Molecular Biosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metatranscriptomic Analysis of Community Structure And
School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support. -
(12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug
USOO9422609B2 (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug. 23, 2016 (54) METHODS, COMPOSITIONS AND DEVICES (58) Field of Classification Search FOR MANTAINING CHEMICAL BALANCE CPC ........................ C02F 1/725; C12Y 305/01005 OF CHLORINATED WATER USPC ........................... 210/754; 435/195, 227 231 See application file for complete search history. (75) Inventor: Vivian I. Teichberg, Savyon (IL) (56) References Cited (73) Assignees: Mia Levite, Savyon (IL); Yaar Teichberg, Savyon (IL); Nof Lyle U.S. PATENT DOCUMENTS Teichberg, Savyon (IL) 4,793,935 A * 12/1988 Stillman ............... CO2F 1.5236 21Of727 (*) Notice: Subject to any disclaimer, the term of this 6,673,582 B2 * 1/2004 McTavish ..................... 435/122 patent is extended or adjusted under 35 U.S.C. 154(b) by 1044 days. (Continued) (21) Appl. No.: 12/225.18O FOREIGN PATENT DOCUMENTS y x- - - 9 AU 41971 5, 1979 (22) PCT Filed: Mar. 14, 2007 GB 2025919 1, 1980 (86). PCT No.: PCT/L2007/OOO336 (Continued) S 371 (c)(1) OTHER PUBLICATIONS (2), (4) Date: Sep. 16, 2008 Examiner's Report Dated Oct. 6, 2010 From the Australian Govern (87) PCT Pub. No.: WO2007/107.981 ment, IP Australia Re. Application No. 2007228391. (Continued) PCT Pub. Date: Sep. 27, 2007 (65) Prior Publication Data Primary Examiner — Peter Keyworth (74) Attorney, Agent, or Firm — Browdy and Neimark, US 201OfO270228A1 Oct. 28, 2010 PLLC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/783,028, filed on Mar. A composition-of-matter for use in water treatment, com 17, 2006. -
Advances in Enzyme Biotechnology Advances in Enzyme Biotechnology
Pratyoosh Shukla Brett I. Pletschke Editors Advances in Enzyme Biotechnology Advances in Enzyme Biotechnology Pratyoosh Shukla • Brett I. Pletschke Editors Advances in Enzyme Biotechnology Editors Pratyoosh Shukla Brett I. Pletschke Department of Microbiology Department of Biochemistry, Maharshi Dayanand University Microbiology and Biotechnology Rohtak, Haryana , India Rhodes University Grahamstown, South Africa ISBN 978-81-322-1093-1 ISBN 978-81-322-1094-8 (eBook) DOI 10.1007/978-81-322-1094-8 Springer New Delhi Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945175 © Springer India 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
UNIVERSITY of CALIFORNIA Los Angeles Cloud-Based Analysis And
UNIVERSITY OF CALIFORNIA Los Angeles Cloud-based Analysis and Integration of Proteomics and Metabolomics Datasets A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Jeong Ho (Howard) Choi 2019 © Copyright by Jeong Ho (Howard) Choi 2019 ABSTRACT OF THE DISSERTATION Cloud-based Analysis and Integration of Proteomics and Metabolomics Datasets by Jeong Ho (Howard) Choi Doctor of Philosophy in Bioinformatics University of California, Los Angeles, 2019 Professor Peipei Ping, Chair Our capabilities to define cardiovascular health and disease using highly multivariate “omics” datasets have substantially increased in recent years. Advances in acquisition technologies as well as bioinformatics methods have paved the way for ultimately resolving every biomolecule comprising various human “omes”. Understanding how different “omes” change and interact with one another temporally will ultimately unveil multi-omic molecular signatures that inform pathologic mechanisms, indicate disease phenotypes, and identify new therapeutic targets. Herein we describe a thesis project that creates novel, contemporary data science methods and workflows to extract temporal molecular signatures of disease from multi-omics analyses, and develops integrated omics knowledgebases for the cardiovascular community at-large. Chapter 1 provides an overview of cardiac physiology and pathophysiology involved in cardiac remodeling and heart failure (HF). A description of the systematic characterization of cardiac proteomes and metabolomes is included, including methodologies for multi-omics phenotyping. Finally, an overview of bioinformatics methods for driver molecule discovery is provided, discussing strategies for characterizing temporal patterns and conducting functional enrichment. ii Chapter 2 describes computational approaches to discern the oxidative posttranslational modification (O-PTM) proteome, an important factor in cardiac remodeling. -
Data-Driven Insights Into Ligands, Proteins, and Genetic Mutations
Data-Driven Insights into Ligands, Proteins, and Genetic Mutations by Jing Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2016 Doctoral Committee: Professor Heather A. Carlson, Chair Professor Charles L. Brooks III Assistant Professor Barry Grant Professor David S. Sept Professor Kerby A. Shedden © Jing Lu, 2016 Acknowledgements I would like to thank my advisor, Dr. Heather Carlson, for years of patient guidance, teaching, and support through the course of my PhD. I have learnt how to think critically and be rigorous in every step of research. I also want to express gratitude to my committee: Professor Charles L. Brooks III, Assistant Professor Barry Grant, Professor David S. Sept, Professor Kerby A. Shedden. Their advising is insightful and deepens my understanding of my research projects. I would like to thank Dr. Richard Smith for timely support for both my writing and research. For many Saturdays and Sundays, he promptly responds my requests for proofreading. Much of my work is built on his code in protein and ligand analysis. I would like to thank other members in Dr. Carlson’s lab for helping me with my work. Through the discussion with Dr. Jim Dunbar, I have learnt many critical ideas in Cheminformatics. Also, thank you to Sarah Graham and Jordan Clark for their tremendous friendship and willing to help with my writing. I would also thank previous members in Dr. Carlson’s lab. I would thank Dr. Phani Ghanakota for many late-night discussions and Dr. -
Enhanced Calcium Carbonate-Biofilm Complex Formation by Alkali
Lee and Park AMB Expr (2019) 9:49 https://doi.org/10.1186/s13568-019-0773-x ORIGINAL ARTICLE Open Access Enhanced calcium carbonate-bioflm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13 Yun Suk Lee and Woojun Park* Abstract Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is a process where microbes induce condition favorable for CaCO3 formation through metabolic activities by increasing the pH or carbonate ions when calcium is near. The molecular and ecological basis of CaCO3 precipitating (CCP) bacteria has been poorly illuminated. Here, we showed that increased pH levels by deamination of amino acids is a driving force toward MICP using alkalitoler- ant Lysinibacillus boronitolerans YS11 as a model species of non-ureolytic CCP bacteria. This alkaline generation also facilitates the growth of neighboring alkaliphilic Bacillus sp. AK13, which could alter characteristics of MICP by chang- ing the size and shape of CaCO3 minerals. Furthermore, we showed CaCO3 that precipitates earlier in an experiment modifes membrane rigidity of YS11 strain via upregulation of branched chain fatty acid synthesis. This work closely examines MICP conditions by deamination and the efect of MICP on cell membrane rigidity and crystal formation for the frst time. Keywords: Alkaline generation, Dual species CaCO3 precipitation, Bacteria-CaCO3 interaction, Branched chain fatty acid synthesis, Membrane rigidity Introduction exopolysaccharide (EPS) formation, eventually leading to Calcium carbonate precipitating (CCP) bacteria con- microbially induced CaCO3 precipitation (MICP). Bac- tribute to the geochemical cycle as they precipitate car- terial metabolic pathways can create compounds that bonate minerals, including calcium carbonate in nature increase the solution pH. -
(12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol. -
Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria
Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria Thesis Submitted to Savitribai Phule Pune University For The Degree Of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By Ketaki Dilip Shurpali Research Supervisor Dr. Dhiman Sarkar Combichem Bioresource Center Organic Chemistry Division CSIR-National Chemical Laboratory Pune-411008 India October 2014 Certificate This is to certify that the work incorporated in the thesis entitled “ Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria ” submitted by Ketaki Dilip Shurpali was carried out under my supervision at Combichem Bioresource Center, Organic Chemistry Division, National Chemical Laboratory, Pune-411008, Maharashtra, India. Materials obtained from other sources have been duly acknowledged in the thesis. Dr. Dhiman Sarkar (Research Guide) I Declaration by Research Scholar I hereby declare that the thesis entitled " Biochemical Studies on Redox Regulation in Different Dormancy Models of Mycobacteria ", submitted for the Degree of Doctor of Philosophy to the Savitribai Phule Pune University, has been carried out by me at Combichem Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, Maharashtra, India, under the supervision of Dr. Dhiman Sarkar (Research supervisor). The work is original and has not been submitted in part or full by me for any other degree or diploma to any other University. Ketaki Dilip Shurpali (Research Scholar) II Dedications This thesis is dedicated to all those people who were always besides me in my good and bad times. First dedication goes to my father Mr. Dilip Shurpali and mother Mrs. Devyani Shurpali who instilled in me the desire to learn new things and confidence to achieve my dreams. -
Nitrogen Metabolism in Mycobacterium Smegmatis
Nitrogen metabolism in Mycobacterium smegmatis Michael Petridis Dipl. Biol. (Goethe University Frankfurt) University of Otago June 30th 2015 This dissertation is submitted in publication format for the degree of Doctor of Philosophy. Declaration This dissertation is the result of my own work and contains nothing, which is the outcome of work done in collaboration with others, except where clearly stated. No part of this dissertation has been submitted for any other degree or qualification. This research project was undertaken in the laboratory of Prof. Gregory M. Cook at the Department of Microbiology and Immunology, University of Otago in Dunedin, New Zealand between July 2012 and June 2015. A portion of this research was also performed in the laboratory of Prof. Stewart T. Cole at the École Polytechnique Fédérale de Lausanne in Lausanne, Switzerland in December 2013. i Thesis by Publication Format This dissertation has been submitted by publication format. The Otago School of Medical Sciences and the Department of Microbiology & Immunology provided consultation on how to submit by this format. This thesis is presented in accordance with their guidelines. Each of the three results chapters are primary research papers that have been submitted, or prepared for publication. The extended introduction and summary sections were written specifically for this thesis. They serve to place this work in a wider context and bring together the findings as a whole. In accordance with requirements, each chapter has been reformatted for consistency. I took the leading role in the work presented here. For each study, I planned experiments, performed research and interpreted data. I wrote the majority of each manuscript. -
(GSNOR1) Function Leads to an Altered DNA and Histone Methylation Pattern in Arabidopsis Thaliana
TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) Lehrstuhl für Biochemische Pflanzenpathologie Loss of S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1) function leads to an altered DNA and histone methylation pattern in Arabidopsis thaliana Eva Rudolf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Frank Johannes Prüfer der Dissertation: 1. Prof. Dr. Jörg Durner 2. apl. Prof. Dr. Ramon A. Torres Ruiz Die Dissertation wurde am 30.01.2020 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.04.2020 angenommen. To my family, Florian and Tobias. Publications and conference contributions related to this thesis: Izabella Kovacs, Alexandra Ageeva, Eva König and Christian Lindermayr, 2016. Chapter Two – S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. In Advances in Botanical Research edited by David Wendehenne. Nitric Oxide and Signaling in Plants. Academic Press, 77, 15–39. Eva Rudolf, Markus Wirtz, Ignasi Forné and Christian Lindermayr. S-Nitrosothiols as architect of the methylome in Arabidopsis thaliana. EMBO Conference - Chromatin and Epigenetics 2017, Heidelberg, Germany, Poster. Eva Rudolf, Alexandra Ageeva-Kieferle, Alexander Mengel, Ignasi Forné, Rüdiger Hell, Axel Imhof, Markus Wirtz, Jörg Durner and Christian Lindermayr. Post-translational modification of histones: Nitric oxide modulates chromatin structure. Symposium - From Proteome to Phenotype: role of post- translational modifications 2017, Edinburgh, United Kingdom, Oral presentation. Alexandra Ageeva-Kieferle, Eva Rudolf and Christian Lindermayr, 2019. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. -
Thiocyanate and Organic Carbon Inputs Drive Convergent Selection for Specific Autotrophic Afipia and Thiobacillus Strains Within Complex Microbiomes
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.29.067207; this version posted April 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Thiocyanate and organic carbon inputs drive convergent selection for specific autotrophic Afipia and Thiobacillus strains within complex microbiomes Robert J. Huddy1,2, Rohan Sachdeva3, Fadzai Kadzinga1,2, Rose Kantor4, Susan T.L. Harrison1,2 and Jillian F. Banfield3,4,5,6* 1The Center for Bioprocess Engineering Research, University of Cape Town, South Africa 2The Future Water Institute, University of Cape Town, South Africa 3The Innovative Genomics Institute at the University of California, Berkeley, California, USA 4The Department of Earth and Planetary Science, University of California, Berkeley, California, USA 5The Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA 6The University of Melbourne, Victoria, Australia *Corresponding Author: [email protected] Abstract Thiocyanate (SCN-) contamination threatens aquatic ecosystems and pollutes vital fresh water supplies. SCN- degrading microbial consortia are commercially deployed for remediation, but the impact of organic amendments on selection within SCN- degrading microbial communities has not been investigated. Here, we tested whether specific strains capable of degrading SCN- could be reproducibly selected for based on SCN- loading and the presence or absence of added organic carbon. Complex microbial communities derived from those used to treat SCN- contaminated water were exposed to systematically increased input SCN concentrations in molasses-amended and -unamended reactors and in reactors switched to unamended conditions after establishing the active SCN- degrading consortium. -
Rhodococcus Erythropolis and Gordonia Alkanivorans: Interesting Desulfurizing
IN SILICO MODELING AND ANALYSIS FOR IMPROVING DESULFURIZING BACTERIAL STRAINS SHILPI AGGARWAL (M.Tech., Indian Institute of Technology, Roorkee, India) A THESIS SUBMITTED FOR THE DEGREE OF PHD OF ENGINEERING DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Declaration DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Shilpi Aggarwal 10 April 2013 i Acknowledgments ACKNOWLEDGMENTS I take this chance to express my sincere gratitude and love for my parents (Mr Subash and Mrs Renu) for their undying faith, encouragement, and unconditional love throughout my life. This PhD thesis is dedicated to them as I could have never come so far without their support. It is with immense pleasure and respect I take this opportunity to express my thankfulness to all those who have helped me in shaping my research career and making my stay in Singapore a truly memorable one. With the term ‘PhD’, the first person who comes to my mind is my supervisor, Prof I. A. Karimi. I take this chance to thank him for giving me an opportunity to pursue my research career under his able guidance. As a mentor he has made me acquire skills for critical and logical thinking. His directions and guidance has helped me get deeper insights into the subject and made my learning a great experience.