Dube Nontembeko 2019.Pdf (2.959Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Dube Nontembeko 2019.Pdf (2.959Mb) UNDERSTANDING THE FITNESS, PREFERENCE AND PERFORMANCE OF SPECIALIST HERBIVORES OF THE SOUTHERN AFRICAN BIOTYPE OF CHROMOLAENA ODORATA (ASTERACEAE), AND IMPACTS ON PHYTOCHEMISTRY AND GROWTH RATE OF THE PLANT By NONTEMBEKO DUBE Submitted in fulfillment of the academic requirement of Doctorate of Philosophy In The Discipline of Entomology School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa 2019 PREFACE The research contained in this thesis was completed by the candidate while based in the Discipline of Entomology, School of Life Sciences of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg campus, South Africa, under the supervision of Dr Caswell Munyai, Dr Costas Zachariades, Dr Osariyekemwen Uyi and the guidance of Prof Fanie van Heerden. The research was financially supported by the Natural Resource Management Programmes of the Department of Environmental Affairs, and Plant Health and Protection of the Agricultural Research Council. The contents of this work have not been submitted in any form to another university and, except where the work of others is acknowledged in the text, the results reported are due to investigations by the candidate. _________________________ Signed: N. Dube (Candidate) Date: 08 August 2019 __________________________ Signed: C. Munyai (Supervisor) Date: 08August 8, 2019 ________________________________ Signed: C. Zachariades (Co-supervisor) Date: 08 August 2019 _________________________________ Signed: O. Uyi (Co-supervisor) Date: 08 August 2019 ii DECLARATION 1: PLAGIARISM I, Nontembeko Dube, declare that: (i) the research reported in this dissertation, except where otherwise indicated or acknowledged, is my original work; (ii) this dissertation has not been submitted in full or in part for any degree or examination to any other university; (iii) this dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons; (iv) this dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) their words have been re-written but the general information attributed to them has been referenced; b) where their exact words have been used, their writing has been placed inside quotation marks, and referenced; (v) where I have used material for which publications followed, I have indicated in detail my role in the work; (vi) this dissertation is primarily a collection of material, prepared by myself, published as journal articles or presented as a poster and oral presentations at conferences. In some cases, additional material has been included; (vii) this dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections. _______________________ Signed: Nontembeko Dube Date: 08 August 2019 iii DECLARATION 2: PUBLICATIONS For the six experimental chapters (Chapters 3-8) in this thesis, Chapters 3 and 4 are published and Chapters 5-8 are in preparation for submission for publication to an appropriate scientific journal. My three or sometimes 4 co-authors have been included as my supervisors or because of their significant scientific input. My role in each paper and presentation is indicated. The * indicates corresponding author. Chapter 3 Dube N*, Zachariades C, Uyi OO, Munyai TC. 2017. Laboratory studies on the biology and host range of Dichrorampha odorata (Lepidoptera: Tortricidae), a biological control agent for Chromolaena odorata (Asteraceae). Biocontrol Science and Technology 27: 222-236. Dube N, Zachariades C, Munyai T, Uyi O. 2017. Biology and host range of Dichrorampha odorata (Lepidoptera: Tortricidae), a biocontrol agent of Chromolaena odorata (Asteraceae). Poster Presentation. University of KwaZulu Natal Research Day, 26 October 2017, Westville, Durban, South Africa. Chapter 4 Dube N*, Uyi O, Zachariades C, Munyai TC, Whitwell M. 2019. Impact of the shoot- boring moth Dichrorampha odorata (Lepidoptera: Tortricidae) on growth and reproductive potential of Chromolaena odorata (Asteraceae) in the laboratory. Biocontrol Science and Technology 29: 350-364. Chapter 5 Dube N, Zachariades C. 2016. Host suitability testing of a gall forming fly Polymorphomyia basilica (Diptera: Tephritidae), a potential biological control agent of Siam weed Chromolaena odorata (Asteraceae) in South Africa. 20th Australasian Weeds Conference 11-15 September 2016-Perth, Western Australia. Chapter 6-8 Dube N, Zachariades C, Uyi OO, van Heerden F, Munyai TC. 2017. Comparison of secondary compounds as influenced by Pareuchaetes insulata (Lepidoptera: Arctiidae; Erebidae) on Chromolaena odorata. 44th Annual Workshop on Biological Control of Weeds Research and Implementation, 30 October -01 November 2017, Grahamstown, South Africa. Dube N, Zachariades C, Uyi OO, van Heerden F, Munyai TC. 2018. Impact of Pareuchaetes insulata on Chromolaena odorata respective to EICA hypothesis. 45th Annual Workshop on Biological Control of Weeds Research and Implementation, 29-31 October 2018, Salt Rock, Dolphin Coast, South Africa. _______________________ iv Signed: Nontembeko Dube ABSTRACT The invasiveness and negative impacts of the alien shrub, Chromolaena odorata (L.) (Asteraceae) in South Africa resulted in the initiation of a biological control programme against the weed in the late 1980s. After the release of seven biocontrol agents, only two have successfully established to date viz. a leaf mining fly, Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) and a moth with defoliating larvae, Pareuchaetes insulata Walker (Lepidoptera: Erebidae: Arctiinae). Surveys conducted suggested that C. odorata densities seem to be low in KwaZulu-Natal (KZN) province where P. insulata is present whilst its infestation is increasing in other places such as Limpopo province where the moth is absent. This study aimed to examine the life history traits, preference and performance of two biocontrol agents, viz. Dichrorampha odorata (Lepidoptera: Tortricidae) and Polymorphomyia basilica (Diptera: Tephritidae). A further objective of the study was to measure the effects of one of the established agents, P. insulata, on the competitive ability and defence mechanism of C. odorata by indirectly testing the predictions of the Evolution of Increased Competitive Ability (EICA). Studies of life history traits of D. odorata in the laboratory indicated that the moth possesses good biological control attributes such as short-lived adults with high mating success, fecundity and egg hatchability. Of the 34 asteraceous plants subjected to larval no-choice tests, only C. odorata could sustain complete development of D. odorata to adulthood, although there was slight initial boring on 14 test species (plus C. odorata). Adult no-choice tests using seven test-plant species that were damaged in larval no-choice tests were consistent with the earlier trials, with larval damage, pupae and adults of D. odorata recorded from only C. odorata. This demonstrated that only C. odorata is a suitable host for D. odorata in South Africa and permission for the release of this first shoot-tip attacking agent was granted for biocontrol of C. odorata in South Africa. To predict the efficacy of D. odorata as a biological control of C. odorata, a 9-month laboratory study was carried out. Plant growth metrics were compared across three treatments i.e. 0, 50 and 100% where newly hatched D. odorata larvae were inoculated v onto the shoot tips of C. odorata. At all treatment levels, the basal stem diameter of C. odorata was not affected by D. odorata larval feeding whilst the height of the main shoot and flower production of C. odorata were reduced at 50 and 100% relative to the control treatment. In general, the impacts of D. odorata on the weed were relatively small even though statistically significant, suggesting that the moth will modestly reduce the height and flower production of C. odorata. Positive biological characteristics of P. basilica include a high rate of increase, long-lived and mobile adults, the ability of females to produce viable offspring without repeated mating, the ability of adults to eclose from galls on dry stems and the production of several generations per year. Thirty-two asteraceous plants were investigated to determine host specificity of P. basilica in single-choice adult tests and using single pairs of adults in no- choice tests, under laboratory conditions. Oviposition and larval development through to adulthood occurred on three other South American and on two South African species; one in the same tribe Eupatorieae, closely related to C. odorata and another one in the Astereae, less closely related to the weed, but both at a lower and slower rate. Females tended to retain their eggs under no-choice conditions in the presence of an unsuitable host, and to compensate by ovipositing at a higher rate when presented later with a C. odorata plant. Overall, this study predicts the ability of P. basilica to stretch to areas where P. insulata has failed to establish and supports the suitability of P. basilica for release in South Africa. To determine the mechanism behind the decrease of C. odorata densities in KZN province, where the specialist herbivore P. insulata is present, compared to Limpopo
Recommended publications
  • General News
    Biocontrol News and Information 27(4), 63N–79N pestscience.com General News David Greathead hoods. Both broom and tagasaste pods can be a seasonally important food source for kererū (an As this issue went to press we received the sad news endemic pigeon, Hemiphaga novaeseelandiae), par- of the untimely death of Dr David Greathead at the ticularly in regions where its native food plants have age of 74. declined. A previous petition for the release of G. oli- vacea into New Zealand was rejected by the New Besides being a dedicated and popular Director of Zealand Ministry of Agriculture and Forestry in CABI’s International Institute of Biological Control 1998 on the grounds that there was insufficient (IIBC), David was the driving force behind the estab- information to assess the relative beneficial and lishment and development of Biocontrol News and harmful effects of the proposed introduction. Information. He was an active member of its Edito- rial Board, providing advice and ideas right up to his As part of the submission to ERMA, Landcare death. Research quantified the expected costs and benefits associated with the introduction of additional biolog- We plan that the next issue will carry a full obituary. ical control agents for broom1. Due to uncertainties Please contact us if you would be willing to con- regarding the costs, a risk-averse approach was tribute information: commentary, personal adopted by assuming a worse-case scenario where memories or anecdotes on the contribution that tagasaste was planted to its maximum potential David made. extent in New Zealand (10,000 ha), levels of non- target damage to tagasaste were similar to those on Contact: Matthew Cock & Rebecca Murphy C.
    [Show full text]
  • Evaluation of a Plant-Herbivore System In
    EVALUATION OF A PLANT-HERBIVORE SYSTEM IN DETERMINING POTENTIAL EFFICACY OF A CANDIDATE BIOLOGICAL CONTROL AGENT, CORNOPS AQUATICUM FOR WATER HYACINTH, EICHHORNIA CRASSIPES A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by ANGELA BOWNES December 2008 Abstract Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a free- floating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world.
    [Show full text]
  • BIOLOGICAL ACTIVITIES and CHEMICAL CONSTITUENTS of Chromolaena Odorata (L.) King & Robinson
    BIOLOGICAL ACTIVITIES AND CHEMICAL CONSTITUENTS OF Chromolaena odorata (L.) King & Robinson FARNIDAH HJ JASNIE DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR JUNE 2009 ABSTRACT Chloromolaena odorata was screened for its phytochemical properties and pharmacological activities. Phytochemical screening of C. odorata indicates the presence of terpenoid, flavonoid and alkaloid. GCMS analysis of the leaf extract of C. odorata shows four major compounds which are cyclohexane, germacrene, hexadecoic acid and caryophyllene. While, HPLC analysis has identify five peaks; quercetin-4 methyl ether, aromadendrin-4’-methyl ether, taxifolin-7-methyl ether, taxifolin-4’- methyl ether and quercetin-7-methyl ether, kaempferol-4’-methyl ether and eridicytol-7, 4’-dimehyl ether, quercetin-7,4’-dimethyl ether. By using the column chromatography, three compounds were isolated; 5,7-dihydroxy-2-(4-methoxyphenyl)chromen-4-one; 3,5-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)-7-methoxy-chromen-4-one and of 2- (3,4-dimethoxyphenyl)-3,5-dihydroxy-7-methoxy-chromen-4-one. The toxicity evaluation and dermal irritation of the aqueous leaf extract of C. odorata verifies that it is non-toxic at the maximum dose of 2000mg/kg. For the formaldehyde induced paw oedema evaluation, it proves that the leaf extract of the plant is 80.24% (concentration of 100mg/kg) as effective as Indomethacine (standard drug). The methanolic extract (100mg/ml) of the plant shows negative anti- coagulant, as it causes blood clot in less than two minutes. Meanwhile, the petroleum ether and chloroform leaf extract shows negative anti-coagulant, as they prolong the blood coagulation from to two minutes to more than three minutes.
    [Show full text]
  • The Reproductive Biology, Natural Enemies and Biological Control of Delairea Odorata Lem
    The Reproductive Biology, Natural Enemies and Biological Control of Delairea odorata Lem. by Carol Ann Rolando Submitted in fulfilment of the requirements for the degree of Master of Science in the School of Botany and Zoology, University of Natal, Pietermaritzburg, March 2000 ABSTRACT Delairea odorata Lem., an asteraceous perennial vine indigenous to southern Africa, has become naturalised and invasive in many subtropical regions including California, South Australia and Hawaii. Biological control offers a potential long term solution to the management of this species in exotic locations. This study analysed aspects ofthe biology ofD. odorata in its native environment to determine its suitability to classical biological control. To this end an examination of the reproductive biology and natural enemies of D. odorata was made. A study of the pyrrolizidine alkaloid profile was also conducted. Reproductive biology: Delairea odorata reproduces both sexually by seeds and asexually by stolons. The flowering season occurs over the autumn months from April to June. Results ofthe pollination trials indicate thatD. odorata is a cross compatible species and an obligate outbreeder. There is no specialised pollination system and the predorninant pollinators belong to the families Apidae, Syrphidae and Calliphoridae. Following pollination, numerous small achenes are produced. Laboratory trials indicate that these achenes germinate readily between 10 and 25 QC and, although germination occurs in both the light and dark, light clearly stimulates seed germination. Greenhouse trials conducted to determine the effect of light on growth and reproduction indicate that D. odorata is a shade tolerant species which shows plasticity in terms ofgrowth form and deployment ofbiomass in response to changes in light intensity.
    [Show full text]
  • Checklist of the Leaf-Mining Flies (Diptera, Agromyzidae) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 291–303Checklist (2014) of the leaf-mining flies( Diptera, Agromyzidae) of Finland 291 doi: 10.3897/zookeys.441.7586 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the leaf-mining flies (Diptera, Agromyzidae) of Finland Jere Kahanpää1 1 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI–00014 University of Helsinki, Finland Corresponding author: Jere Kahanpää ([email protected]) Academic editor: J. Salmela | Received 25 March 2014 | Accepted 28 April 2014 | Published 19 September 2014 http://zoobank.org/04E1C552-F83F-4611-8166-F6B1A4C98E0E Citation: Kahanpää J (2014) Checklist of the leaf-mining flies (Diptera, Agromyzidae) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 291–303. doi: 10.3897/zookeys.441.7586 Abstract A checklist of the Agromyzidae (Diptera) recorded from Finland is presented. 279 (or 280) species are currently known from the country. Phytomyza linguae Lundqvist, 1947 is recorded as new to Finland. Keywords Checklist, Finland, Diptera, biodiversity, faunistics Introduction The Agromyzidae are called the leaf-miner or leaf-mining flies and not without reason, although a substantial fraction of the species feed as larvae on other parts of living plants. While Agromyzidae is traditionally placed in the superfamily Opomyzoidea, its exact relationships with other acalyptrate Diptera are poorly understood (see for example Winkler et al. 2010). Two subfamilies are recognised within the leaf-mining flies: Agromyzinae and Phytomyzinae. Both are now recognised as natural groups (Dempewolf 2005, Scheffer et al. 2007). Unfortunately the genera are not as well defined: at least Ophiomyia, Phy- toliriomyza and Aulagromyza are paraphyletic in DNA sequence analyses (see Scheffer et al.
    [Show full text]
  • Phytosociology of the Upper Orange River Valley, South Africa
    PHYTOSOCIOLOGY OF THE UPPER ORANGE RIVER VALLEY, SOUTH AFRICA A SYNTAXONOMICAL AND SYNECOLOGICAL STUDY M.J.A.WERGER PROMOTOR: Prof. Dr. V. WESTHOFF PHYTOSOCIOLOGY OF THE UPPER ORANGE RIVER VALLEY, SOUTH AFRICA A SYNTAXONOMICAL AND SYNECOLOGICAL STUDY PROEFSCHRIFT TER VERKRUGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSITEIT TE NIJMEGEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. MR. F J.F.M. DUYNSTEE VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP 10 MEI 1973 DES NAMIDDAGS TE 4.00 UUR. DOOR MARINUS JOHANNES ANTONIUS WERGER GEBOREN TE ENSCHEDE 1973 V&R PRETORIA aan mijn ouders Frontiepieae: Panorama drawn by R.J. GORDON when he discovered the Orange River at "De Fraaye Schoot" near the present Bethulie, probably on the 23rd December 1777. I. INTRODUCTION When the government of the Republic of South Africa in the early sixties decided to initiate a comprehensive water development scheme of its largest single water resource, the Orange River, this gave rise to a wide range of basic and applied scientific sur­ veys of that area. The reasons for these surveys were threefold: (1) The huge capital investment on such a water scheme can only be justified economically on a long term basis. Basic to this is that the waterworks be protected, over a long period of time, against inefficiency caused by for example silting. Therefore, management reports of the catchment area should.be produced. (2) In order to enable effective long term planning of the management and use of the natural resources in the area it is necessary to know the state of the local ecosystems before a major change is instituted.
    [Show full text]
  • Rvk-Diss Digi
    University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands.
    [Show full text]
  • Visual Cues of Oviposition Sites and Spectral Sensitivity of Cydia Strobilella L
    Accepted Manuscript Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L Johan Jakobsson, Miriam J. Henze, Glenn P. Svensson, Olle Lind, Olle Anderbrant PII: S0022-1910(17)30044-6 DOI: http://dx.doi.org/10.1016/j.jinsphys.2017.06.006 Reference: IP 3660 To appear in: Journal of Insect Physiology Received Date: 15 February 2017 Revised Date: 30 May 2017 Accepted Date: 8 June 2017 Please cite this article as: Jakobsson, J., Henze, M.J., Svensson, G.P., Lind, O., Anderbrant, O., Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L, Journal of Insect Physiology (2017), doi: http:// dx.doi.org/10.1016/j.jinsphys.2017.06.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Title: Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L. Johan Jakobsson1, Miriam J. Henze1,2, Glenn P. Svensson1, Olle Lind3, Olle Anderbrant1. 1Department of Biology, Lund University, Sweden 2Brain Research Institute, University of Queensland, Australia 3Department of Philosophy, Lund University, Sweden E-mail for correspondence: [email protected] Abstract We investigated whether the spruce seed moth (Cydia strobilella L., Tortricidae: Grapholitini), an important pest in seed orchards of Norway spruce (Picea abies (L.) Karst.), can make use of the spectral properties of its host when searching for flowers to oviposit on.
    [Show full text]
  • Chromolaena Odorata Newsletter
    NEWSLETTER No. 19 September, 2014 The spread of Cecidochares connexa (Tephritidae) in West Africa Iain D. Paterson1* and Felix Akpabey2 1Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa 2Council for Scientific and Industrial Research (CSIR), PO Box M.32, Accra, Ghana Corresponding author: [email protected] Chromolaena odorata (L.) R.M. King & H. Rob. that substantial levels of control have been achieved and that (Asteraceae: Eupatorieae) is a shrub native to the Americas crop yield has increased by 50% due to the control of the that has become a problematic invasive in many of the weed (Day et al. 2013a,b). In Timor Leste the biological tropical and subtropical regions of the Old World (Holm et al. control agent has been less successful, possibly due to the 1977, Gautier 1992). Two distinct biotypes, that can be prolonged dry period on the island (Day et al. 2013c). separated based on morphological and genetic characters, are recognised within the introduced distribution (Paterson and Attempts to rear the fly on the SA biotype have failed Zachariades 2013). The southern African (SA) biotype is only (Zachariades et al. 1999) but the success of C. connexa in present in southern Africa while the Asian/West African (A/ South-East Asia indicates that it may be a good option for WA) biotype is present in much of tropical and subtropical control of the A/WA biotype in West Africa. A colony of the Asia as well as tropical Africa (Zachariades et al. 2013). The fly was sent to Ghana with the intention of release in that first records of the A/WA biotype being naturalised in Asia country in the 1990s but the colony failed before any releases were in India and Bangladesh in the 1870s but it was only in were made (Zachariades et al.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • Die Plantfamilie ASTERACEAE: 6
    ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae.
    [Show full text]
  • The Agromyzidae of Canada and Alaska
    THE AGROMYZIDAE OF CANADA AND AI,A.SKA Kexxern A. SPr,xcEn* Entomology Research Institute, canada Department of Agriculture, ottawa INTRODUCTION This paper is an initial handbook for identification of the Canadian Agromyzid^ae, with keys to genela and species. Illustrations of the male genitalia gin6n for all species in #nich males are known, except for a few cases where earlier"r"e figures are available. No "comprehensive paper on the Canadian Agromyzidae has previously. been published, altilough d.sciiptiotts of isolated spccieihave been.pre-gi1.d .by 4lll* \tOzv1, ioquilleit (lg02i, Curran (193la,^D), Frost (192+r, Melander (1913)' and ina serids of papers by Malloch between 1913 and 1918. Records of Canadian Agromyzidae ha'ieb..n .onu.nienrly summarised by Frick (1959) in"his synopsis oiXotth American species, and among those he lists as occurring_in Canada I have been able to .onfit- 41 as correJt. Frick in all deals with 206 described North American species, but these also include 16 of Neotropical distribution from the West Indies and Central America. Here. 290 species are recorded for Canada and Alaska. A breakdown of these by genera is shown in Table I: 147 species are described as new' 2J are new to Norih"America,T2 are shown to be Hoiarctic, and 13 are discussed as probable or possible introductions from Europe. In addition seven new synonymies have been established between American ind European species; two American sPecies previously synonymised ale now .esotr.ct.d^ as diitinct; four European names have in th.'past been incorrectly used for species now. described as new; one species hitheito considered as reitricted to North America and the Neotropical I{egion is recorded for the first time in the Palaearctic-Region, in Mongolia;.and fini'lly, one Nearctic name has been incorrectly applied to a Palaearctic species.
    [Show full text]