<<

STP987-EB/Oct. 1988

Subject Index

A procedure, 337-338 standard ladle, 334 Accuracy, manual/automatic compari- with vacuum arc degassing and ar- son chart ratings, 212-215 Aerospace material specifications gon refining, 332-333 AMS 2301, 48, 51-52, 171,268, 271, and, 333 346 Argon oxygen , carbon Air-melted and vacuum-arc remelted , Swedish standard SS , M-50 comparison with 111116, 254 VAR-VAR and VIM-VAR Argon treatment steels, 13 bubbling, 266 Alternating shear stress hypothesis (see gas shrouding, 7, 52 Orthogonal shear stress hypo- injection via porous plugs, 265 thesis) soft bubbling, 361 Aluminates, type B stirring in ladle, 336 ladle and, 73 Arsenic contents, DIN 100 Cr 6 steel, RHP inclusion index 299 4720 steel, L~o fatigue life, 67 ASEA ladle refinement, 166 52100 steel, Llo fatigue life, 67 bottom-poured ingots SAM ratings macroinclusions, 170-171 1070 modified steel, 51 microinclusions, 179-182 52100 steel oxygen content, 182-184, 186 fatigue L~o life, 69 sulfur content reduction, 172 fatigue Lso life, 71 ASTM standards history, 50 A 45-85, 331 steels, fatigue L10 life, A 295, 61, 69, 222, 312, 325, 327-328 72 A 295-79, 251 Aluminum deoxidation, 361 A 295-84, 1, 46-47, 72, 157, 161, Ammonia atmosphere, compressive 172, 179, 267-268, 300, 303, residual stress induction, 28 344, 346, 363 AM-VAR steels (see Air-melted and A 485, 311 vacuum-arc remelted steels) A 485-79, 338, 340, 342, 346 Antimony contents, DIN 100 Cr 6 A 534, 64, 311 steel, 299 A 534-79, 344, 346 Argon ladle refining A 535-79, 346 chemistry control E 29, 207 argon refining processes, 339 E 45, 61, 79, 157, 263, 267, 344 vacuum arc degassing, 338-339 E 45-63, 22 oxygen contents, 343, 345 E 45-76, 363, 366, 370

393

Copyright~9 1988 by ASTM International www.astm.org 394 EFFECT OF STEEL MANUFACTURING PROCESSES

ASTM Standards (cont.) nickel and molybdenum contents, E 45-85, 47^8, 168, 172, 211, 226- 298 227, 251, 254, 258-300, 303 phosphorus contents, 299 E 50, 207 tramp elements, 297 E 59, 207 Bearings {see Ball bearings; Roller bear­ E 112-63, 22 ings) E 173, 194, 207 Bloom casters, shrouding at, 266 E 351, 195 Blue fracture test, 363-364 E 352, 195 B-thin ratings E 353, 195 fatigue properties and, 157 E 354, 195 oxygen content of SKF 52100 steel E 485-79, 344 and, 326 E 562-83, 227 RBF limit for steelmaking processes E 1019, 192, 207 and, 157 E 1091, 195 steelmaking processes comparison, E 1122, 226 269 P 187, 195 Butterflies, under raceways, 84, 87 ASTM subcommittee E03, 191-192, 194^195 Ausforming method, 24-25 Austenite, retained Calcium decomposition at different contact content stresses, 106 fatigue properties and, 160-161 effects on rolling-element fatigue, 31- ratings with, 163 35 injection, 270 microstructural change monitoring, treatment effects, 368-369 105 Carbide factor, derivation, 20 Carbides ausforming method, 24-25 in bearing steel microstructures, 114 B effects on rolling-element fatigue, 20- Ball bearings (see also Roller bearings) 25 6206 furrow creation, 121 fatigue life improvement, 133 grain size, effect on machinability, WeibuU life distributions, 133 370-371 M-50 VIM-VAR steel M-50NiL steel, 126, 131 endurance characteristics, 11 M-50 steel, 125-129 endurance tests, 12 peeling and, 118, 120 Bars (DIN 100 Cr 6) segregation, continuous-cast steels, inclusion rating (SEP 1570-71), 295 74-77 microstructure (SEP 1520-78), 295 stress-raising effect, 121 specifications, 294 surface roughness contribution, 115 Basic oxygen furnace melting, 361-362 Carbon control, in vacuum arc de­ DIN 100 Cr 6 gassing, 338 arsenic and antimony contents, 299 Carburizing atmosphere, compressive copper and tin contents, 298 residual stress induction, 28-29 INDEX 395

Chemical analysis S-N curves, 99 inclusion determination by, 223-224 heat treatment effects, 140 oxygen determination (see Proposed induction processes, 28-30 Method for the Determination Concast blooms, segregation and, 304- of Oxygen in Steel and in , 305 Nickel, and Cobalt Alloys) Continuous casters Chemistry control curved, 348-350 DIN 100 Cr 6 steel, 297 vertical, 278-280 in ladle refining, 264^265, 273 Continuous-cast steel, 73-74 in vacuum arc degassing, 342-344 fatigue life, 136, 349-350 Chromium control, in vacuum arc de­ center segregation effect, 285- gassing, 339 287 Cleanliness effect of residuals, 357 assessment, 385-386 high-purity steel, 287 continuous-cast and ingot-cast steels improvement, 352-353, 357 blue fracture test, 363-364 flaking, 285-286 oxides, 365-369 macroscopic cleanUness, 363-365 oxygen content and, 366-367 microscopic cleanliness, 365-370 SAM ratings, 285 product evaluation, 74-77 step-down test, 364-365 quality, 77-79 sulfides, 369-370 SAM ratings, 285 titanium-carbonitrides, 369 segregation in, 372 ultrasonic testing, 363 tube bore defects, 77 continuous-cast steels from Eu­ Controlled fibers ropean manufacturers, 74-77 effects on rolling-element fatigue, fatigue life and, 8-14, 371-372 fatigue performance and, 139, 381- 25-28 in races, 26 383 raceway forging, 7 inclusion evaluation methods, 156- Controlled hardness, discovery, 7 157 Copper contents, DIN 100 Cr 6 steel, ladle refining, fatigue properties and, 298 379-381 Crack growth microcleanliness ratings, 47 preferred orientation of texture and, micrographical, 161, 163 107 particle size distribution, 385-386 tensile residual stresses and, 107 ratings, 161-163 Crack initiation, 107, 110 vacuum arc degassing and argon Crack propagation, during second refining process steels, 344-346 phase of fatigue, 91-92 Cold working, effect on fatigue life, 290 Comparison chart ratings, accuracy, D 212-215 Compressive residual stresses Dark etching areas, 83-84 eff"ect on Deoxidation fatigue behavior, 97-99 aluminum, 361 rolling-element fatigue, 28-31 MR processes, 308-309 396 EFFECT OF STEEL MANUFACTURING PROCESSES

Diameters, ideal, in vacuum arc de­ gassing, 339-340 Distortion energy hypothesis, 86 Fatigue Double-vacuum arc remelted steels, M- 8620 309-size roller bearings, life dis­ 50 comparison with AM-VAR tribution, 13 and VIM-VAR steels, 13 bearing life, major advances, 6 carbide effects, 20-25 carburized steels, 67 controlled fiber effects, 25-28 Elastohydrodynamic film, 7 crack propagation, 91-92 peeUng and, 118, 120 effect of component hardness combi­ Elastohydrodynamic lubrication, 7 nations, 19-20 —ladle furnace— failure Ruhrstahl-Heraeus vacuum de­ distortion energy hypothesis, 86, 89 gassing vessel—vertical contin­ mechanism, 86, 89 uous caster process, 278-280 fractures, origin, 152-155 Electric arc furnace melting, 361-362 hardness effects, 14-20 blue fracture test results, 364 material cleanliness and, 8-14, 381- DIN 100 Cr 6 383 arsenic and antimony contents, 299 material defects and, 9 copper and tin contents, 298 mechanism, 62-64 nickel and molybdenum contents, nonmetallic inclusions, 8-9 298 plastic deformation during first phosphorus contents, 299 phase, 89 oxide cleanhness residual stresses, 28-31 E 45-76 inclusions, 367 retained austenite effects, 31-35 number and size of inclusions, 366 S-N curve, 105 SAM rating, 367 spalling under rolling contact stress­ SEP 1570-71 values, 365 ing and, 85-86 step-down test results, 364 structural changes during first phase, oxygen contents, 367 86, 89 steels, blue fracture test results, 364 subsurface cracks during second tramp elements, 297 phase, 89 Electric arc furnaces, 5 successive remelting effects, 10-11, 13 Whiting Hydro, 333 testing, RHP inclusion index tech­ Electric furnace—vacuum slag cleaner nique, 66-69 —ladle furnace—Ruhrstahl- vacuum-melting techniques and, 9 Heraeus degassing-curved con­ variation with specimen size and test tinuous caster process, 348-350 conditions, 139-140 Electro slag remelting, 187 Fatigue life carbon steel, Swedish standard SS cleanliness and, 371-372 111116, 254 continuous-cast steel, 285, 349-350 inclusion elimination, 161 center segregation effect, 285-287 steel oxygen content and fatigue effect of residuals, 357 properties, 159 European manufacturers, 74-77 step-down test results, 364 high-purity, 287 INDEX 397

improvement in, 352-353, 357 Field performance, integral wheel bear­ specimen preparation, 283-284 ing, 56-58 effects of Flakings cold working, 290 fatigue life of continuous-cast steel forging ratio, 144, 147 and, 285-286 impurities, 287-290 roUing bearings, 278 material cleanliness, 139 Flat washer tests, MR steel, 313-314 material strength, 95, 97 Forging nonmetallic inclusions, 92, 94-95 fiber patterns and, 25-26 oxygen, 139 raceways, with controlled fiber orien­ sulfur, 288 tation, 7 titanium, 288-290 ratio, effect on fatigue life, 144, 147 heat-resistant steels, 143, 145 Fracture toughness ingot-cast steel, 285 effect on rolling-element fatigue, 35- model, 102 40 nitride inclusion size and, 154 nickel effects, 39-40 oxide inclusion size and, 154 MR steel, 319-320 prediction model, 104-105 Furrows residual stresses and, 97-99 creation, carbides and, 121 RHP inclusion index and, 66-69 in raceways SAM ratings and, 69-71 honed, caused by carbides, 125 subzero treatment effect, 144, 146- microspalls at carbides near, 123 147 through hardened versus carburized steel, 136 Fatigue properties calcium content and, 160-161 Gas shrouding microcleanliness during ladle refining active, 309 and, 379-381 argon, 7, 52 MR steel, 310-311 argon, Tetrene, and propane, 171 oxygen content and, 158-159 protective, 171 titanium content and, 159-160 Glazing, carbide-related, 118, 120 Fatigue strength, rotating-bending, im­ purities effect, 287-290 Fatigue testing H flat washer tests, 313-314 HardenabiUty MR steel, 311-313 control in vacuum arc degassing, rod tests, 315-316 339-340 rotating beam tests, 317-318 ranges in ladle refining, 273 Unisteel washer-type roUing contact Hardness test, 383, 389 effect on fatigue life, 14 Fibers combinations, effect on 52100 steel controlled {see Controlled fibers) fatigue Ufe, 19-20 orientation controlled, discovery, 7 effect on fatigue life, 143-144, 146 long-term hot hardness, vacuum- flow angle effect on fatigue life, 146 melted steels, 17-19 398 EFFECT OF STEEL MANUFACTURING PROCESSES

Hardness (cont.) continuous-cast and ingot-cast steels, short-term hot hardness, through- SAM ratings, 285 hardened and case-hardened critical, 251 steels, 14-17 evaluation methods, 156-157 Heat treatment extremely low, image analysis, 226 compressive residual stress effects hard metallic, MR steel, 319 and, 140 MR steel, rating procedures, 323- M-50 steel, carbide changes during, 327 125, 130-131 nonmetallic Homogeneity, sample {see Sample ho­ DIN 100 Cr 6, requirements, 299- mogeneity) 300 Hot-working reduction, effects on critical, 95 fatigue, 150-151 fatigue and, 8-9, 92, 94-95 Hydrogen levels, argon ladle refining, fatigue crack nucleation, 62 336 oxides, 62 RHP inclusion index {see RHP I inclusion index) origin of fracture, micrographic dis­ Ideal diameter, control in vacuum arc tribution and, 157 degassing, 339-340 oxides Image analysis DIN 100 Cr 6 steel, 300-301 52100 steel microinclusion contents, distribution on polished and RBF Quantimet 800 Steelscan, 212- 215 specimens, 158 extremely low inclusion contents, 226 field-specific measurements, 213 method {see Method for Determining fine, effect on continuous-cast steel the Inclusion Content of Steel fatigue life, 357 and Other Metals by Image oxygen content and, 159 Analysis) phases during ladle refining, 383- Immersion nozzle, inclusion buildup re­ 384 duction, 285, 291 size distributions, 162, 257 Impurities sulfides in DIN 100 Cr 6, sulfur effects on contents and, 303 fatigue life and rotating-bending titanium nitride size distributions, fatigue strength, 287-290 titanium content and, 159 vacuum induction melted steels, various, relative harmful effects, 156 287-290 Inert-gas fusion technique, 191, 193 reduction in continuous-cast high- Ingot-cast steel purity steel, 287 macroscopic cleanliness, 363-365 Inclusions {see also Macroinclusions; microscopic cleanliness, 365-370 Microinclusions) SAM ratings, 285 assessment segregation in, 372 optical methods, 388-389 Instrumentation, uncertainty of mea­ problem of, 385-386 surements, 193, 196 chemical analysis, 223-224 Integral wheel bearing {see Wheel common shapes, 253 spindle bearing) INDEX 399

International Standards Organization, MR process, 308-309 281/1-1977 (E), 102 oxide inclusion phases, 383-384 oxygen content control, 266 oxygen levels, 272 porous plug-argon bubble, 265-266 Jemkontoret method, 47, 61 reheat, 265 accuracy of manual/automatic com­ reheat capability, 265, 269 parison chart ratings, 212-215 shrouding of ladle streams, 266 Chart II, 252 SAM B ratings, 270 inclusion assessment with, 250 SAM D ratings, 271 ladle refined steel quality, 268 slag control, 265 limitations, 66 standard deviations from melt aim, MR steel inclusions, 325-326 273, 277 oxide microinclusion content versus vacuum degassing, 266 "oxygen content, 221 wire feeding, 265 revised (see Swedish standard SS Load ' 111116) increasing, steady-state stability and, sulfide microinclusion content versus 111-112 sulfur content, 220 magnitude, raceway plastic deforma­ sulfides and oxides, 218-221 tion and, 91 vacuum arc degassing and atgon number of cycles, raceway plastic refining-processed steels, 344- deformation and, 91 345 Load cells, ladle, 265 vacuum degassing-carbon deoxida- Lubrication tion steel quahty, 268 elastohydrodynamic, 7 J-K ratings (see Jemkontoret method) thin-film, peeling and, 118

M Ladle refining, 136 Machinability AMS 2301 macroinclusions, 271 carbide grain size effects, 370-371 Allmanna Svenska Electuska Ak- DIN 100 Cr 6 steel tiebolaget (see ASEA ladle requirements, 303 refining) sulfur effect, 304 argon (see Argon ladle refining) sulfur effects, 370-371 B-type alumina inclusions, 73 Macroinclusions (see also Inclusions) carbon steel, Swedish standard SS 52100 steel 111116, 254 bottom-poured ingots from chemistry control, 264-265 ASEA ladle refinement heats, clean steel 170-171 E 45, JrK inclusion ratings, 269 top-poured and bottom poured production, 268 ingots from vacuum-degassed hardenability ranges, 273 heats, 16^170 load cells, 265 top-poured ingots from vacuum- microcleanliness and fatigue proper­ degassed and non-vacuum de­ ties, 379-381 gassed heats, 168-169 400 EFFECT OF STEEL MANUFACTURING PROCESSES

Macroinclusions (cont.) J-K rating method {see Jemkontoret AMS 2301 ratings method) process quality comparison, 271 performance and, 213 system description, 48 quahty improvement, 49-50 quality improvement, 51-53 ratings, effects of Magnetic particle inspection {see Aero­ angle of section, 218 space material specifications) area investigated, 217 Main shear stress hypothesis, 86 polishing planes, 216 Manganese control, in vacuum arc de­ SAM ratings, 47^8, 59-60 gassing, 338 SEP-K3 ratings of different product Material cleanliness (see Cleanliness) forms, 222 Material defects, effect on rolling-ele­ through-hardened steels, analysis, ment fatigue, 9 211 Measurement top- and bottom-poured ingots from instrumentation-related uncertainty, vacuum-degassed 52100 heats, 193, 196 177-179 sample inhomogeneity and, 196 top-poured ingots from vacuum- Melting processes (see specific process) degassed and non-vacuum- Method for Determining the Inclusion degassed 52100 heats, 172-177 Content of Steel and Other Microstructure Metals by Image Analysis carbides in, 114 area fraction, 228 changes as-cast specimens, 230-231 preferred orientation of texture, bar specimens, 240, 243 106 billet specimens, 231 residual stresses and, 29 calculated and measured A^ values, retained austenite, 105-106 243-245 DIN 100 Cr 6 steel, requirements, confidence interval, 228 304-305 field measurements, 227 VIM-VAR M-50NiL and VIM- measurement area effect on percent VAR M-50 steels, 39 relative accuracy, 245-246 Molybdenum contents, DIN 100 Cr 6 percent relative accuracy, 228 steel, 298 sample preparation, 229-230 specimen preparation, 229-230 VIM/EBR, VIM/VAR, and VIM/ N ESR M-50 materials, 228-229 Microcleanliness (see Cleanliness) Nickel Microinclusions {see also Inclusions) DIN 100 Cr 6 steel, contents, 298 assessment fracture toughness improvement, manual, reproducibility, 213-215 39-^0 sampling errors in, 215-223 sectioning and, 215-217 automatic ratings, limitations, 215 O bottom-poured ASEA ladle-refined Orientation (fibers) 52100 heats, 179-182 effect on fatigue life, 143-144, 146 chemical analysis, 223-224 flow angle effect on fatigue life, 146 INDEX 401

Orthogonal shear stress hypothesis, Oxygen contents 86 1070 steel by ladle treatment and material stressing during fatigue, ingot position, 345 89 52100 steel Oxides bottom-poured ingots, ASEA fatigue crack nucleation and, 62 ladle refined, 182-184, 186 field-specific measurements, 213 effect of steelmaking practices, 379 inclusion phases during ladle top- and bottom-poured ingots, refining, 383-384 RH vacuum degassed heats, microinclusion content versus oxy­ 182, 185-186 gen content, J-K method, 221 various steels, 367 oxygen content and, 366-368 continuous-cast bearing steel, 284- SEP-K3 ratings, different product 285 forms, 222 control in vacuum arc degassing, steels processed diflFerently, cumula­ 342-343 tive size distribution, 257 DIN 100 Cr 6, 300 stereologically based image analysis, effect on oxide cleanliness, 368 227-228 fatigue life and, 139 as-cast specimens, 230-231 fatigue properties and, 158-159 bar specimens, 240, 243 inert-gas fusion technique, 191, billet specimens, 230-231 193 calculated and measured A^ val­ ladle refining and vacuum degassing- ues, 243-245 carbon deoxidation processes, measurement area effect on per­ 270-273 cent relative accuracy, 245- liquid steel during ASEA-SKF ladle 246 furnace treatment, 310 specimen preparation, 229-230 MR steel test materials, 228-229 oxide microinclusion content and, type D globular J-K method, 221 1070 modified steel, SAM ratings, oxides and, 366-367 50 ratings with, 163 4720 steel, RHP inclusion index, sample treatment effect, 194 Z,,o fatigue life, 68 B-thin rating and, 326 52100 steel RHP inclusion index, determination, 320-323 L,o fatigue life, 68 distribution, 322-323 Oxygen analysis vacuum fusion technique, 191, 193 ASTM standard analytical method, development, 191 continuous-cast bearing steel, 280, 283 Peeling proposed method {see Proposed carbide-related, 118, 120 Method for the Determination distress, 34 of Oxygen Content in Steel and pattern, carbide pattern and, 120 in Iron, Nickel and Cobalt Al­ tapered roller bearing raceway, 35 loys) Phase transformations, residual round-robin testing, 198-206, 273 stresses and, 29 402 EFFECT OF STEEL MANUFACTURING PROCESSES

Phosphorus contents DIN 100 Cr 6 steel, 299 Races electric arc furnace and basic oxygen controlled fiber flow, 26 furnace processes, 297 fatigue spall in, 9 Plastic deformation fiber flow,2 7 elements in rolling contact, 84 tangential residual stress patterns, subsurface regions, 11, 91 29 Point contact rolling contact test rig, Raceways 135-136 butterflies, 84 Polishing carbide-related failure planes, effect on microinclusion rat­ furrow creation, 121 ings, 216 peeling and glazing, 120 techniques, automatic, 214 stress-raising effect, 121 Porous plugs dark etching areas, 83-84 argon bubbUng, 266 forging, with controlled fiber orien­ argon injection, 265, 333 tation, 7 Preferred orientation furrows, microspalls at carbides tensile residual stresses and, 107 near, 123 texture, 106 honed, furrow caused by carbides, Prestressing, compressive residual 125 stress induction, 30-31 peeHng and glazing, 118 Proposed Method for the Determina­ peeling on tapered roller bearings, tion of Oxygen in Steel and 35 in Iron, Nickel and Cobalt Al­ peeling pattern, 118 loys plastic deformation, 84, 91 apparatus, 208-209 retained austenite decomposition, calculations, 210 105 calibration, 209-210 shear stresses below surface, 91 interferences, 208 swirl pattern caused by carbides on procedure, 210 balls, 117 reagents, 208 tube bore defects in continuous-cast safety precautions, 208 materials, 77 sample preparation, 209 white bands, 84 scope, 207 Radial segregation, effects on fatigue, significance and use, 207 150-151 standards, 207 Reheat capability, ladle refining, 265, summary, 208 269 Protection, argon gas, 7, 52 Remelting, successive, effect on bear­ ing life and reliability, 10-11, 13 Reoxidation, gas shrouding and, 171 Reproducibility manual assessment of microinclu- Quality assurance sampling, heat con­ sions, 213-215 trol method, 185 manual/automatic microinclusion Quantimet 800 Steelscan, 212 ratings with SEP 1570-71, 214 INDEX 403

oxygen measurements on NBS-SRM Rotating-bending fatigue strength, 1091, 193 effect of impurities, 287-290 Residual stresses Rotating-bending fatigue tests, 151- circumferential direction versus 152 depth beneath inner ring race­ Roughness, surface, carbides and, 115 way, 106 Round-robin testing for oxygen con­ compressive {see Compressive resid­ tent ual stresses) instructions, 206-207 effect on equivalent stresses, 98 procedures, 199-200 microstructural changes and, 29 proposed method {see Proposed radial direction versus depth beneath Method for the Determination raceway, 107 of Oxygen in Steel and in Iron, tensile, preferred orientation and, Nickel and Cobalt Alloys) 107 results, 201-203 X-ray diffraction analysis, 84 statistical analysis, 204 RHP inclusion index Ruhrstahl-Heraeus vacuum degassing, B-type alumina, fatigue L,o hfe, 67 166 D-type globular oxides, fatigue Lm macroinclusions life, 68 top- and bottom-poured 52100 in­ fatigue life and, 66-69 gots, 169-170 SAM ratings and, 69, 72 top-poured 52100 ingots, 168-169 technique, 66 microinclusions RH vacuum degassing (see Ruhrstahl- top- and bottom-poured 52100 in­ Heraeus vacuum degassing) gots, 177-179 Rod tests, MR steel, 315-316 top-poured 52100 ingots, 172-177 Roller bearings {see also Ball bearings) oxygen contents 4320 steel, retained austenite effects, ASEA ladle-refined heats, 182- 34-35 184 8620 309-size steel bottom-poured ingots, 182-184, fatigue life distribution, 13 186 ultrasonic inspection, 14 top-poured ingots, 182, 185 ball and cylindrical, 37 vacuum-degassed and non-vac­ flakings, 278 uum-degassed heats, 182 fracture toughness, 37, 39 residual calcium and, 161 Osako 6309 endurance tests, 312 fatigue properties, 310-311 subsurface changes, 105-112 tapered, 35, 37 Sample homogeneity Rolling-contact tester measurement process and, 196 AM-VAR, VAR-VAR, and VIM- NBS-SRM 1090 ingot iron, 192 VAR M-50 steels, 13 Sample preparation VIM-VAR M-50 and carburized error sources, 195 VIM-VAR M-50NiL steels, 40 measuring processes and, 196 Rotating beam tests, MR steel, 317- Sample treatment, effect on oxygen 318 content, 194 404 EFFECT OF STEEL MANUFACTURING PROCESSES

Sampling errors, in microinclusion as­ titanium nitride on RBF specimen, sessment, 215-223 154 SAM ratings, 1, 47-48, 59-60, 251 Sectioning, microinclusion assessment 1070 modified steel and, 215-217 type B aluminates, 49 Segregation type D globular oxides, 50 center, eifect on continuous-cast 1070 steels by vacuum arc degassing steel fatigue hfe, 285-287 and argon refining processes, concast blooms and, 304-305 346-347 ingot-cast and continuous-cast steel, 52100 steel 372 type B aluminates, 50, 69 radial, effects on fatigue, 150-151 type D globular oxides, 51 SEP ratings {see Stahl-Eisen-Pfufblatt B-type inclusions ratings) alumina for carburizing steels, Shoegrinding, 5 fatigue L,o life, 72 Shrouding ladle refining and vacuum de- active gas, 309 gassing-carbon deoxidation argon gas, 7, 52 processes, 270 at bloom caster, 266 continuous-cast and ingot-cast bottom-pour, 266 steels, 285 ladle streams, 266 D-type inclusions top-pour, 266 steelmaking processes compari­ Silicon control, in vacuum arc de­ son, 271 gassing, 338 fatigue life and, 69-72 Slag control, ladle refining, 265 limitations, 157-158 S-N curves, 105 MR 52100 steel, 326, 329 effect of practical use, 72-73 compressive residual stresses, 99 RHP inclusion index and, 69, 72 material strength, 97 SEP 1570-71 and, 368 nonmetaUic inclusions, 95 technique, 69 elements in roUing contact, 91-92 through-hardened steels, 366 SpaUing, under rolling contact stress­ SANTRON Morphologic Inclusion ing, 85-86 Classifier, 250 Spalls method structure, 257 carbides near raceway furrows, Scanning electron microscopy 123 apex of peel, 119 early failures, 110 calcium-enriched sulfide, on RBF rolling contact fatigue, 62 specimen, 154 Stahl-Eisen-Pfufblatt ratings complex oxide inclusion on RBF K3, different product forms, 222 specimen, 153 MR 52100 steel, 326-327 cracked/broken carbides at apex of SEP 1520-78, 295 peel, 119 SEP 1570, 172, 254, 258 furrow with peeling and microspall, SEP 1570-71, 211, 365-366 126 52100 steel microinclusions, microspalls at carbides near furrows, Quantimet 800 Steelscan, 212- 123 215 INDEX 405

comparison with SAM ratings, 368 4720 DIN 100 Cr 6 bars and wire rods, fatigue Lio life and B-type alumina 295 RHP inclusion index, 67 SEP 1580, 363, 364 fatigue Lio life and D-type globu­ SEP 1584, 363 lar oxide RHP inclusion index, Standard reference material 1094, 192 68 Steelmaking practices 52100, 308, 331, 375 B-thin ratings and RBF limits, 157 AMS 2301 macroinclusion ratings, effect on 52100 oxygen content, 379 52 history, 5-7 carbide factor, 20-22 ladle steelmaking, 73, 136 chemical composition, 115 oxygen content monitoring, 192 component hardness effect on rotating bending fatigue tests, 150- fatigue life, 19-20 152 composition, 46 sampling errors and, 215 compressive residual stress induc­ vacuum-melting techniques, 9 tion, 28-29 Steelmaking processes (see also specific fatigue L,o life, 67-70 process) fatigue L50 life, 71 Atlas Specialty Steels, 332-335 long-term hot-hardness, 17-19 Krupp Stahl AG, 296-297 macroinclusions, 168-171 MR, 308-309 microinclusions, 171-182 Stocksbridge Engineering Steels, oxygen content, 182-184 375-378 RBF limit and L,o values on 6309 Thyssen Stahl AG and Thyssen Edel- bearings, 151 stahlwerke AG, 360-363 SAM ratings, 50-51 Steels short-term hot hardness, 14-17 18-4-1, chemical composition, 115 wheel spindle bearing, 45 18Cr-2Ni-4WA, carburized, retained white bands, 34 austenite and fatigue life, 33-34 8620 440C 309-size roller bearings, fatigue life chemical composition, 115 distribution, 13 short-term hot hardness, 14-17 life levels, small-size point contact 1050, life levels, 141, 142 specimens, 141 1053, life levels, 141 short-term hot hardness, 14-17 1070, 331, 375 AMS 5749, retained austenite, 31-33 1-070 modified bearing AMS 2301 macroinclusion ratings, chemical composition, 36 51 oxygen content, round-robin test­ composition, 46 ing, 198-206 SAM ratings, 49-50 temperature factors a and expo­ wheel spindle bearing, 45 nents P, 17 1552, 375 carburizing 4150, life levels, 141 life levels, 141-142 4320, 331 small-size specimen life, 139 life levels, 141 case-hardened, short-term hot hard­ retained austenite effects, 34-35 ness, 14-17 406 EFFECT OF STEEL MANUFACTURING PROCESSES

Steels (cont.) SCr 420 life levels, 141 CBS 1000, short-term hot hardness, SUJ2, 348 14-17 continuous-cast, 278 CBS 600, short-term hot hardness, fatigue life improvement, 134 14-17 life levels, small- and large-size DIN 100 Cr 6, 293-306 point contact specimens, 139- Halmo 141 carbide factor, 22 Super Nitralloy, short-term hot long-term hot-hardness, 17-19 hardness, 14-17 short-term hot hardness, 14-17 T-1 heat-resistant, fatigue lives, 143, carbide factor, 23 145 controlled fiber in races, 26 high-purity, fatigue life, 139 through-hardened, 360 induction hardened life levels, 132, 141-142 life levels, 141, 142 microinclusion analysis, 211 small-size specimen life, 139-140 short-term hot hardness, 14-17 M-1 small-size specimen life, 139 carbide factor, 23 vacuum-melted long-term hot-hardness, 17-19 bearing life and, 10 short-term hot hardness, 14-17 cleanliness, bearing life and, 10 M-2, M-10, and M-42, carbide fac­ long-term hot-hardness, 17-19 tors, 22-23 Vasco X-2, short-term hot hardness, M-50 14-17 ausforming, 24-25 WB-49 carbide composition by supplier, long-term hot hardness, 17-10.; 125 short-term hot hardness, 14-17 carbide factor, 22 WD-65, short-term hot hardness, carbides in, 125-129 14-17 chemical composition, 115 Step-down tests, 364-365 extremely low inclusion contents, Stereology, Method for Determining stereologically based image the Inclusion Content of Steel analysis, 226-231, 240, 243-247 ^nd Other Metals by Image long-term hot-hardness, 17-19 Analysis, 227-228 MC and MjC carbides, 115, 125 Stirring short-term hot hardness, 14-17 argon gas, 308-309, 336 strain-induced precipitation, 25 inductive, 308 VIM-VAR, 7, 11 Strain-induced precipitation, M-50 M-50NiL, 7 steel, 25 carbides, 126, 131 Strength of materials chemical composition, 115 effect on S-N curve, 97 Matrix II, short-term hot hardness, fatigue behavior and, 95, 97 14-17 Stresses S50C, life levels, 142 carbide-related, 121 S53C, life levels, 141 compressive residual {see Compres­ SCM 420, life levels, 141 sive residual stress) SCM 440, life levels, 142 cycling, subsurface changes and, 11 INDEX 407

retained austenite decomposition, reduction in continuous-cast high- 106 purity steel, 287 rolling contact, 62 sulfide microinclusion content and, shear, below raceway surface, 91 J-K method, 220 Subsurface changes Swedish standard SS 111116, 250-251, cracks 254, 327 during second phase of fatigue, 89 advantages for clean steels, 259 formation, 89 distribution of B- and D-type inclu­ interaction, 108 sions, 254 microstructural, 105-112 productivity effects, 258 Subzero treatment, effect on fatigue translation of ASTM E 45-85 rat­ life, 144, 146-147 ings, 258 Sulfides calcium-enriched, crack initiation site, 161 DIN 100 Cr 6, sulfur contents and, Teeming, in MR processes, 309 303 Texture, preferred orientation, 106- microinclusion content versus sulfur 107 content, J-K method, 220 Thyssen-blowing-metallurgy, 361 rolling contact fatigue life and, 64 blue fracture test results, 364 SEP-K3 ratings, different product number and type of oxide inclusions, forms, 222 366 stereologically based image analysis, oxide cleanliness 227-228 E 45-76 standard, 367 as-cast specimens, 230-231 SAM rating, 367 bar specimens, 240, 243 values, 365 billet specimens, 230-231 oxygen contents, 367 calculated and measurecf A^ val­ step-down test results, 364 ues, 243-245 Tin contents, DIN 100 Cr 6 steel, 298 measurement area effect on per­ Titanium-carbonitrides cent relative accuracy, 245- bearing steels, 301-302 246 DIN 100 Cr 6, relation to titanium specimen preparation, 229-230 contents, 302 test materials, 228-229 effect on fatigue life, 68 sulfur content effect, 370 ladle refining, 379 Sulfur content size distributions, titanium content control and, 159 in argon ladle refining, 336 titanium effect, 369 in vacuum arc degassing, 324 Titanium contents DIN 100 Cr 6, sulfide inclusions control in argon ladle refining, 343- and, 303 344 effect on DIN 100 Cr 6, various alloying DIN 100 Cr 6 machinability, 304 practices, 302 fatigue life, 288 effect on number of titanium-car­ machinability, 370-371 bonitrides, 369 sulfide ckapliness, 370 fatigue life and, 160, 288-290 408 EFFECT OF STEEL MANUFACTURING PROCESSES

Titanium contents (cont.) Vacuum degassing-carbon deoxida- fatigue properties and, 159-160 tion, 263 ratings with, 163 AMS 2301 macroinclusions, 271 reduction in continuous-cast high- E A5-J-K inclusion ratings, 268 purity steel, 287 oxygen levels, 272 Tramp elements, basic oxygen furnace SAM B ratings, 270 and electric arc furnace, 297 SAM D ratings, 271 Vacuum fusion technique, 191, 193 U Vacuum-induction melted, electron beam remelting steels, M-50 in­ Ultrasonic inspection clusion content, 226 8620 309-size roller bearings, 14 Vacuum-induction melted, electro slag for macroscopic cleanliness, 363 remelting steels, M-50 inclusion vacuum arc remelted steels, 384- content, 226 385 Vacuum induction melted steels, fa­ tigue life, impurities effects, 287-290 Vacuum-induction melted, vacuum-arc Vacuum arc degassing remelting steels, 226 argon refining procedure, 337-338 M-50, 7 chemistry control, 338-339 comparison with AM-VAR and major elements, 338-339 VAR-VAR processes, 13 ladle and covers, 335 fatigue life comparison with M- ladle design, 333 50NiL, 40 oxygen content comparison with ar­ inclusion content, image analysis, gon refining, 343, 345 226 procedure, 336-337 M-50NiL, fatigue life comparison process of, 333-334 with M-50, 40 Vacuum arc remelting process, 187 Vacuum-melted steels inclusion ehmination by, 161 cleanliness, bearing life and, 10 procedure, 337-338 consumable-electrode, 7 Vacuum arc remelted steels process, 7 number and size of inclusions (SEP VAR-VAR steels (see Double-vacuum 1570-71), 366 arc remelted steels) oxide cleanliness VIM-VAR steels (see Vacuum-induc­ E 45-76 standard, 367 tion melted, vacuum-arc remelt­ SAM rating, 367 ing steels) SEP 1570-71 values, 365 oxygen contents, 367 oxygen content and fatigue proper­ ties, 159 W production, 384 WeibuU distributions, fatigue Uves step-down test results, 364 continuous-cast and ingot-cast ultrasonic testing, 384-385 steels, 141, 287 Vacuum degassing, 7 high-purity and conventional steel, ladle refined steels, 266 143 INDEX 409

WeibuU distributions, (cont.) figure, 88 through-hardened and carburizing Wire feeding, alloys, 265 steels, 139-141 Wire rods (DIN 100 Cr 6) Wheel spindle bearing, 44-46 inclusion rating (SEP 1570-71), 295 analysis, 54 microstructure (SEP 1520-78), 295 bearing steels used in, 45-46 specifications, 294 design, 53 Worst-field ratings {see Jernkontoret field performance analytical model, method) 56-58 testing, 54-56 White bands, 84 52100 steel, 34 X-ray diffraction, residual stresses, 84