What Are Bits, Bytes, and Other Units of Measure for Digital Information?

Total Page:16

File Type:pdf, Size:1020Kb

What Are Bits, Bytes, and Other Units of Measure for Digital Information? Units of Computer Storage Computers (pc, laptop, netbook, tablet pc etc) store information in the form of 1 and 0's in different types of storages such as memory (ram), hard disks, usb drives, etc, to be processed by software. The most of common unit of data storage is expressed as byte which is 8 bits. For your information, computer data expressed as bytes, kilobytes, megabytes as it is in metric system, but 1 kilobyte is 1024 bytes not 1000 bytes. Data storages starting from the smallest unit are: bit, byte, kilobyte (kb), megabyte (mb), gigabyte (gb), terabyte (tb), petabyte and exabyte. is What are bits, bytes, and other units of measure for digital information? A bit is a binary digit, the smallest increment of data on a computer. A bit can hold only one of two values: 0 or 1, corresponding to the electrical values of off or on, respectively. Because bits are so small, you rarely work with information one bit at a time. Bits are usually assembled into a group of eight to form a byte. A byte contains enough information to store a single ASCII character, like "h". A kilobyte (KB) is 1,024 bytes, not one thousand bytes as might be expected, because computers use binary (base two) math, instead of a decimal (base ten) system. Computer storage and memory is often measured in megabytes (MB) and gigabytes (GB). A medium-sized novel contains about 1MB of information. 1MB is 1,024 kilobytes, or 1,048,576 (1024x1024) bytes, not one million bytes. Similarly, one 1GB is 1,024MB, or 1,073,741,824 (1024x1024x1024) bytes. A terabyte (TB) is 1,024GB; 1TB is about the same amount of information as all of the books in a large library, or roughly 1,610 CDs worth of data. A petabyte (PB) is 1,024TB. Indiana University is now building storage systems capable of holding petabytes of data. An exabyte (EB) is 1,024PB. A zettabyte (ZB) is 1,024EB. Finally, a yottabyte (YB) is 1,024ZB. Many hard drive manufacturers use a decimal number system to define amounts of storage space. As a result, 1MB is defined as one million bytes, 1GB is defined as one billion bytes, and so on. Since your computer uses a binary system as mentioned above, you may notice a discrepancy between your hard drive's published capacity and the capacity acknowledged by your computer. For example, a hard drive that is said to contain 10GB of storage space using a decimal system is actually capable of storing 10,000,000,000 bytes. However, in a binary system, 10GB is 10,737,418,240 bytes. As a result, instead of acknowledging 10GB, your computer will acknowledge 9.31GB. This is not a malfunction but a matter of different definitions. We count in base 10 by powers of 10: 101 = 10 102 = 10*10 = 100 103 = 10*10*10 = 1,000 106 = 1,000,000 Computers count by base 2: 21 = 2 22 = 2*2 = 4 23 = 2*2*2 = 8 210 = 1,024 220 = 1,048,576 So in computer jargon, the following units are used: Unit Equivalent 1 kilobyte (KB) 1,024 bytes 1 megabyte (MB) 1,048,576 bytes 1 gigabyte (GB) 1,073,741,824 bytes 1 terabyte (TB) 1,099,511,627,776 bytes 1 petabyte (PB) 1,125,899,906,842,624 bytes Memory of storage capacity measurement We come across different measuring units like kilogram, meter and liter and so on to measure weight, length and capacity or volumes of different commodities. Similarly, when we have to measure the capacity of computer¶s memory, storage devices and length of programs, units like kilogram, meter and liter can not be used. Hence, we use the units like BIT, NIBBLE, BYTE and WORD. BIT BIT is an abbreviation of the words binary digit and is the smallest units of information. It is either µ0¶ or µ1¶. The raw data fed into the computer are first converted into an electrical pulses or BITs, as the computer do not recognize the general form of data like numbers (0-9), alphabets (a-z or A-Z) and special characters like punctuation marks and arithmetic signs. The 0 and 1 of the binary system corresponds to the ON and OFF of the flow of electrical in the computer¶s circuits. Computer works by recognizing the presence or absence of an electrical pulses or BITs at a particular time. NIBBLE A NIBBLE is a string of four BITs. The earliest form of code, called µBinary Decimal Code (BCD)¶ used a NIBBLE for every character. For example: Character 3 A BCD (NIBBLE) 0011 1010 BYTE It is the unit of measuring computers memory and size of a program. One BYTE is the string of eight binary digits (BITS). It may represent a single letter, numeral or other characters. Computer memory is expressed in terms of Bytes, Kilo bytes(KB), Mega bytes(MB), Giga bytes(GB) and Tera bytes(TB). 8 bits = 1 byte 1024 bytes = 1 kilobyte (KB) 1024 kilo bytes = 1 Mega byte (MB) 1024 mega bytes = 1 Giga byte (GB) 1024 giga bytes = 1 Tera byte (TB) A µKilo¶ should mean 103 (10×10×10) that is 1000 bytes. However, since the computer used Binary system and 210 (i.e. 2×2×2×2×2×2×2×2×2×2) equals to 1024 bytes, which is nearly 1000 bytes. Hence, µKilo¶ refers to 1024 in measuring units of computer. WORD A computer word is defined in terms of bytes. A word may be formed by combining two or more bytes. The most common combination if of four bytes. Word-length is a length of bits that occupy one location in memory. A computer having a smaller word-length is slower that another having a larger word-length is, though the speed of both is same. Word-length is generally fixed for a computer, but some computers have a challengeable word-length i.e. they can be used in doing small or big tasks. Nowadays computers have word-length of 16, 32, 48, 64, 128 or more bits. .
Recommended publications
  • 1 Metric Prefixes 2 Bits, Bytes, Nibbles, and Pixels
    Here are some terminologies relating to computing hardware, etc. 1 Metric prefixes Some of these prefix names may be familiar, but here we give more extensive listings than most people are familiar with and even more than are likely to appear in typical computer science usage. The range in which typical usages occur is from Peta down to nano or pico. A further note is that the terminologies are classicly used for powers of 10, but most quantities in computer science are measured in terms of powers of 2. Since 210 = 1024, which is close to 103, computer scientists typically use these prefixes to represent the nearby powers of 2, at least with reference to big things like bytes of memory. For big things: Power In CS, Place-value Metric metric of 10 may be name prefix abbrev. 103 210 thousands kilo k 106 220 millions mega M 109 230 billions giga G 1012 240 trillions tera T 1015 250 quadrillions peta P 1018 260 quintillions exa E 1021 270 sextillions zeta Z 1024 280 septillions yotta Y For small things: Power In CS, Place-value Metric metric of 10 may be name prefix abbrev. 10−3 2−10 thousandths milli m 10−6 2−20 millionths micro µ 10−9 2−30 billionths nano n 10−12 2−40 trillionths pico p 10−15 2−50 quadrillionths femto f 10−18 2−60 quintillionths atto a 10−21 2−70 sextillionths zepto z 10−24 2−80 septillionths yocto y 2 Bits, bytes, nibbles, and pixels Information in computers is essentially stored as sequences of 0's and 1's.
    [Show full text]
  • Chapter 2 Data Representation in Computer Systems 2.1 Introduction
    QUIZ ch.1 • 1st generation • Integrated circuits • 2nd generation • Density of silicon chips doubles every 1.5 yrs. rd • 3 generation • Multi-core CPU th • 4 generation • Transistors • 5th generation • Cost of manufacturing • Rock’s Law infrastructure doubles every 4 yrs. • Vacuum tubes • Moore’s Law • VLSI QUIZ ch.1 The highest # of transistors in a CPU commercially available today is about: • 100 million • 500 million • 1 billion • 2 billion • 2.5 billion • 5 billion QUIZ ch.1 The highest # of transistors in a CPU commercially available today is about: • 100 million • 500 million “As of 2012, the highest transistor count in a commercially available CPU is over 2.5 • 1 billion billion transistors, in Intel's 10-core Xeon • 2 billion Westmere-EX. • 2.5 billion Xilinx currently holds the "world-record" for an FPGA containing 6.8 billion transistors.” Source: Wikipedia – Transistor_count Chapter 2 Data Representation in Computer Systems 2.1 Introduction • A bit is the most basic unit of information in a computer. – It is a state of “on” or “off” in a digital circuit. – Sometimes these states are “high” or “low” voltage instead of “on” or “off..” • A byte is a group of eight bits. – A byte is the smallest possible addressable unit of computer storage. – The term, “addressable,” means that a particular byte can be retrieved according to its location in memory. 5 2.1 Introduction A word is a contiguous group of bytes. – Words can be any number of bits or bytes. – Word sizes of 16, 32, or 64 bits are most common. – Intel: 16 bits = 1 word, 32 bits = double word, 64 bits = quad word – In a word-addressable system, a word is the smallest addressable unit of storage.
    [Show full text]
  • How Many Bits Are in a Byte in Computer Terms
    How Many Bits Are In A Byte In Computer Terms Periosteal and aluminum Dario memorizes her pigeonhole collieshangie count and nagging seductively. measurably.Auriculated and Pyromaniacal ferrous Gunter Jessie addict intersperse her glockenspiels nutritiously. glimpse rough-dries and outreddens Featured or two nibbles, gigabytes and videos, are the terms bits are in many byte computer, browse to gain comfort with a kilobyte est une unité de armazenamento de armazenamento de almacenamiento de dados digitais. Large denominations of computer memory are composed of bits, Terabyte, then a larger amount of nightmare can be accessed using an address of had given size at sensible cost of added complexity to access individual characters. The binary arithmetic with two sets render everything into one digit, in many bits are a byte computer, not used in detail. Supercomputers are its back and are in foreign languages are brainwashed into plain text. Understanding the Difference Between Bits and Bytes Lifewire. RAM, any sixteen distinct values can be represented with a nibble, I already love a Papst fan since my hybrid head amp. So in ham of transmitting or storing bits and bytes it takes times as much. Bytes and bits are the starting point hospital the computer world Find arrogant about the Base-2 and bit bytes the ASCII character set byte prefixes and binary math. Its size can vary depending on spark machine itself the computing language In most contexts a byte is futile to bits or 1 octet In 1956 this leaf was named by. Pages Bytes and Other Units of Measure Robelle. This function is used in conversion forms where we are one series two inputs.
    [Show full text]
  • Bits and Bytes
    BITS AND BYTES To understand how a computer works, you need to understand the BINARY SYSTEM. The binary system is a numbering system that uses only two digits—0 and 1. Although this may seem strange to humans, it fits the computer perfectly! A computer chip is made up of circuits. For each circuit, there are two possibilities: An electric current flows through the circuit (ON), or An electric current does not flow through the circuit (OFF) The number 1 represents an “on” circuit. The number 0 represents an “off” circuit. The two digits, 0 and 1, are called bits. The word bit comes from binary digit: Binary digit = bit Every time the computer “reads” an instruction, it translates that instruction into a series of bits (0’s and 1’s). In most computers every letter, number, and symbol is translated into eight bits, a combination of eight 0’s and 1’s. For example the letter A is translated into 01000001. The letter B is 01000010. Every single keystroke on the keyboard translates into a different combination of eight bits. A group of eight bits is called a byte. Therefore, a byte is a combination of eight 0’s and 1’s. Eight bits = 1 byte Capacity of computer memory, storage such as USB devices, DVD’s are measured in bytes. For example a Word file might be 35 KB while a picture taken by a digital camera might be 4.5 MG. Hard drives normally are measured in GB or TB: Kilobyte (KB) approximately 1,000 bytes MegaByte (MB) approximately 1,000,000 (million) bytes Gigabtye (GB) approximately 1,000,000,000 (billion) bytes Terabyte (TB) approximately 1,000,000,000,000 (trillion) bytes The binary code that computers use is called the ASCII (American Standard Code for Information Interchange) code.
    [Show full text]
  • BCA SEM II CAO Data Representation and Number System by Dr. Rakesh Ranjan .Pdf.Pdf
    Department Of Computer Application (BCA) Dr. Rakesh Ranjan BCA Sem - 2 Computer Organization and Architecture About Computer Inside Computers are classified according to functionality, physical size and purpose. Functionality, Computers could be analog, digital or hybrid. Digital computers process data that is in discrete form whereas analog computers process data that is continuous in nature. Hybrid computers on the other hand can process data that is both discrete and continuous. In digital computers, the user input is first converted and transmitted as electrical pulses that can be represented by two unique states ON and OFF. The ON state may be represented by a “1” and the off state by a “0”.The sequence of ON’S and OFF’S forms the electrical signals that the computer can understand. A digital signal rises suddenly to a peak voltage of +1 for some time then suddenly drops -1 level on the other hand an analog signal rises to +1 and then drops to -1 in a continuous version. Although the two graphs look different in their appearance, notice that they repeat themselves at equal time intervals. Electrical signals or waveforms of this nature are said to be periodic.Generally,a periodic wave representing a signal can be described using the following parameters Amplitude(A) Frequency(f) periodic time(T) Amplitude (A): this is the maximum displacement that the waveform of an electric signal can attain. Frequency (f): is the number of cycles made by a signal in one second. It is measured in hertz.1hert is equivalent to 1 cycle/second. Periodic time (T): the time taken by a signal to complete one cycle is called periodic time.
    [Show full text]
  • Binary Slides
    Decimal Numbers: Base 10 Numbers: positional notation Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 • Number Base B ! B symbols per digit: • Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1 Example: • Number representation: 3271 = • d31d30 ... d1d0 is a 32 digit number • value = d " B31 + d " B30 + ... + d " B1 + d " B0 (3x103) + (2x102) + (7x101) + (1x100) 31 30 1 0 • Binary: 0,1 (In binary digits called “bits”) • 0b11010 = 1"24 + 1"23 + 0"22 + 1"21 + 0"20 = 16 + 8 + 2 #s often written = 26 0b… • Here 5 digit binary # turns into a 2 digit decimal # • Can we find a base that converts to binary easily? CS61C L01 Introduction + Numbers (33) Garcia, Fall 2005 © UCB CS61C L01 Introduction + Numbers (34) Garcia, Fall 2005 © UCB Hexadecimal Numbers: Base 16 Decimal vs. Hexadecimal vs. Binary • Hexadecimal: Examples: 00 0 0000 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 01 1 0001 1010 1100 0011 (binary) 02 2 0010 • Normal digits + 6 more from the alphabet = 0xAC3 03 3 0011 • In C, written as 0x… (e.g., 0xFAB5) 04 4 0100 10111 (binary) 05 5 0101 • Conversion: Binary!Hex 06 6 0110 = 0001 0111 (binary) 07 7 0111 • 1 hex digit represents 16 decimal values = 0x17 08 8 1000 • 4 binary digits represent 16 decimal values 09 9 1001 0x3F9 "1 hex digit replaces 4 binary digits 10 A 1010 = 11 1111 1001 (binary) 11 B 1011 • One hex digit is a “nibble”.
    [Show full text]
  • Bit, Byte, and Binary
    Bit, Byte, and Binary Number of Number of values 2 raised to the power Number of bytes Unit bits 1 2 1 Bit 0 / 1 2 4 2 3 8 3 4 16 4 Nibble Hexadecimal unit 5 32 5 6 64 6 7 128 7 8 256 8 1 Byte One character 9 512 9 10 1024 10 16 65,536 16 2 Number of bytes 2 raised to the power Unit 1 Byte One character 1024 10 KiloByte (Kb) Small text 1,048,576 20 MegaByte (Mb) A book 1,073,741,824 30 GigaByte (Gb) An large encyclopedia 1,099,511,627,776 40 TeraByte bit: Short for binary digit, the smallest unit of information on a machine. John Tukey, a leading statistician and adviser to five presidents first used the term in 1946. A single bit can hold only one of two values: 0 or 1. More meaningful information is obtained by combining consecutive bits into larger units. For example, a byte is composed of 8 consecutive bits. Computers are sometimes classified by the number of bits they can process at one time or by the number of bits they use to represent addresses. These two values are not always the same, which leads to confusion. For example, classifying a computer as a 32-bit machine might mean that its data registers are 32 bits wide or that it uses 32 bits to identify each address in memory. Whereas larger registers make a computer faster, using more bits for addresses enables a machine to support larger programs.
    [Show full text]
  • Management of Data Elements in Information Processing
    PB-249-530 MANAGEMENT OF DATA ELEMENTS IN INFORMATION PROCESSING U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards SECOND NATIONAL SYMPOSIUM NATIONAL BUREAU OF STANDARDS GAITHERSBURG, MARYLAND 1975 OCTOBER 23-24 Available by purchase from the National Technical Information Service, 5285 Port Royal Road, Springfield, Va. 221 Price: $9.25 hardcopy; $2.25 microfiche. National Technical Information Service U. S. DEPARTMENT OF COMMERCE PB-249-530 Management of Data Elements in Information Processing Proceedings of a Second Symposium Sponsored by the American National Standards Institute and by The National Bureau of Standards 1975 October 23-24 NBS, Gaithersburg, Maryland Hazel E. McEwen, Editor Institute for Computer Sciences and Technology National Bureau of Standards Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secrefary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acfing Direc/or Table of Contents Page Introduction to the Program of the Second National Symposium on The Management of Data Elements in Information Processing ix David V. Savidge, Program Chairman On-Line Tactical Data Inputting: Research in Operator Training and Performance 1 Irving Alderman, Ph.D. "Turning the Corner" on MIS, A Proposed Program of Data Standards in Post-Secondary Education 9 Donald R. Arnold, Ph.D. ASCII - The Data Alphabet That Will Endure 17 Robert W. Bemer Techniques in Developing Standard Procedures for Data Editing 23 George W. Covill An Adaptive File Management Systems 45 Dennis L. Dance and Udo W. Pooch (Given by Dance) A Focus on the Role of the Data Manager 57 Ruth M, Davis, Ph.D. A Proposed Standard Routine for Generating Proposed Standard Check Characters 61 Paul -Andre Desjardins Methodology for Development of Standard Data Elements within Multiple Public Agencies 69 L.
    [Show full text]
  • Fastgrnn: a Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network
    FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network Aditya Kusupatiy, Manish Singhx, Kush Bhatiaz, Ashish Kumarz, Prateek Jainy and Manik Varmay yMicrosoft Research India xIndian Institute of Technology Delhi zUniversity of California Berkeley {t-vekusu,prajain,manik}@microsoft.com, [email protected] [email protected], [email protected] Abstract This paper develops the FastRNN and FastGRNN algorithms to address the twin RNN limitations of inaccurate training and inefficient prediction. Previous ap- proaches have improved accuracy at the expense of prediction costs making them infeasible for resource-constrained and real-time applications. Unitary RNNs have increased accuracy somewhat by restricting the range of the state transition matrix’s singular values but have also increased the model size as they require a larger num- ber of hidden units to make up for the loss in expressive power. Gated RNNs have obtained state-of-the-art accuracies by adding extra parameters thereby resulting in even larger models. FastRNN addresses these limitations by adding a residual connection that does not constrain the range of the singular values explicitly and has only two extra scalar parameters. FastGRNN then extends the residual connec- tion to a gate by reusing the RNN matrices to match state-of-the-art gated RNN accuracies but with a 2-4x smaller model. Enforcing FastGRNN’s matrices to be low-rank, sparse and quantized resulted in accurate models that could be up to 35x smaller than leading gated and unitary RNNs. This allowed FastGRNN to accurately recognize the "Hey Cortana" wakeword with a 1 KB model and to be deployed on severely resource-constrained IoT microcontrollers too tiny to store other RNN models.
    [Show full text]
  • 1 Configuring SATA Controllers A
    RAID Levels RAID 0 RAID 1 RAID 5 RAID 10 Minimum Number of Hard ≥2 2 ≥3 ≥4 Drives Array Capacity Number of hard Size of the smallest (Number of hard (Number of hard drives * Size of the drive drives -1) * Size of drives/2) * Size of the smallest drive the smallest drive smallest drive Fault Tolerance No Yes Yes Yes To create a RAID set, follow the steps below: A. Install SATA hard drive(s) in your computer. B. Configure SATA controller mode in BIOS Setup. C. Configure a RAID array in RAID BIOS. (Note 1) D. Install the SATA RAID/AHCI driver and operating system. Before you begin, please prepare the following items: • At least two SATA hard drives or M.2 SSDs (Note 2) (to ensure optimal performance, it is recommended that you use two hard drives with identical model and capacity). (Note 3) • A Windows setup disk. • Motherboard driver disk. • A USB thumb drive. 1 Configuring SATA Controllers A. Installing hard drives Connect the SATA signal cables to SATA hard drives and the Intel® Chipset controlled SATA ports (SATA3 0~5) on the motherboard. Then connect the power connectors from your power supply to the hard drives. Or install your M.2 SSD(s) in the M.2 connector(s) on the motherboard. (Note 1) Skip this step if you do not want to create RAID array on the SATA controller. (Note 2) An M.2 PCIe SSD cannot be used to set up a RAID set either with an M.2 SATA SSD or a SATA hard drive.
    [Show full text]
  • H/W3 Binary to Denary
    Name ___________________________________ Form ________ H/W Year 8 Homework Booklet Theme 1 Data Representation Computers themselves, and “ software yet to be developed, will revolutionize “ the way we learn. - Steve Jobs Founder of Apple Introduction What language does a computer understand? How does a computer represent data, information and images? Soon, you will be able to answer the questions above! In this theme we will explore the different ways in which data is represented by the computer, ranging from numbers to images. We will learn and understand the number bases and conversions between denary and binary. We will also be looking at units of information, binary addition and how we can convert binary data into a black and white image! See the key below to find out what the icons below mean: Self Assessment: You will mark your work at the start of next lesson. ENSURE YOU COMPELTE HOMEWORK AS MARKS WILL BE COLLECTED IN! Edmodo Quiz: The will be a quiz the start of next lesson based on your homework. SO MAKE SURE YOU REVISE! Peer Assessment: Homework marked by your class mate at the start of next lesson. MAKE SURE YOU HAVE YOUR HOMEWORK DONE SO YOU CAN SWAP WITH ANOTHER PUPIL! Stuck? Got a question? Email your teacher. Mr Rifai (Head of Computing) [email protected] Miss Davison [email protected] Miss Pascoe [email protected] 2 Due Date: H/W1 Data & Number Bases Read and digest the information below. You will be quizzed next lesson! Any set of characters gathered and translated for What is Data? some purpose.
    [Show full text]
  • Introduction to Hard Disk (HDD)
    Introduction to Hard Disk (HDD) A hard drive is a mass storage device found in all PCs (with some - [exclusions) that is used to store permanent data such as the operating system, programs and user files. The data on hard drives can be erased and/or overwritten, the hard drive is classed as a non-volatile storage device which means it doesn't require a constant power supply in order to retain the information stored on it (unlike RAM). Inside every hard drive are small round disk-like objects made of either an aluminium/alloy or a glass/ceramic composite, these are called platters, each platter is coated with a special magnetic coating enabling them to store data magnetically. Hovering above these platters are read/write heads that transfer data to and from the platters. Hard Drive Capacities Hard drives come with many different storage capacities, hard drive capacity is measured in bytes, with common capacities being stated in MB (Megabytes) and GB (Gigabytes). To understand these figures correctly you need to know the basics of how data is stored/processed in digital systems such as PCs. Digital data is a series of 1's (ones) and 0's (zeroes) which are referred to as bits (Binary digITs), a byte is made up of 8 of these bits, so a single byte of data may look like 01001011 (8 consecutive bits). 1 Bit = either a 0 (zero) or a 1 (one) 1 Byte = 8 bits 1 KB (Kilobyte) = 1024 bytes (210) 1 MB (Megabyte) = 1024 Kilobytes (220) 1 GB (Gigabyte) = 1024 Megabytes (230) 1 TB (Terabyte) = 1024 Gigabytes (240) In the old days it was common to find hard drives with a capacity of just 5MB, nowadays it is hard to buy a new hard drive with less than 40GB, that's 40,960 Megabytes ! Common hard drive capacities these days range from 40GB up to and exceeding 120GB.
    [Show full text]