BAUXITE IAI Web Version.Indd

Total Page:16

File Type:pdf, Size:1020Kb

BAUXITE IAI Web Version.Indd www.aluminiumtoday.com BAUXITE 1 This paper was previously published in the ICSOBA Newsletter Volume 14, December 2015 Management and use of bauxite residue By Ken Evans* This paper serves as a brief overview of especially true of the early European sites the mud washing circuit is pumped, the history and trends in the management including: Bergheim (Germany) - on site with a solids content of 20 to 30%, into and use of bauxite residue, outlining: The storage then in a former lignite mines; storage areas created by dams and other dimensions of the problem; how methods Burntisland (UK) - disposal into an estuary, earthworks for secure containment. In of storage and disposal have developed then behind a sea wall, see Figure 1, then many instances valleys were dammed for over time and the implications for bauxite an old shale mine; see Figure 2, Gardanne example, Ewarton (Jamaica), see Figures residue use; characteristics of bauxite (France) - storage in a dammed valley 3 and 4, Gardanne, Salindres, Saint Cyr residue; the technically successful uses; then disposal by pipeline to the sea; La (France), Ouro Preto (Brazil). Examples the challenges to implementation – real Barasse (France) - storage on site then of old mine storage were: bauxite mines and perceived; a review of large scale/ nearby dammed valley then disposal to (Kirkvine (Jamaica), Bauxite (USA)), lignite industrial scale successes; and some hopes mines (Bergheim), and oil shale quarries for the future. (Burntisland). Annual production of smelter grade In the case with sites constructed and chemical grade alumina in 2015 was in the past three or four decades, the some 115 million tonnes1 which, with storage areas have normally been sealed the exception of some plants in Russia, to minimise leakage to the underlying Iran and China, is all produced using the ground and ground-water, however, this Bayer process. The global average for the tended not to be the practice in earlier production of bauxite residue per tonne years. Sealing approaches cover a range of of alumina is between 1 and 1.5 tonnes, materials including compacted clay and/or though the range is much broader, so it the use of plastic and other membrane is estimated that some of the 150 million materials. tonnes of bauxite residue is produced The supernatant liquor above the annually. This is generated at some 60 residue was normally returned to the active Bayer plants. In addition there are plant for reuse thereby recovering some at least another 50 closed legacy sites, so of the caustic soda value and avoiding the combined stockpile of bauxite residue contaminating the environment. Various at active and legacy sites is estimated at drainage and seepage collection systems three thousand million tonnes. have been incorporated into the design and construction of the facilities. The History and trends in disposal and construction of the storage area was often storage methods Fig 1. Bauxite disposasl into an estuary to recover land dictated by the type of bauxite residue and Management of and the methods of the differed for clay like muds compared to storage of bauxite residue has evolved sea via a pipeline; Larne (UK) - disposal more sandy residues. At Gramercy (USA), progressively over the decades2. In the into sea water lagoons; Ludwigshafen sand-bed filtration was used and “French early Bayer alumina plants, the residue (Germany) - storage on site; Newport (UK) Drains” were used with drainage pipes and generated was often merely piled up on – disposal into estuary from barges then covering layers of sand of different size site or an area adjoining the alumina plant. sea water lagoons; Salindres (France) – on and gravel to give permeability through Occasionally nearby depleted mine or site storage then in a dammed valley and the base of the lake. This was termed the quarry sites, were used. In other situations Schwandorf (Germany) – on site storage.. Decantation, Drainage and Evaporation of nearby estuaries or sea lagoons were used Prior to 1980, most of the inventory Water (DREW) system. and then later as the closest convenient of bauxite residue was stored in lagoon- There are many examples of this storage areas were filled, valleys were dammed type impoundments and the practice is method but they include Stade (Germany), to contain the ever-growing volume of still carried out at some facilities. In this Burnside (USA) and Vaudreuil (Canada). In residue. These methods of storage were method, the bauxite residue slurry from some cases, low dykes or levees were built *Consultant, International Aluminium Institute Aluminium International Today March/April 2016 2 BAUXITE www.aluminiumtoday.com of valuable soda and alumina to the Bayer process plants and to minimise the potential for leakage to the surrounding environment. The current trend in residue storage practice is towards increasing use of dry stacking as the preferred technology, and further research to optimise this technology is appropriate. Very many plants now use equipment such as Amphirols to aid dewatering of the mud in order to compact and consolidate the Fig 2. Bauxite residue disposal into a former oil shale mine residue. See Figure 6. Partial neutralisation using seawater is practiced at a number of to the final expected height at the start discharge is no longer undertaken at Australian plants close to the sea (Yarwun and a new area constructed when more any alumina refining facilities and all sea and QAL); carbonation by using waste volume was required whilst in others the discharge will be completely phased out carbon dioxide from ammonia production dam walls were successively increased by the end of 2015. has been used (Kwinana (Australia)); and when the space was filled. The area of As land for lagoon storage became accelerated carbonation using intensive suitable land readily available dictated the scarce for many plants, “Dry stacking” farming methods, Aughinish (Ireland), approach. methods were used. A dry stacking regime Kwinana, Worsley (Australia)) is showing If the residue material is not neutralised was adopted nearly 75 years ago in the considerable benefits. before discharge to the storage lagoon, UK3 and about 50 years ago in Germany4 Filtration using drum filters and plate it becomes a highly alkaline, poorly and since the 1980s the trend has been and frame filter presses to recover caustic compacted mud area covered by a highly increasingly towards dry stacking to reduce soda, produce a lower moisture and alkaline lake, see for example the lake in more handleable bauxite residue have Figure 4 which had a pH >12 and a soda been employed for some 80 years but is level in excess of 2,000 mg/L many years now growing in usage. Plate and frame after pumping had stopped. filter presses were adopted in Vaudreuil This creates safety and environmental in 1936 when the plant was constructed hazards including the potential for contact and in Burntisland in 1941 as the lagoons of humans and wildlife with alkaline adjacent to the site were full. In the case liquor and mud, and contamination of of Burntisland the bauxite residue needed surface and ground waters by leaching to be transported on public roads through of caustic liquor and other contaminants. the town to a nearby old oil shale mine Regrettably in many cases these early so a high solids content mud was a ponds have proved of limited efficacy and Fig 3. Bauxite residue disposal into a dammed valley key requirement. In the mid 1960s at caustic liquor, plus other contaminants, has to create a lagoon, early stages Ludwigshafen, vacuum drum filters were subsequently seeped into the surrounding adopted. Figure 7 shows a press filter. environment. Ongoing remediation of In addition to helping recover more these situations is proving to be a costly the potential for leakage of caustic liquor caustic, this trend opens up considerable exercise. Addressing the risk and to to the surrounding environment, reduce benefits in terms of reuse as the material eliminate the potential for catastrophic the land area required, and maximise is normally produced as a friable cake, failure of the dam/impoundment and the recoveries of soda and alumina. with typically less than 28% moisture, and consequent environmental hazard to Considerable work was undertaken in lower soda thereby dramatically reducing the surrounding area/communities Jamaica on the Robinsky5 sloped thickened transport issues and costs. Alunorte introduces high monitoring, maintenance tailing disposal system and Ewarton (Brazil), Distomon (Greece), Gardanne, and remediation costs. Under some adopted the practice in the mid-1980s6. Kwinana, Seydisehir (Turkey) and many circumstances, this has created the See Figure 5. Additionally, improved plants in China have already adopted prospect of an indefinite legacy. methods for thickening and washing of or plan to adopt plate and frame filter Another disposal technique adopted the residues prior to storage, and recovery presses. Hyper Baric filters are reported to by some plants was sea or river disposal of decant water during storage, have achieve particularly low moisture content particularly in the 1940s to 1960s. In at been developed to increase the recovery material with the performance of the least six plants, two located in France (Gardanne and La Barasse), one in Greece (Distomon) and three in Japan (Shimizu, Ehime, Yokohama), bauxite residue was discharged into the sea either via pipelines or from ocean going vessels. Other alumina plants disposed of the residue into rivers or estuaries, for example into the Mississippi River (Gramercy), and Severn Estuary (Newport). In other cases in Ireland (Larne), Wales (Newport) and Scotland (Burntisland), land was reclaimed from the sea by disposing of the residue Fig 4. Bauxite residue disposal into dammed valley, later stages in tidal lagoons or behind sea walls. River March/April 2016 Aluminium International Today www.aluminiumtoday.com BAUXITE 3 press being enhanced when steam is particle size distribution, morphology and used; moisture contents lower than 25% Component Typical range (%) nature of the residue emanating from a have been reported.
Recommended publications
  • Study on New Desilication Technology of High Silica Bauxite
    2016 2nd International Conference on Sustainable Energy and Environmental Engineering (SEEE 2016) ISBN: 978-1-60595-408-0 Study on New Desilication Technology of High Silica Bauxite Hai-yun XIE 1, Chao DING 1, Peng-fei ZHANG 1,2 , Lu-zheng CHEN 1, and Xiong-TONG 1 1Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China 2State Key Laboratory of Complex Nonferrous Metal Resource Clean Utilization, Kunming 650093, China Keywords: High silicon bauxite, Desilication, Gravity separation, Froth flotation. Abstract: There are abundant diasporic bauxite resource in China. The gravity separation and flotation process are utilized for treating this kind of ore. When the ore grinding fineness is -200 mesh 80%, the qualified bauxite concentrate can be obtained, and it contains Al 2O3 71.62%, SiO 2 8.94%, and its Al 2O3 recovery rate is 75.43%, A/S is 8.02.Compared with single flotation process, it can be reduced for the dosage flotation reagent and the cost of mineral processing. Introduction China's bauxite resources are rich, the amount of resources of 1.914 billion, ranking the fifth in the world, but more than 80% are medium and low grade ore, Aluminum silicon ratio (A/S) between 4 to 7 of the bauxite accounted for 59.5%. These minerals can not meet the basic conditions for the production of alumina by Bayer process. (A/S>8) [1]. The vast majority of China's bauxite belong to high-alumina, high-silicon, fine-grained embedded diaspore-type bauxite, so the bauxite is difficult to concentrate.
    [Show full text]
  • Unusual Silicate Mineralization in Fumarolic Sublimates of the Tolbachik Volcano, Kamchatka, Russia – Part 2: Tectosilicates
    Eur. J. Mineral., 32, 121–136, 2020 https://doi.org/10.5194/ejm-32-121-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 2: Tectosilicates Nadezhda V. Shchipalkina1, Igor V. Pekov1, Natalia N. Koshlyakova1, Sergey N. Britvin2,3, Natalia V. Zubkova1, Dmitry A. Varlamov4, and Eugeny G. Sidorov5 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 2Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia 3Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184200 Apatity, Russia 4Institute of Experimental Mineralogy, Russian Academy of Sciences, Akademika Osypyana ul., 4, 142432 Chernogolovka, Russia 5Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia Correspondence: Nadezhda V. Shchipalkina ([email protected]) Received: 19 June 2019 – Accepted: 1 November 2019 – Published: 29 January 2020 Abstract. This second of two companion articles devoted to silicate mineralization in fumaroles of the Tol- bachik volcano (Kamchatka, Russia) reports data on chemistry, crystal chemistry and occurrence of tectosil- icates: sanidine, anorthoclase, ferrisanidine, albite, anorthite, barium feldspar, leucite, nepheline, kalsilite, so- dalite and hauyne. Chemical and genetic features of fumarolic silicates are also summarized and discussed. These minerals are typically enriched with “ore” elements (As, Cu, Zn, Sn, Mo, W). Significant admixture of 5C As (up to 36 wt % As2O5 in sanidine) substituting Si is the most characteristic. Hauyne contains up to 4.2 wt % MoO3 and up to 1.7 wt % WO3.
    [Show full text]
  • Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge
    applied sciences Article Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge Davide Mombelli * , Silvia Barella , Andrea Gruttadauria and Carlo Mapelli Dipartimento di Meccanica, Politecnico di Milano, via La Masa 1, Milano 20156, Italy; [email protected] (S.B.); [email protected] (A.G.); [email protected] (C.M.) * Correspondence: [email protected]; Tel.: +39-02-2399-8660 Received: 26 September 2019; Accepted: 9 November 2019; Published: 15 November 2019 Abstract: More than 100 million tons of red mud were produced annually in the world over the short time range from 2011 to 2018. Red mud represents one of the metallurgical by-products more difficult to dispose of due to the high alkalinity (pH 10–13) and storage techniques issues. Up to now, economically viable commercial processes for the recovery and the reuse of these waste were not available. Due to the high content of iron oxide (30–60% wt.) red mud ranks as a potential raw material for the production of iron through a direct route. In this work, a novel process at the laboratory scale to produce iron sponge ( 1300 C) or cast iron (> 1300 C) using blast furnace ≤ ◦ ◦ sludge as a reducing agent is presented. Red mud-reducing agent mixes were reduced in a muffle furnace at 1200, 1300, and 1500 ◦C for 15 min. Pure graphite and blast furnace sludges were used as reducing agents with different equivalent carbon concentrations. The results confirmed the blast furnace sludge as a suitable reducing agent to recover the iron fraction contained in the red mud.
    [Show full text]
  • PRODUCTION and REFINING of METALS (Electrolytic C25); PRETREATMENT of RAW MATERIALS
    C22B PRODUCTION AND REFINING OF METALS (electrolytic C25); PRETREATMENT OF RAW MATERIALS Definition statement This subclass/group covers: Metallurgical or chemical processes for producing or recovering metals from metal compounds, ores, waste or scrap metal and for refining metal. Included in this subclass are processes drawn to: the production of metal by smelting, roasting or furnace method; the extraction of metal compounds from ore and concentrates by wet processes; electrochemical treatment of ores and metallurgical products for obtaining metals or alloys; apparatus thereof; preliminary treatment of ores, concentrates and scrap; general process for refining or remelting metals; apparatus for electroslag or arc remelting of metals; obtaining specific metals; consolidating metalliferous charges or treating agents that are subsequently used in other processes of this subclass, by agglomerating, compacting, indurating or sintering. Relationship between large subject matter areas This subclass covers the treatment, e.g. decarburization, of metallferrous material for purposes of refining. C21C, C21D and C22F provide decarburization of metal for modifying the physical structure of ferrous and nonferrous metals or alloys, respectively. C22B also possesses groups for obtaining metals including obtaining metals by chemical processes, and obtaining metal compounds by metallurgical processes. Thus, for example, group C22B 11/00 covers the production of silver by reduction of ammoniacal silver oxide in solution, and group C22B 25/00 covers the
    [Show full text]
  • Iron-Rich Bauxite and Bayer Red Muds Yingyi Zhang, Yuanhong Qi and Jiaxin Li
    Chapter Aluminum Mineral Processing and Metallurgy: Iron-Rich Bauxite and Bayer Red Muds Yingyi Zhang, Yuanhong Qi and Jiaxin Li Abstract Bauxite is the main source for alumina production. With the rapid development of iron and steel industry and aluminum industry, high-quality iron ore and bauxite resources become increasingly tense. However, a lot of iron-rich bauxite and Bayer red mud resources have not been timely and effectively recycled, resulting in serious problems of environmental pollution and wastage of resources. The com- prehensive utilization of iron-rich bauxite and red mud is still a worldwide problem. The industrial stockpiling is not a fundamental way to solve the problems of iron- rich bauxite and red mud. As to the recovery of valuable metals from iron-rich bauxite and red mud, there are a lot of technical and cost problems, which are serious impediments to industrial development. Applying red mud as construction materials like cement, soil ameliorant applications face the problem of Na, Cr, As leaching into the environment. However, the high-temperature reduction, smelting and alkaline leaching process is a feasible method to recover iron and alumina from iron-rich bauxite and red mud. This chapter intends to provide the reader an overview on comprehensive utilization technology of the low-grade iron-rich bauxite and Bayer red mud sources. Keywords: bauxite, iron-rich bauxite, Bayer red mud, Bayer process, magnetic separation, reduction and smelting process 1. Introduction With 8.30%, aluminum is the third element in the earth’s crust after the oxygen and the silicon, and for that reason, aluminum minerals are abundant with more than 250 kinds.
    [Show full text]
  • Lapis Lazuli
    LAPIS LAZULI Among the world’s many gemstones, lapis lazuli, or “lapis” as it is familiarly known, has a distinction. Many scholars and archaeologists believe that it was the first gemstone ever mined in quantity. The oldest known lapis deposits, located in Afghanistan, have been systematically mined since about 4000 B.C. Few gemstones display color as rich as the deep, royal blue of fine lapis. Adding to its visual appeal, lapis often exhibits glittering, golden flecks of pyrite. When cut and polished into cabochons and set in gold, lapis gemstones have a distinctive beauty all their own. Understanding lapis lazuli, which is a rock, requires a basic understanding of lazurite, which is a mineral. Lazurite is the primary component of lapis lazuli and is also the cause of its blue color. Lazurite, or basic sodium calcium aluminum sulfate chlorosilicate (Na,Ca)8Si6Al6O24[(SO4),S,Cl,(OH)]2, is a tectosilicate or framework silicate that is made up of 13.5 percent sodium, 7.8 percent calcium, 15.8 percent aluminum, 16.3 percent silicon, 6.0 percent sulfur, 38.1 percent oxygen, and small percentages of chlorine and hydrogen. The color of pure lazurite is a deep azure. It crystallizes in the isometric (cubic) system, usually as dodecahedral and occasionally as cubic crystals, but most often occurs in massive form. Lazurite is usually opaque, has a dull-to-greasy luster, poor cleavage in six directions, a pale-blue streak, a Mohs hardness of 5.0-5.5, and a specific gravity of 2.4-2.5. Lazurite forms from high-grade, contact metamorphism of silica-poor marine limestone that contains available sulfur and chlorine.
    [Show full text]
  • Extraction of Aluminium from Coal Fly Ash Using a Two-Step Acid Leach Process
    EXTRACTION OF ALUMINIUM FROM COAL FLY ASH USING A TWO-STEP ACID LEACH PROCESS Alan Shemi A dissertation submitted to the faculty of Engineering and the Built Environment, University of Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering Extraction of Aluminium from CFA Alan Shemi DECLARATION I declare that this dissertation is my own unaided work. It is being submitted to the degree of Master of Science in Engineering to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any other degree or examination in any other University. ---------------------------------- Alan Shemi 14th Day of May 2013 Page ii Extraction of Aluminium from CFA Alan Shemi ABSTRACT Hydrometallurgical extraction technologies provide a process route for resource recovery of valuable metals from both primary as well as secondary resources. In this study, the possibility of treating coal fly ash (CFA), a residue formed as a result of coal combustion in coal-fired power plants, was investigated. Eskom CFA contains significant amounts of alumina typically, 26-31%, in two dissimilar phases, namely amorphous and crystalline mullite, which may be processed separately. Due to its high silica content, however, CFA cannot be treated through the Bayer process route. Therefore, a leach-sinter-leach process was formulated that employed a two-step acid leach technique to extract alumina from CFA using sulphuric acid. In the preliminary test work, the effect of parameters on CFA leaching characteristics was investigated. From the experimental results, appropriate factor levels were found to be 6M acid concentration, 6 hours leaching time, 75°C temperature and 1:4 solid to liquid ratio.
    [Show full text]
  • Recovery of Desilication Product in Alumina Industry
    Recovery of Desilication Product in Alumina Industry Hasitha Indrajith de Silva B.Sc. Engineering (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2013 School of Chemical Engineering Abstract Bayer process is used for the production of alumina from bauxite which contains siliceous minerals known as reactive silica. Reactive silica is also digested during the Bayer process, forming desilication product (DSP) which traps significant amount of sodium from the caustic soda used. DSP containing red mud is discarded to the bauxite residue storage areas causing alarming economic and environmental concerns to the alumina industry. Separation of DSP from red mud is a critical step to subsequent sodium recovery. Therefore, methods of separating DSP from red mud originated in a Western Australian alumina refinery were investigated in the present study. Red mud classified into five size classes was characterised using particle size measurement, material density, X-ray diffraction, X-ray photon spectroscopy, electron microscopy fitted with energy dispersive spectroscopy. Size separation alone resulted in an increase of DSP from ~7% to 12-14% in finer size classes of red mud. Since red mud contains more than 50% iron oxides, dissolution of these oxides would invariably result in an increase of DSP, therefore, several dissolution mechanisms of these oxides were investigated. Sodium Citrate-Bicarbonate-Dithionite (CBD) method resulted in an increase of DSP content from ~12 to 22%, while a comparative study was also carried out using deferroxiamine B (DFO-B) as the complexing agent. The use of ultrasonically assisted-CBD resulted in a significant improvement of iron dissolution from red mud.
    [Show full text]
  • Phase Relations of the Hydroxyl Felspathoids in the System Naalsi0 -Naoh-H 0 4 2
    THE HYDROXYL FELSPATHOIDS PHASE RELATIONS OF THE HYDROXYL FELSPATHOIDS IN THE SYSTE14 NaAlSiO4-NaOH-H 0 2 By PETER ASCROFT MACKENZIE ANDERSON, B.Se., M.Se. A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doetor of Philosophy McMaster University May 1968 DOCTOR OF PHILOSOPHY (1968) McMASTER UNIVERSITY (Geology) Hamilton, Ontario TITLE: Phase Relations of the Hydroxyl Felspathoids in the System NaAlSi0 -NaOH-H 0 4 2 AUTHOR: Peter A.M. Anderson, B.Sc. (London University) M.Sc. (McMaster University) SUPERVISOR: Dr. B.J. Burley NUMBER OF PAGES: ix, 78 SCOPE AND CONTENTS: A stUdy was made of the phase relationships in the system NaAlSi0 -NaOH-H 0, at 15,000 p.s.i. and at 450°C, 520°C, 4 2 600°C and 700°C. The following phases were found and characterised: hydroxyl varieties of nosean, sodalite and cancrinite, with formulae approximating to 3NaA1Si04.NaOH.xH20, l6:.xbl.5, sodic nepheline and phase X, apparently a previously unreported phase, with composition approaching Na Al Si 0 • Approximate phase diagrams were deduced 4 2 2 9 for the four temperatures. i1 ACKNOWLEOOEMENTS The writer is very deeply indebted to Dr. B.J. Burley, without whose continued guidance and support, this investigation would have been quite impossible. Drs. C. Calvo and H.P. Schwarcz have also been generous with time and advice, throughout the project. The assist- ance of others, too numerous to mention individually, has been readily given and gratefully accepted; these include most of the members of the Department of Geology.
    [Show full text]
  • CHANGING TECHNOLOGY Ln a CHANGING WORLD the CASE of EXTRACTIVE METALLURGY 1
    CHANGING TECHNOLOGY lN A CHANGING WORLD THE CASE OF EXTRACTIVE METALLURGY 1 Fathi Habashi 2 ABSTRACT Smelting of ores for metal extraction is an ancient art in our civilization. New technology is being introduced, but forces of resistance are sometimes so strong to permit a radical change. While the iron and steel, zinc, aluminum, and gold industries are responding to change, the copper and nickel industries seem to be more conservative. Key words: iron, steel, copper, pressure hydrometallurgy, gold, alurninum, zinc, nickel, sulfur dioxide, elemental sulfur, sulfuric acid, pyrite, arsenopyrite. ' XVII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa - I Simpósio sobre Química de Colóides- Aguas de Sao Pedro- SP, Brazil , August 23-26. 1998. :· Department of Mining and Metallurgy, Lavai University, Qut:bec City, Canada 49 INTRODUCTION Extractive metallurgy today is usually divided in two sectors: ferrous and nonferrous because of the large scale operations in the ferrous [1). Steel production in one year exceeds that of ali other metais combined in ten years. As a result, metallurgists in the nonferrous sector usually do not participate in the activities of iron and steel makers and vice versa. This is a pity because for sure one can leam from the other. ln fact, the copper industry adopted many technologies used first in iron and steel production. For example, when Bessemer invented the conventer in 1856 it was adopted in the copper industry ten years !ater, and when high grade massive copper sulfide ores were exhausted and metallurgists were obliged to treat low-grade ores, the puddling furnace was adapted in form of a reverberatory furnace to treat the flotation concentrates.
    [Show full text]
  • A Chemical, Thermogravimetric and X-Ray Study of Cancrinite
    A CHEMICAL, THERMOGRAVIMETRIC AND X-RAY STUDY OF CANCRINITE by 1 SHU-MEEI CHEN, B • Sc. A The sis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University September, 1970 STUDIES ON CANCRINITE MASTER OF SCIENCE (Ge ology) McMASTER UNIVERSITY Hamilton, Ontario. TITLE: A Chemical, Thermogravimetric and X-Ray Study of C ancrinite. AUTHOR: Shu-Meei Chen, B.Sc. (National Taiwan University) SUPER VISOR: Professor B. J. Burley NUMBER OF PAGES: 65, viii. SCOPE AND CONTENTS: Four specimens of natural cancrinite from Ontario we r e studied. Single crystal photog raphs were taken and non-Bragg reflections were observed. Changes in these reflections in samples heated to 410°, 600°, and 745°C "\Vere investigated. Phase changes in these heated cancrinites we re also studied. Suggestions have been n1ade as to the origin of the non-Bragg reflections. ii ACKNOWLEDGEMENTS The writer wishes to express her sincere appreciation to Professor B. J . Burley, her supervisor, for many discussions and c orrections of the manuscript. Thanks are also extended to Dr. H. D. Grundy for his help with taking precession photographs, to J. Muysson, who did the chemical analyses and to F. Tebay, who took care of the x -ray equipment. Financial support was provided by the Department of Geology, McMaster University, the National Re search Council and the Geological Survey of Canada. iii TABLE OF CONTENTS PAG:E CHAPTER 1 INTRODUCTION 1 CHAPTER 2 STUDIES ON PRECESSION PHOTOGRAPHS OF CANCRINITE
    [Show full text]
  • VALUE ADDED METAL EXTRACTION from RED MUD Department Of
    VALUE ADDED METAL EXTRACTION FROM RED MUD Thesis submitted in partial fulfilment of the requirements for the award of the degree of Master of Technology In Mechanical Engineering [Specialization: Steel Technology] Submitted by Ankur Pyasi Roll No. - 212MM2422 Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela-769008 May 2014 National Institute of Technology Rourkela Certificate This is to certify that the thesis entitled “Value added metal extraction from red mud” submitted by Ankur pyasi in partial fulfilment of the requirement for the degree of “Master of Technology” in Mechanical Engineering with specialization in Steel technology, is a bonafide work carried out by him under our supervision and guidance. In our opinion, the work fulfils the requirement for which it is being submitted. Supervisor Prof. Smarajit sarkar Department of Metallurgical & Materials Engineering National Institute of Technology, Rourkela Rourkela – 769008 Email: [email protected] Acknowledgment I wish to express my sincere gratitude to my supervisor Prof. Smarajit sarkar, for giving me an opportunity to work on this project, for his guidance, encouragement and support throughout this work and my studies here at NIT Rourkela. His impressive knowledge, technical skills and human qualities have been a source of inspiration and a model for me to follow. I like to express my deep sense of respect and gratitude to Dr. B.Mishra, Dy. Director at DISIR Rajgangpur, Odisha for their useful suggestions and help rendered to me in carrying out this work. I am grateful to Prof. B C Roy, present Head of the Department of Metallurgical & Materials Engineering Department for providing facilities for smooth conduct of this work.
    [Show full text]