General Disclaimer One Or More of the Following Statements May Affect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3-D Seismic Characterization of a Cryptoexplosion Structure
Cryptoexplosion structure 3-D seismic characterization of a eryptoexplosion structure J. Helen Isaac and Robert R. Stewart ABSTRACT Three-quarters of a circular structure is observed on three-dimensional (3-D) seismic data from James River, Alberta. The structure has an outer diameter of 4.8 km and a raised central uplift surrounded by a rim synform. The central uplift has a diameter of 2.4 km and its crest appears to be uplifted about 400 m above regional levels. The structure is at a depth of about 4500 m. This is below the zone of economic interest and the feature has not been penetrated by any wells. The disturbed sediments are interpreted to be Cambrian. We infer that the structure was formed in Late Cambrian to Middle Devonian time and suffered erosion before the deposition of the overlying Middle Devonian carbonates. Rim faults, probably caused by slumping of material into the depression, are observed on the outside limb of the synform. Reverse faults are evident underneath the feature and the central uplift appears to have coherent internal reflections. The amount of uplift decreases with increasing depth in the section. The entire feature is interpreted to be a cryptoexplosion structure, possibly caused by a meteorite impact. INTRODUCTION Several enigmatic circular structures, of different sizes and ages, have been observed on seismic data from the Western Canadian sedimentary basin (WCSB) (e.g., Sawatzky, 1976; Isaac and Stewart, 1993) and other parts of Canada (Scott and Hajnal, 1988; Jansa et al., 1989). The structures present startling interruptions in otherwise planar seismic features. -
Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com Pared
Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen erally limited to relatively early-time phenomena as a result of high com putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com pared. These structures provide information on aspects of the third dimen sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave. -
Chapter 6 Lawn Hill Megabreccia
Chapter 6 Lawn Hill Megabreccia Chapter 6 Catastrophic mass failure of a Middle Cambrian platform margin, the Lawn Hill Megabreccia, Queensland, Australia Leonardo Feltrin 6-1 Chapter 6 Lawn Hill Megabreccia Acknowledgement of Contributions N.H.S. Oliver – normal supervisory contributions Leonardo Feltrin 6-2 Chapter 6 Lawn Hill Megabreccia Abstract Megabreccia and related folds are two of the most spectacular features of the Lawn Hill Outlier, a small carbonate platform of Middle Cambrian age, situated in the northeastern part of the Georgina Basin, Australia. The megabreccia is a thick unit (over 200 m) composed of chaotic structures and containing matrix-supported clasts up to 260 m across. The breccia also influenced a Mesoproterozoic basement, which hosts the world class Zn-Pb-Ag Century Deposit. Field-studies (undertaken in the mine area), structural 3D modelling and stable isotopic data were used to assess the origin and timing of the megabreccia, and its relationship to the tectonic framework. Previous workers proposed the possible linkage of the structural disruption to an asteroid impact, to justify the extremely large clasts and the conspicuous basement interaction. However, the megabreccia has comparable clast size to some of the largest examples of sedimentary breccias and synsedimentary dyke intrusions in the world. Together with our field and isotope data, the reconstruction of the sequence of events that led to the cratonization of the Centralian Superbasin supports a synsedimentary origin for the Lawn Hill Megabreccia. However, later brittle faulting and veining accompanying strain localisation within the Thorntonia Limestones may represent post-sedimentary, syntectonic deformation, possibly linked to the late Devonian Alice Springs Orogeny. -
The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. -
3D Seismic Expression of a Cryptoexplosion Structure
CANADUN JOURNAL OF EXPLORATION GEOPH”SICS “OLD 29. Pm 2 ,tECEMBER 19931, P 429~439 3-D SEISMIC EXPRESSION OF A CRYPTOEXPLOSION STRUCTURE’ J. HELEN ISAAC~AND ROEERTR. SSEWART~ Mclosh, 1989: Sharpton and Ward, 1990). Impact craters can AWTRACT he termed either simple or complex, the main difference being the presence of multiple ring structures and central An enigmaticcircular itr”Ct”ce is observedon three-*immsionai uplift in a complex crater. The morphological change takes (3-D, ,eimlic d&mfrom Jilmcs River. Alberta It hasan uuter diammr uf 4.8 km anda raisedcentral uplift mrruundrdby a ring ,ynform. place at an excavation cavity diameter of ahout 2 km in sedi- The Centraluplift hasB diameter“1 2.4 km and if6 crestappears to mentary rocks and 4 km in crystalline rocks (Dence. 1972). he aho”, 400 m abovercgkml levels.The top of ihe StmClllr~ii ill B The principal feature of a complex impact crater is a central depth“f aho”, 4500,” and is belowtile LOW“f previousrc”n”“lic interest.Consequently. the featurehas ll”L beenpcnctrated by any peak, or group of peaks. surrounded by a llat tloor inside a wc,,s in the surveyarea. me seismic&lra inteqmation indicatr, terraced rim (Dencr, 1965). Complex crater central peaks are that the dimrbed scdimmtrare Cambrian in age.tt ii cstimilledIhat composed of def(mned and fractured rocks which arc uftcn the structure was formed during the Late CambrianIu Middle older than the country rock surrounding the structure. Partial Devonianlime petid andsuffered SeYcre W”bi,,” Mrw ,llCdrpositim “1 ,hCwcrlying Middle andUpper “ev”“ian carbonares.Rim fml,5, collapse of the central peak may he the source of some of the prohahiycaused by slumpingOf mmria, iill the dqmsion. -
Esa Standard Document
Technology Reference Study Final Report GRL The Gamma Ray Lens SCI-A/2005.058/GRL/CB Craig Brown July 2005 s Page 1 of 172 T ECHNOLOGY R EFERENCE S TUDIES The Science Payload and Advanced Concepts Office (SCI-A) at the European Space Agency (ESA) conducts Technology Reference Studies (TRSs), hypothetical science driven missions that are not currently part of the ESA science programme. Most science missions are in many ways very challenging from a technology point of view. It is critical that these technologies are identified as early as possible in order to ensure their development in a timely manner, as well as allowing the feasibility of a mission to be determined. Technology reference studies are used as a means to identify such technology developments. The Technology Reference Study begins by establishing a series of preliminary scientific requirements. From these requirements, a hypothetical mission is designed that is capable of achieving the scientific goals. Critical issues and mission drivers are identified from the new mission concept and, from these drivers, a series of technology development activities are recommended. One such TRS has been conducted on a Gamma Ray Lens (GRL) mission. The GRL is an ideal candidate for a TRS due to the challenging nature of the technologies involved with focusing gamma rays. Identifying the key areas requiring technology development in this field prepares for any future high-energy astrophysics mission that the science community may propose, as well as establishes common technology development requirements possibly shared by different science missions. s page 2 of 172 A BSTRACT This is the final report for the Gamma Ray Lens (GRL) technology reference study performed by SCI-AM. -
Flynn Creek Crater, Tennessee: Final Report, by David J
1967010060 ASTROGEOLOGIC STUDIES / ANNUAL PROGRESS REPORT " July 1, 1965 to July 1, 1966 ° 'i t PART B - h . CRATERINVESTIGATIONS N 67_1_389 N 57-" .]9400 (ACCEC_ION [4U _" EiER! (THRU} .2_ / PP (PAGLS) (CO_ w ) _5 (NASA GR OR I"MX OR AD NUMBER) (_ATEGORY) DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOQICAL SURVEY • iri i i i i iiii i i 1967010060-002 ASTROGEOLOGIC STUDIES ANNUAL PROGRESS REPORT July i, 1965 to July I, 1966 PART B: CRATER INVESTIGATIONS November 1966 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It should not be quoted without permission. This report concerns work done on behalf of the National Aeronautics and Space Administration. DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 1967010060-003 • #' C OING PAGE ,BLANK NO/" FILMED. CONTENTS PART B--CRATER INVESTIGATIONS Page Introduction ........................ vii History and origin of the Flynn Creek crater, Tennessee: final report, by David J. Roddy .............. 1 Introductien ..................... 1 Geologic history of the Flynn Creek crater ....... 5 Origin of the Flynn Creek crater ............ ii Conc lusions ...................... 32 References cited .................... 35 Geology of the Sierra Madera structure, Texas: progress report, by H. G. Wilshire ............ 41_ Introduction ...................... 41 Stratigraphy ...................... 41 Petrography and chemical composition .......... 49 S truc ture ....................... 62 References cited ............. ...... 69 Some aspects of the Manicouagan Lake structure in Quebec, Canada, by Stephen H. Wolfe ................ 71 f Craters produced by missile impacts, by H. J. Moore ..... 79 Introduction ...................... 79 Experimental procedure ................. 80 Experimental results .................. 81 Summary ........................ 103 References cited .................... 103 Hypervelocity impact craters in pumice, by H. J. Moore and / F. -
The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact. -
The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile
The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C 1 mm ^^ 5 -fc;- Jj. -f->^ -J^' ' _." ^P^-Arvx^B^ »""*- 'S y^'ir'*'*'/?' trK* ^-7 A5*^v;'VvVr*'^**s! ^^^^V'^"^"''"X^^i^^?l^"%^ - ! ^ Pecoraite, Wolf Creek meteorite of Australia. Upper, Pecoraite grains separated by hand picking from crack fillings in the meteorite (X 25). Lower, Pecoraite grains lining the walls of some cracks in the meteorite. The extent of disintegration of the original metal lic phases into new phases, chiefly goethite and maghemite, is apparent (X 2.3). THE DISINTEGRATION OF THE WOLF CREEK METEORITE AND THE FORMATION OF PECORAITE, THE NICKEL ANALOG OF CLINOCHRYSOTILE The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile By GEORGE T. FAUST, JOSEPH J. FAHEY, BRIAN H. MASON and EDWARD J. DWORNIK STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO2 -H2O AND THE SYSTEMS CONTAINING THE CONGENERS OF MAGNESIUM GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C Origin of pecoraite elucidated through its properties and in terms of the geochemical balance in its desert environment UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600160 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.30 Stock -
Ages of Large Lunar Impact Craters and Implications for Bombardment During the Moon’S Middle Age ⇑ Michelle R
Icarus 225 (2013) 325–341 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age ⇑ Michelle R. Kirchoff , Clark R. Chapman, Simone Marchi, Kristen M. Curtis, Brian Enke, William F. Bottke Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Standard lunar chronologies, based on combining lunar sample radiometric ages with impact crater den- Received 20 October 2012 sities of inferred associated units, have lately been questioned about the robustness of their interpreta- Revised 28 February 2013 tions of the temporal dependance of the lunar impact flux. In particular, there has been increasing focus Accepted 10 March 2013 on the ‘‘middle age’’ of lunar bombardment, from the end of the Late Heavy Bombardment (3.8 Ga) until Available online 1 April 2013 comparatively recent times (1 Ga). To gain a better understanding of impact flux in this time period, we determined and analyzed the cratering ages of selected terrains on the Moon. We required distinct ter- Keywords: rains with random locations and areas large enough to achieve good statistics for the small, superposed Moon, Surface crater size–frequency distributions to be compiled. Therefore, we selected 40 lunar craters with diameter Cratering Impact processes 90 km and determined the model ages of their floors by measuring the density of superposed craters using the Lunar Reconnaissance Orbiter Wide Angle Camera mosaic. Absolute model ages were computed using the Model Production Function of Marchi et al. -
Time-Resolved Biological and Perturbation Chemical Crystallography
Invited Paper Time-resolvedbiological and perturbation chemical crystallography: Laue and monochromatic developments G. Bradbrook, A. Deacon, J. Habash, J.R. Helliwell*, M. Helliwell, Y.P. Nieh, E.H. Snell, & S. Trapani Department of Chemistry, University of Manchester Manchester M13 9PL, U.K. A.W. Thompson & J.W. Campbell Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK N.M. Allinson & K. Moon Department of Electronics, University of York, Heslington, York, YOl 5DD, UK T. Ursby & M. Wulif ESRF, BP220, Grenoble Cedex, France *To whom correspondence should be addressed +Present address: EMBL/ESRF, Avenue des Martyrs, Grenoble Cedex, France ABSTRACT Time-resolved macromolecular X-ray crystallography is a new capability for structural analysis driven by continuing improvements in synchrotron X-ray sources, optics and detectors (image plates and CCDs). Protein crystal Laue data (stationary crystal and polychromatic X-rays) were recorded at SRS Daresbury station 9.5 and ESRF Grenoble beamline 3, and processed with the Daresbury Laue software package. The Laue method allows exposure times set by the synchrotron electron bunch width, eg. 50 picoseconds. The instruments and methods developments widen opportunities for perturbation chemical crystallography studies too. A temperature depen- dent phase transition of a liquid crystal nickel-octahexylphthalocyanine is studied with a rapid readout CCD detector. Structure solution by molecular replacement methods with Laue data is reported for orthorhombic lysozyme. By use of tetragonal lysozyrne as a test case it is shown that with fine angular intervals, wide total angular coverage of Laue exposures and the deconvolution of multiples, good connectivity of electron density maps can be realised. The monochromatic rotating crystal method offers possibilities of extremely fast rotations which allow a complete data set to be recorded onto a single image -Large-angleoscillation technique (LOT). -
Meteorite Impacts, Earth, and the Solar System
Traces of Catastrophe A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures Bevan M. French Research Collaborator Department of Mineral Sciences, MRC-119 Smithsonian Institution Washington DC 20560 LPI Contribution No. 954 i Copyright © 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any portion thereof requires the written permission of the Insti- tute as well as the appropriate acknowledgment of this publication. Figures 3.1, 3.2, and 3.5 used by permission of the publisher, Oxford University Press, Inc. Figures 3.13, 4.16, 4.28, 4.32, and 4.33 used by permission of the publisher, Springer-Verlag. Figure 4.25 used by permission of the publisher, Yale University. Figure 5.1 used by permission of the publisher, Geological Society of America. See individual captions for reference citations. This volume may be cited as French B. M. (1998) Traces of Catastrophe:A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone:281-486-2172 Fax:281-486-2186 E-mail:[email protected] Mail order requestors will be invoiced for the cost of shipping and handling. Cover Art.“One Minute After the End of the Cretaceous.” This artist’s view shows the ancestral Gulf of Mexico near the present Yucatán peninsula as it was 65 m.y.