Bulletin EATCS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Best Nurturers in Computer Science Research
The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities. -
Applp: a Dialogue on Applications of Logic Programming
AppLP: A Dialogue on Applications of Logic Programming David S. Warren Yanhong A. Liu Stony Brook University This document describes the contributions of the 2016 Applications of Logic Programming Workshop (AppLP), which was held on October 17 and associated with the International Conference on Logic Programming (ICLP) in Flushing, New York City. Focus and scope The focus of the workshop was applications of logic programming, i.e., application problems, in whole or in part, that are solved by using logic programming languages and systems. A particular theme of interest was to explore the ease of development and maintenance, clarity, performance, and tradeoffs among these features, brought about by programming using a logic paradigm. The goal was to help provide directions for future research advances and application development. Real-world problems increasingly involve complex data and logic, making the use of logic pro- gramming more and more beneficial for such complex applications. Despite the diverse areas of application, their common underlying requirements are centered around ease of development and maintenance, clarity, performance, integration with other tools, and tradeoffs among these prop- erties. Better understanding of these important principles will help advance logic programming research and lead to benefits for logic programming applications. The workshop was organized around four main areas of application: Enterprise Software, Con- trol Systems, Intelligent Agents, and Deep Analysis. These general areas included topics such as business intelligence, ontology management, text processing, program analysis, model checking, access control, network programming, resource allocation, system optimization, decision making, and policy administration. The issues proposed for discussion included language features, imple- mentation efficiency, tool support and integration, evaluation methods, as well as teaching and training. -
2Nd USENIX Conference on Web Application Development (Webapps ’11)
conference proceedings Proceedings of the 2nd USENIX Conference Application on Web Development 2nd USENIX Conference on Web Application Development (WebApps ’11) Portland, OR, USA Portland, OR, USA June 15–16, 2011 Sponsored by June 15–16, 2011 © 2011 by The USENIX Association All Rights Reserved This volume is published as a collective work. Rights to individual papers remain with the author or the author’s employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all trademarks herein. ISBN 978-931971-86-7 USENIX Association Proceedings of the 2nd USENIX Conference on Web Application Development June 15–16, 2011 Portland, OR, USA Conference Organizers Program Chair Armando Fox, University of California, Berkeley Program Committee Adam Barth, Google Inc. Abdur Chowdhury, Twitter Jon Howell, Microsoft Research Collin Jackson, Carnegie Mellon University Bobby Johnson, Facebook Emre Kıcıman, Microsoft Research Michael E. Maximilien, IBM Research Owen O’Malley, Yahoo! Research John Ousterhout, Stanford University Swami Sivasubramanian, Amazon Web Services Geoffrey M. Voelker, University of California, San Diego Nickolai Zeldovich, Massachusetts Institute of Technology The USENIX Association Staff WebApps ’11: 2nd USENIX Conference on Web Application Development June 15–16, 2011 Portland, OR, USA Message from the Program Chair . v Wednesday, June 15 10:30–Noon GuardRails: A Data-Centric Web Application Security Framework . 1 Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri, and David Evans, University of Virginia PHP Aspis: Using Partial Taint Tracking to Protect Against Injection Attacks . -
The EATCS Award 2020 Laudatio for Toniann (Toni)Pitassi
The EATCS Award 2020 Laudatio for Toniann (Toni)Pitassi The EATCS Award 2021 is awarded to Toniann (Toni) Pitassi University of Toronto, as the recipient of the 2021 EATCS Award for her fun- damental and wide-ranging contributions to computational complexity, which in- cludes proving long-standing open problems, introducing new fundamental mod- els, developing novel techniques and establishing new connections between dif- ferent areas. Her work is very broad and has relevance in computational learning and optimisation, verification and SAT-solving, circuit complexity and communi- cation complexity, and their applications. The first notable contribution by Toni Pitassi was to develop lifting theorems: a way to transfer lower bounds from the (much simpler) decision tree model for any function f, to a lower bound, the much harder communication complexity model, for a simply related (2-party) function f’. This has completely transformed our state of knowledge regarding two fundamental computational models, query algorithms (decision trees) and communication complexity, as well as their rela- tionship and applicability to other areas of theoretical computer science. These powerful and flexible techniques resolved numerous open problems (e.g., the su- per quadratic gap between probabilistic and quantum communication complex- ity), many of which were central challenges for decades. Toni Pitassi has also had a remarkable impact in proof complexity. She in- troduced the fundamental algebraic Nullstellensatz and Ideal proof systems, and the geometric Stabbing Planes system. She gave the first nontrivial lower bounds on such long-standing problems as weak pigeon-hole principle and models like constant-depth Frege proof systems. She has developed new proof techniques for virtually all proof systems, and new SAT algorithms. -
Automated Security Analysis of Virtualized Infrastructures
Automated Security Analysis of Virtualized Infrastructures Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Sören Bleikertz, M.Sc. aus Leverkusen Tag der Einreichung: 15.02.2017, Tag der Prüfung: 17.05.2017 2017 — Darmstadt — D 17 1. Gutachten: Prof. Dr. Michael Waidner 2. Gutachten: Dr. Thomas Groß, University of Newcastle upon Tyne Security in Information Technology Fachbereich Informatik Automated Security Analysis of Virtualized Infrastructures Genehmigte Dissertation von Sören Bleikertz, M.Sc. aus Leverkusen 1. Gutachten: Prof. Dr. Michael Waidner 2. Gutachten: Dr. Thomas Groß, University of Newcastle upon Tyne Tag der Einreichung: 15.02.2017 Tag der Prüfung: 17.05.2017 Darmstadt — D 17 Erklärung zur Dissertation Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an- gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. Horgen, Schweiz, den 16.07.2017 (Sören Bleikertz, M.Sc.) 1 Abstract Virtualization enables the increasing efficiency and elasticity of modern IT infrastructures, including Infrastructure as a Service. However, the operational complexity of virtualized infrastructures is high, due to their dynamics, multi-tenancy, and size. Misconfigurations and insider attacks carry significant operational and security risks, such as breaches in tenant isolation, which put both the infrastructure provider and tenants at risk. In this thesis we study the question if it is possible to model and analyze complex, scalable, and dynamic virtualized infrastructures with regard to user-defined security and operational policies in an automated way. -
MAURICE NIVAT, UNE GRANDE FIGURE 89 ◦◦◦◦••◦◦ Une Brève Biographie Scientifique De Maurice Nivat 2
HOMMAGE Maurice Nivat, une grande gure Pierre-Louis Curien 1 Le texte qui suit a été rédigé en 2001, pour le volume intitulé « Merci, Maurice : a mosaic in honour of Maurice Nivat », paru comme numéro spécial de la revue Theoretical Com- puter Science, que Maurice Nivat avait fon- dée. En écrivant ce texte, je me réjouissais par avance des travaux scientifiques que Maurice continuerait de poursuivre, des combats qu’il continuerait à livrer pour la pleine reconnais- sance de notre discipline et pour son enseigne- ment « de première classe », et de la liberté qu’il aurait, sa retraite prise, pour assouvir à loisir d’autres passions : celles pour le patri- moine, pour l’ethnographie, pour le théâtre, pour les voyages... Et, en effet, Maurice a poursuivi pendant plusieurs années ses travaux en tomographie discrète. Accompagné par son épouse Paule, il a parcouru le monde en long et en large, à six reprises. Il a mené un combat acharné pour l’introduction de l’informatique dans les programmes de l’enseignement secon- daire. Maurice nous a quittés au terme d’une maladie qu’il a combattue avec un im- mense courage, continuant à lire, à s’informer, à s’enflammer pour les causes qu’il 1. Institut de recherche en informatique fondamentale (IRIF, UMR 8243), CNRS et université Paris- Diderot. 1024 – Bulletin de la société informatique de France, numéro 12, juin 2018, pp. 87–107 88 PIERRE-LOUIS CURIEN ◦◦◦◦••◦◦ défendait. Je me souviendrai de la gourmandise qu’il avait encore dans les yeux et dans le verbe pour me parler, sur son lit d’hôpital, de sa fascination pour les iguanes, alors que je revenais d’une conférence aux îles Galápagos. -
Downloads/Pws-Whitepaper-May-2006-De.Pdf, 28.07.2008
Privacy and Identity Management in Europe for Life Infrastructure for Trusted Content Editors: Dr. Stephan Spitz (GD) Dr. Walter Hinz (GD) Dr. Marc-Michael Bergfeld (GD) Reviewers: Karel Wouters (KUL) Aleksandra Kuczerawy (KUL) Identifier: D6.2.1 Type: Deliverable Class: Public Date: 28 August 2008 Abstract As the usage of information and communication technology increases in private and professional life, personal data is widely stored. While service providers need to rely on identifying their customers, conscious identity management and privacy develops into a new value for the service user, especially in the electronic service context. Here, modern technology infrastructures can assist in providing security to both sides by assuring identification and privacy at the same time. This paper introduces the ‘Security of Service’ concept and presents different technical environments through which it can be established. Privacy in service composition is elaborated conceptually and from a technological standpoint. Potential authentication scenarios and emerging use cases are introduced. In conclusion, implications for the needed technological infrastructures are derived and necessary future research directions are indicated. Copyright © 2008 by the PrimeLife Consortium The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n o 216483. Members of the PrimeLife Consortium 1. IBM Research GmbH IBM Switzerland 2. Unabhängiges Landeszentrum für Datenschutz ULD Germany 3. Technische Universität Dresden TUD Germany 4. Karlstads Universitet KAU Sweden 5. Università degli Studi di Milano UNIMI Italy 6. Johann Wolfgang Goethe – Universität Frankfurt am Main GUF Germany 7. Stichting Katholieke Universiteit Brabant TILT Netherlands 8. -
News from New Zealand
News from New Zealand by C. S. Calude Department of Computer Science, University of Auckland Auckland, New Zealand [email protected] After 21 years of uninterrupted presence (this column didn’t appear in the October 2013 issue due to a clerical problem in the change of editors-in-chief) this is the last report from New Zealand. I wish to warmly thank Professor G. Rozenberg for inviting me to contribute with a column of news to the Bulletin, the other Bulletin editors-in-chief I have worked with, the eminent scientists who have accepted to be interviewed, and, last but not least, the Bulletin readers. This column includes the continuation of the interview with Professor G. Rozenberg. An edited-augmented-structured selection of interviews published in this column will appear in the book The Human Face of Computing to this year at Imperial College Press, London. 1 Scientific and Community News The latest CDMTCS research reports are (http://www.cs.auckland.ac.nz/ staff-cgi-bin/mjd/secondcgi.pl): 470. B. Khoussainov . A Quest For Algorithmically Random Infinite Structures, II 471. C.S. Calude, A. Coull and J.P. Lewis. Can We Solve the Pipeline Problem? 472. A. A. Abbott, L. Bienvenu and G. Senno. Non-uniformity in the Quantis Random Number Generator 473 C.S. Calude and M.J. Dinneen. Solving the Broadcast Time Problem Using a D-Wave Quantum Computer 474 C.S. Calude and G. Longo. Classical, Quantum and Biological Randomness as Relative Incomputability 475 T. Resnick. Sudoku at the Intersection of Classical and Quantum Computing 476 D. -
A Bibliography of Publications in Theoretical Computer Science: 2005–2009
A Bibliography of Publications in Theoretical Computer Science: 2005{2009 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 14 October 2017 Version 1.15 Title word cross-reference `p [782]. [1183, 729]. F0 [2005]. FS [1741]. H [1823, 1585]. k [1116, 1805, 796, 803, 173, 781, 1961, 1609, 775, 1989, 178, 1310, 630, 1311, 951, 62, 1823, 1809, 2253, 2061, 2003, #CSP [2264]. #P [1788]. 1624, 953, 1226, 1306, 1290, 2007]. k>2 #P-completeness [1788]. [173]. Kmax;Kmin [541]. κ [1836]. L(2; 1) [2243, 1635]. L(d; s) [440]. l1 [961]. λ (1 + 1) [1683]. (1,λ) [115]. (18=11)n [2213]. [2281, 400, 1588, 562]. λµ [1159]. log N (α, β) [2215]. (n; k) [2392, 1557]. (n; t) [1049]. d [547]. LU [1217]. m (p; k) [467]. (r; p) [2357]. $-calculus [1275]. [1760, 1324, 2258, 1745, 1226, 1306]. µ 1 [220, 503]. 2 [187, 400, 589, 359, 101]. n [1425, 2304, 1890, 2253, 2333, 1287, 1302]. d ≥ ≤ [1909, 958, 2079, 1451]. N [1444]. n 30 2 <α 7=3 [2163]. 3 [1628, 1771]. 3:4713 6 1:75 + [2169]. = [789]. O(n ) [2243]. [2387]. 4 [2260]. 5 + [1968]. 5=2 [90]. 5=4 2 ! ∗ ; Ø(n polylogn) [1915]. O(n ) [1553]. [778]. [0; 1] [503]. [58]. [109]. 1 [1543]. -
BEATCS No 119
ISSN 0252–9742 Bulletin of the European Association for Theoretical Computer Science EATCS E A T C S Number 119 June 2016 Council of the European Association for Theoretical Computer Science President:Luca Aceto Iceland Vice Presidents:Paul Spirakis United Kingdom and Greece Antonin Kucera Czech Republic Giuseppe Persiano Italy Treasurer:Dirk Janssens Belgium Bulletin Editor:Kazuo Iwama Kyoto,Japan Lars Arge Denmark Anca Muscholl France Jos Baeten The Netherlands Luke Ong UK Lars Birkedal Denmark Catuscia Palamidessi France Mikolaj Bojanczyk Poland Giuseppe Persiano Italy Fedor Fomin Norway Alberto Policriti Italy Pierre Fraigniaud France Alberto Marchetti Spaccamela Italy Leslie Ann Goldberg UK Vladimiro Sassone UK Magnus Halldorsson Iceland Thomas Schwentick Germany Monika Henzinger Austria Jukka Suomela Finland Christos Kaklamanis Greece Thomas Wilke Germany Elvira Mayordomo Spain Peter Widmayer Switzerland Michael Mitzenmacher USA Gerhard Woeginger¨ The Netherlands Past Presidents: Maurice Nivat (1972–1977)Mike Paterson (1977–1979) Arto Salomaa (1979–1985)Grzegorz Rozenberg (1985–1994) Wilfred Brauer (1994–1997)Josep D´iaz (1997–2002) Mogens Nielsen (2002–2006)Giorgio Ausiello (2006–2009) Burkhard Monien (2009–2012) Secretary Office:Ioannis Chatzigiannakis Italy Efi Chita Greece EATCS Council Members email addresses Luca Aceto ..................................... [email protected] Lars Arge .............................. [email protected] Jos Baeten ............................... [email protected] Lars Birkedal ............................ [email protected] Mikolaj Bojanczyk .......................... [email protected] Fedor Fomin ................................ [email protected] Pierre Fraigniaud .. [email protected] Leslie Ann Goldberg ................ [email protected] Magnus Halldorsson ........................ [email protected] Monika Henzinger ................ [email protected] Kazuo Iwama ........................ [email protected] Dirk Janssens ........................ -
Linking Exploration Systems with Local Logics Over Information Systems
Linking Exploration Systems with Local Logics over Information Systems Soma Dutta1;2, Grzegorz Rozenberg3;4, and Andrzej Skowron5;6 1 Vistula University Stok losy 3, 02-787 Warsaw, Poland [email protected] 2 University of Warmia and Mazury Olsztyn, Poland 3 Leiden Institute of Advanced Computer Science, Leiden University P.O. Box 9512, NL-2300 RA Leiden, The Netherlands 4 Department of Computer Science, University of Colorado at Boulder, USA 430 UCB, Boulder, CO 80309, USA 5 University of Warsaw, Poland [email protected] 6 Systems Research Institute, Polish Academy of Sciences Newelska 6, 01-447 Warsaw, Poland Abstract. In the paper, we discuss an extension of exploration sys- tems introduced by Andrzej Ehrenfeucht and Grzegorz Rozenberg. The extension is defined by adding an interpretation of nodes and edges in zoom structure of exploration system. The interpretation is based on the concepts, namely local logic and logic infomorphism, from the notion of information flow by Jon Barwise and Jerry Seligman. This extension makes it possible, in particular, to give a natural interpretation of reac- tion systems in exploration systems as tools for controlling attention in reasoning about the perceived situation in the physical world. Key words: reaction system, zoom structure, exploration system, in- formation system, local logic, infomorphism, logic infomorphism 1 Introduction In the paper, we present a preliminary discussion about possible links between the exploration systems and the information flow approach. The original motivation behind reaction systems (mostly taken from [1] and [2]) was to model interactions between biochemical reactions in the living cells. Therefore, the formal notion of reaction reflects the basic intuition behind bio- chemical reactions. -
Handbook of Natural Computing
Handbook of Natural Computing Main Editor Grzegorz Rozenberg Editors Thomas Ba¨ck Joost N. Kok Handbook of Natural Computing With 734 Figures and 75 Tables Editors Grzegorz Rozenberg Joost N. Kok LIACS LIACS Leiden University Leiden University Leiden, The Netherlands Leiden, The Netherlands and Computer Science Department University of Colorado Boulder, USA Thomas Ba¨ck LIACS Leiden University Leiden, The Netherlands ISBN 978-3-540-92909-3 ISBN 978-3-540-92910-9 (eBook) ISBN 978-3-540-92911-6 (print and electronic bundle) DOI 10.1007/978-3-540-92910-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010933716 © Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Preface Natural Computing is the field of research that investigates human-designed computing inspired by nature as well as computing taking place in nature, that is, it investigates models and computational techniques inspired by nature, and also it investigates, in terms of information processing, phenomena taking place in nature.