PV will provide electricity enormously. To keep it in mind it has been studied the use of SPV (Solar Photovoltaic) across the world. It is found the use of SPV in the both developing and developed country across the world. It is also found the use of SPV electricity in the poor and under developed country across the glove. In this study it is also found the use of solar home system (SHS), Solar grid connected SPV and solar building integrated system across the globe. The use of floating PV has also been studied across the world. The present installed capacity of SPV in different countries has also been studied. The mission and vision of different countries regarding SPV electricity has also been studied. This work will help the further use of SPV electricity across the globe. Key words: Solar Photovoltaic, Globe, Solar Home System, Grid connected SPV, Building Integrated SPV, Inverter.
    [Show full text]
  • Solar PV Installation Statistics
    Bolungarvik Reykjavik Kristiansund Averøya Sandøy Ålesund Bolungarvik Bergen Helsinki Espoo (0.924MW) Espoon kaupunki + Oslo + Solcellsparken Mossberg (1.04MW) Arvika Fastighets AB + Solparken i Vsters (1.05MW) Kraftpojkarna i Vsters AB Stockholm Tallinn Karmøy Reykjavik Larvik Stavanger Strömstad Kirkwall Norrköping Scrabster NORWAY Egersund Arendal Kinlochbervie Pärnu Flekkefjord Stornaway Lochinver Kristiansand Kristiansund Ullapool EUROPE 2016 Averøya Fraserburgh Göteborg Gairloch SKAGERRAK Skagen Västervik Visby Hirtshals 1.Stokes Marsh Farm Peterhead Sandøy A SWEDEN Ventspils Major Solar PV Installations E LATVIA Aberdeen Ålesund Mallaig Riga Listed PV - Farms in UK, 10 - 49.99 (MW) Listed PV - Farms in Germany, 10 - 49.99 (MW) >1.0MW* 5. Black Peak Farm 1. Seegebiet Mansfelder Land (28.35MW Borgholm 7. Odell Glebe SF 2. Amsdorf (28.3MW) Gero Solarpark GmbH) KATTEGAT S 8. Glebe FS 3. Kabelsketal (16.07MW) 9. Manor Farm Pertenhall 4. Sietzsch Wattner/Landsberg (12MW) Wattner Compiled, Designed and Produced by La Tene Maps in association with SolarPower Europe 10. Caldecote Manor Farm 5. Salzatal (14.11MW) Halmstad Kalmar + West Mains of Kinblethmont 11. Castle Combe Circuit 6. Roitzsch (12.68MW) Solarpark Roitzsch 12. Castle Eaton Farm 7. Petersberg (10.01MW) and with assistance from pvresources.com and several national associations. Oban 13. Spittleborough Farm 8. Bitterfeld (20.91MW) La Tene Maps Liepaja RUSSIA 14. Goose Willow Fm 9. Zrbig/ Heideloh (5.21MW) 15. Water Eaton Farm / Port Farm 10. Pritzen (10MW) Trianel 353 EnergiMidt Net Vest A/S (1.2MW) Grenå Tel: +353-12847914 Email: [email protected] Website: www.latenemaps.com 16. Pentylands Farm 11. Bronkow Luckaitztal (11.4MW) Emmvee 17.
    [Show full text]